
A Novel Technique for Avoiding Plateaus of
Greedy Best-First Search in Satisficing Planning

Tatsuya Imai
Tokyo Institute of Technology

Akihiro Kishimoto
Tokyo Institute of Technology and JST PRESTO

Abstract

Greedy best-first search (GBFS) is a popular and ef-
fective algorithm in satisficing planning and is incorpo-
rated into high-performance planners. GBFS in plan-
ning decides its search direction with automatically
generated heuristic functions. However, if the heuris-
tic functions evaluate nodes inaccurately, GBFS may be
misled into a valueless search direction, thus resulting in
performance degradation. This paper presents a simple
but effective algorithm considering a diversity of search
directions to avoid the errors of heuristic information.
Experimental results in solving a variety of planning
problems show that our approach is successful.

Introduction

In satisficing planning, where suboptimal solutions are ac-
cepted, many planners employ best-first search strategies in-
cluding greedy best-first search (GBFS) (e.g., (Bonet and
Geffner 2001; Helmert 2006)). Let h be a heuristic function
that estimates the distance to a goal from a node n. GBFS
selects the best node n with the smallest h(n) in the open list
that maintains nodes that have been generated but have not
been expanded yet. It then expands n to generate n’s suc-
cessors, and saves these successors in the open list, unless
they have been previously added to the open list. Next, it
saves n in the closed list that keeps the nodes that have been
expanded. It continues these steps until finding a goal node
or proving that there is no solution in the search space.

Heuristic functions play an important role in drastically
improving performance of GBFS. While automatic genera-
tion of heuristic functions (e.g., (Hoffmann and Nebel 2001;
Helmert 2006)) enables state-of-the-art satisficing planners
to solve very complicated planning problems including
benchmarks in the International Planning Competitions, ac-
curate evaluations of nodes still remain as a challenging task.

Although GBFS is fundamental and powerful in planning,
it has an essential drawback when heuristic functions return
inaccurate estimates. Assume that a heuristic function un-
derestimates the difficulties of unpromising nodes. Then,
since GBFS must expand nodes with small heuristic values
first, it spends most of time in searching only unpromising
areas and delays moving to the promising part. Figure 1
illustrates a typical transition of heuristic values of nodes

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000 12000 14000 16000

he
ur

is
tic

 v
al

ue
number of expanded nodes

Figure 1: A transition of heuristic values in solving optical-
telegraphs #02

selected for expansions when GBFS with the FF heuristic
(Hoffmann and Nebel 2001) solves a planning problem. The
horizontal axis indicates each expansion of the best node
n in the open list and the vertical axis represents n’s cor-
responding heuristic value for that expansion. Circles, the
triangle, and diamond represent expanding nodes that are
on the path to a goal. This transition indicates that until
reaching a node m marked by diamond GBFS keeps expand-
ing many valueless nodes erroneously evaluated as more
promising than m by the heuristic function, after expand-
ing a node marked by triangle. These valueless nodes never
contribute to solving the problem.

Previous work tackles this issue by adding a diversity to
search, which is an ability in simultaneously exploring dif-
ferent parts of the search space to bypass large errors in
heuristic functions. For example, several algorithms com-
bined with diversity such as in (Felner, Kraus, and Korf
2003; Linares López and Borrajo 2010; Röger and Helmert
2010) are empirically shown to be superior to naive best-first
search algorithms. However, they still have limited diver-
sity, since they do not immediately expand nodes mistakenly
evaluated as very unpromising ones.

This paper presents a new technique that incorporates a
diversity into search in a different way than previous search-
based approaches. Our contributions are summarized as:

1. Diverse best-first search (DBFS) that is robust to large
heuristic evaluation errors. Even if a heuristic function

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

985

erroneously evaluates promising node n as unpromising,
DBFS can occasionally expand n. The frequency of se-
lecting such n is controlled by the heuristic value of n and
the path cost to n from the root node.

2. Empirical results clearly showing that DBFS is effective
in satisficing planning. DBFS outperforms GBFS and
a previous approach in (Felner, Kraus, and Korf 2003).
Additionally, by combining with a popular enhancement
technique, DBFS solves more planning instances than the
Fast Downward planner (Helmert 2006).

Related Work

Although similar issues have been addressed in other do-
mains such as balancing exploration and exploitation (Koc-
sis and Szepesvári 2006) and escaping from local minima
(Selman, Levesque, and Mitchell 1992), we review the liter-
ature on planning and diversifying search directions.

K-best-first search (KBFS(k)) is a generalization of best-
first search (Felner, Kraus, and Korf 2003). KBFS(k) ex-
pands the k best nodes in the open list at a time, and then
inserts the successors of the k nodes into the open list. It re-
peats this process until finding a goal node or proving no so-
lution. This algorithm provides a simple way of adding a di-
versity to search by delayed examinations of successors. Pa-
rameter k controls the diversity; a more variety of paths are
considered for larger k. KBFS(k) and an extended version
of KBFS(k) (EKBFS(k)) were applied to classical planning
in (Linares López and Borrajo 2010). EKBFS incorporates
a few enhancements introduced in (Koehler and Hoffmann
2000; Hoffmann and Nebel 2001). Linares López and Bor-
rajo conclude that in solving hard problems both KBFS(k)
and EKBFS(k) outperform GBFS and enhanced hill climb-
ing presented in (Hoffmann and Nebel 2001).

KBFS(k) partially avoids search plateaus caused by mis-
leading heuristic estimates. However, if the heuristic values
of all the k best nodes are erroneously underestimated, it
results in searching useless areas. Although the possibility
of occurring this drawback can be reduced by increasing k,
KBFS(k) tends to behave similarly to breadth-first search,
thus losing the benefit from the heuristic information.

The alternation method uses more than one heuristic func-
tion (Helmert 2006; Röger and Helmert 2010). It manages
an open list for each heuristic function, and selects one of the
open lists in a round-robin manner in each node expansion.
Alternation diversifies search directions by expecting heuris-
tic functions to evaluate nodes differently. However, if all of
them inaccurately evaluate unpromising nodes as promising,
it suffers from an excessive overhead of expanding valueless
nodes. Dovetailing is based on a more general idea than al-
ternation, since it runs different search algorithms such as
weighted A* with various weights (Valenzano et al. 2010).
However, it essentially has a similar dilemma to alternation.

Other approaches adding a diversity with an application
to planning include a restarting procedure combined with
local search (Coles, Fox, and Smith 2007) and random walk
(Nakhost and Müller 2009). While their approaches avoid
plateaus caused by misleading heuristic estimates by almost
completely forgetting the previously explored search space,

they may suffer from duplicate search effort such as re-
expanding the same nodes via different paths many times.

The Diverse Best-First Search Algorithm

Our DBFS algorithm overcomes issues addressed in the last
section. As in approaches with restarting procedures (e.g.,
(Nakhost and Müller 2009)), DBFS diversifies search direc-
tions by probabilistically selecting a node that does not have
the best heuristic value. As a result, compared to KBFS(k)
and weighted A*, DBFS has a higher chance of expanding a
node mistakenly estimated to be unpromising. Additionally,
unlike the approaches with restarting, DBFS performs more
systematic search by keeping all the expanded nodes in the
closed list. It can therefore effectively reuse search results
such as the case of which there are many paths to the same
node. Moreover, with heuristic function h, if h(n) �= ∞
holds for any node n that is reachable to a goal, DBFS is a
complete algorithm. In other words, with infinite time and
memory, it can return a solution when a solution exists, and
terminate correctly when there is no solution.

Algorithms 1 and 2 show the pseudo-code of DBFS. The
framework of DBFS is very simple. Until finding a goal
node or proving no solution, it repeats the procedures of
fetching one node n from the global open list (OL in the
pseudo-code) and performing GBFS rooted at n with the lo-
cal open list (LocOL in the pseudo-code). DBFS optimisti-
cally expects GBFS to find a solution for n with the smallest
search effort. The number of nodes expanded per GBFS is
therefore limited to h(n), which is the minimum number of
nodes that must be expanded to find a goal with the unit edge
cost if h(n) does not overestimate the distance to the goal.
Tied heuristic values are broken randomly in GBFS. As sim-
ilarly presented in (Botea and Ciré 2009), duplicate search
effort is eliminated by the shared global closed list. After
GBFS expands h(n) nodes, all the nodes in the local open
list are inserted to the global open list to make these nodes
as candidates for a selection in the next node-fetching phase.

Algorithm 1 Diverse Best-First Search
1: insert the root node into OL;
2: while OL is not empty do
3: n := fetch a node from OL;
4: LocOL := {n};
5: /* Perform GBFS rooted at n */
6: for i:=1 to h(n) do
7: select node m with the smallest h(m) from LocOL;
8: if m is a goal then
9: return plan to m from the root;

10: end if
11: save m in the global closed list;
12: expand m;
13: save m’s successors in LocOL;
14: end for
15: OL: = LocOL ∪ OL;
16: end while
17: return no solution;

Algorithm 2 presents the procedure of fetching a node,
which is called at line 3 of Algorithm 1. Let g(n) be the

986

Algorithm 2 Fetching one node
1: ptotal := 0;
2: (hmin, hmax) := minimum and maximum h-values in OL;
3: (gmin, gmax) := minimum and maximum g-values in OL;
4: if with probability of P then
5: G := select at random from gmin, · · · , gmax;
6: else
7: G := gmax;
8: end if
9: for all h ∈ {hmin, · · · , hmax} do

10: for all g ∈ {gmin, · · · , gmax} do
11: if g > G or OL has no node whose h-value and g-value

are h and g, respectively then
12: p[h][g] := 0;
13: else
14: p[h][g] := Th−hmin ;
15: end if
16: ptotal := ptotal + p[h][g];
17: end for
18: end for
19: select a pair of h and g with probability of p[h][g]/ptotal;
20: dequeue a node n with h(n) = h and g(n) = g in OL;
21: return n;

g-value of node n, which is the sum of the edge costs on the
path from the root node to n, and h(n) be the heuristic value
(h-value in short) of n. A node n selected to perform GBFS
is determined by a probability computed by h(n) and g(n).
If more than one node has the same pair of h and g values,
one of them is chosen randomly.

Parameters P and T (0 ≤ P, T ≤ 1) decide a policy
of fetching the next node. When GBFS is used for global
search, it tends to select nodes with large g-values due to
greediness of repeatedly selecting a successor that appears
to be promising. P enables DBFS to restart exploring the
search space that is closer to the root, where DBFS has not
yet exploited enough to find the promising nodes. On the
other hand, T controls the frequency of selecting a node
n based on the gap between the current best h-value and
h(n). Lower probabilities are assigned to nodes with larger
h-values to balance exploiting the promising search space
and exploring the unpromising part. Heuristic estimates are
completely ignored if T = 1. On the other hand, DBFS
fetches the same node chosen by GBFS if T = 0 and P = 0.

If GBFS selects an unpromising node n and n’s descen-
dants have smaller h-values than h(n), it keeps saving n’s
unpromising descendants in the open list and expanding
them. However, even if DBFS fetches n, it expands h(n)
nodes and then selects another node that may not be n’s de-
scendant. Only at most b · h(n) nodes are inserted to OL
where b is the largest number of edges of the h(n) nodes.
This number is much smaller than that of GBFS, since GBFS
must store all the useless descendants.

Experimental Results

Setup

The performance of DBFS was evaluated by running exper-
iments on solving 1,612 planning instances in 32 domains
from the past five International Planning Competitions. We

built all the implementations on top of the Fast Downward
planner (Helmert 2006). All the experiments were run on
a dual quad-core 2.33 GHz Xeon E5410 machine with 6
MB L2 cache. The time and memory limits for solving
an instance were set to 30 minutes and 2 GB. We observed
both cases of which all the evaluated algorithms ran out of
memory and exceeded the time limit when they were unable
to solve instances. We excluded the translation time from
the PDDL representation (Edelkamp and Hoffmann 2004)
into the SAS+ representation (Bäckström and Nebel 1995),
which was preprocessed by Fast Downward.

Performance Comparisons without Enhancements

First, we analyze strengths and weaknesses of DBFS, GBFS
and KBFS by disabling enhancements in Fast Downward
(e.g., preferred operators and multiple heuristic functions),
thus measuring the potential of each algorithm. We used the
FF (Hoffmann and Nebel 2001), causal graph (CG) (Helmert
2006) and context-enhanced additive (CEA) (Helmert and
Geffner 2008) heuristics already implemented in Fast Down-
ward. The best known random seed was used for each
heuristic function. However, DBFS solved all the instances
with the same seed and with P = 0.1 and T = 0.5, and did
not exploit the best seed for each instance.

Table 1 shows the number of solved instances when all the
algorithms used the FF heuristic. We assumed that KBFS(k)
could exploit the best k for each planning domain. We there-
fore ran KBFS(2l) for all the cases of integer l satisfying
0 ≤ l ≤ 7, and included the best result for each domain.

Table 1 clearly indicates the superiority of DBFS to KBFS
and GBFS. DBFS either solved an equal or larger number of
instances than the others in all the domains. In particular,
DBFS performed much better in the Schedule domain. Of
150 instances, DBFS solved 129 problems while GBFS and
KBFS solved only 18 and 46 instances, respectively. How-
ever, even if we excluded this domain, DBFS was still able
to solve at least 80 additional instances in total compared
with the other approaches. Hence, our results imply the im-
portance of diversifying search directions.

KBFS solved additional instances in several domains
compared to GBFS such as Airport, Assembly, Pathways
and Schedule. However, KBFS usually achieved smaller
performance improvements than DBFS. Additionally, we
observed that selecting the best k in KBFS(k) played an
important role in improving its solving ability, although se-
lecting such k automatically remains an open question. For
example, in the Philosophers domain, while KBFS(1) (i.e.,
identical to GBFS) solved all 48 instances, KBFS(128) was
able to solve only 25 instances.

Figure 2 compares the number of nodes expanded by
GBFS and DBFS with the FF heuristic for the instances
solved by both. The node expansion of GBFS was plotted
on the horizontal axis against DBFS on the vertical axis on
logarithmic scales. A point below the linear line indicates
that DBFS expanded fewer nodes than GBFS in solving one
instance. Figure 2 clearly shows that DBFS outperformed
GBFS especially when solving hard instances. Of 1,208
instances solved by both, it took either DBFS or GBFS at
least one second to solve each of 279 instances. Of these

987

Table 1: The number of instances solved by each algorithm
with the FF heuristic and without enhancements

Domain GBFS KBFS DBFS

Airport (50) 33 44 46
Assembly (30) 18 27 30
Blocks (35) 35 35 35
Depot (22) 16 17 19
Driverlog (20) 18 20 20
Freecell (80) 80 80 80
Grid (5) 5 5 5
Gripper (20) 20 20 20
Logistics 1998 (35) 30 31 33
Logistics 2000 (28) 28 28 28
Miconic (150) 150 150 150
Miconic Full ADL (150) 135 137 139
Miconic Simple ADL (150) 150 150 150
Movie (30) 30 30 30
MPrime (35) 26 27 33
Mystery (30) 16 17 19
Openstacks (30) 28 28 30
Optical Telegraphs (48) 3 3 5
Pathways (30) 9 16 30
Philosophers (48) 48 48 48
Pipesworld Notankage (50) 31 37 44
Pipesworld Tankage (50) 24 25 35
PSR Large (50) 31 31 32
PSR Middle (50) 50 50 50
PSR Small (50) 50 50 50
Rovers (40) 27 28 37
Satellite (36) 25 26 28
Schedule (150) 18 46 129
Storage (30) 19 21 25
TPP (30) 22 23 29
Trucks (30) 14 18 22
Zenotravel (20) 20 20 20

Total (1612) 1,209 1,288 1,451

279 instances, DBFS expanded fewer nodes than GBFS in
solving 209 instances. This resulted in a large difference in
search time (see Figure 3 comparing the search time with
the FF heuristic for the instances solved by both). DBFS
solved 194 instances more quickly and was five times faster
than GBFS in solving the aforementioned 279 instances.
The overhead of DBFS fetching a node did not offset its
benefit of achieving drastic reductions of node expansions.
In fact, because most computational overhead incurred by
DBFS was not the node-fetching phase but the procedure
of performing GBFS, the node expansion rate of DBFS was
similar to that of GBFS. The figures showing performance
comparisons between DBFS and KBFS are omitted, since
we obtained similar results.

Figure 4 compares the quality of plans (i.e., solution
lengths) computed by DBFS and GBFS with the FF heuris-
tic. DBFS often returned longer solutions than GBFS, since
DBFS selected unpromising nodes that tend to be on a more
redundant path to a goal. This phenomenon was similarly
observed in (Nakhost and Müller 2009), when their planner
was compared against Fast Downward in a few domains.
However, since DBFS still yielded similar plans in many

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

D
B

FS

GBFS

Figure 2: Comparison of node expansions between GBFS
and DBFS with the FF heuristic

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104
D

B
FS

GBFS

Figure 3: Search time for instances solved by DBFS and
GBFS with the FF heuristic

cases, this is a price to pay for achieving performance im-
provements.

Table 2: The number of instances solved by each algorithm
with the CG/CEA heuristic and without enhancements

Heuristic GBFS KBFS DBFS

CG 1,170 1,218 1,358

CEA 1,202 1,240 1,388

Table 2 shows the total number of solved instances in all
domains with the CG or CEA heuristic. Numbers are cal-
culated in the same way as in Table 1. The superiority of
DBFS was confirmed even with different heuristics. DBFS
performed worse than the others only in a few domains.

Performance Comparisons with Various
Parameters and Random Seeds

Next, we varied parameters P and T in the range of 0.1−0.3
and 0.4− 0.6, respectively, in increments of 0.1 (i.e., we ex-
amined nine combinations of parameters for each heuristic
function). Table 3 shows the average, minimum and maxi-
mum numbers of solved instances. The same random seed

988

100

101

102

103

100 101 102 103

D
B

FS

GBFS

Figure 4: Comparison of plan lengths for instances solved
by GBFS and DBFS with the FF heuristic

Table 3: Performance of DBFS with different parameters
Heuristic Average Minimum Maximum
FF 1,438 1,432 1,451
CG 1,345 1,335 1,361
CEA 1,370 1,358 1,388

was used for each pair of parameters. Results show that
DBFS outperformed both GBFS and KBFS by a large mar-
gin with any of the three heuristic functions and even with
the worst parameter settings. Additionally, DBFS was ro-
bust to the changes of P and T . While the differences be-
tween the minimum and maximum numbers of solved in-
stances were 30 with the CEA heuristic, DBFS was still able
to solve most of the instances. While the best value of T de-
pended on heuristic functions and P , we observed that per-
formance tended to deteriorate with a larger value of P . All
of the worst case scenarios shown in Table 3 were obtained
with P = 0.3.

Table 4: Performance of DBFS with resetting one parameter
Heuristic FF CG CEA

P = 0.1 (and T = 0) 1,366 1,299 1,309
P = 0.2 1,362 1,296 1,306
P = 0.3 1,358 1,278 1,313
T = 0.4 (and P = 0) 1,422 1,338 1,381
T = 0.5 1,432 1,336 1,377
T = 0.6 1,433 1,321 1,364

Table 4 shows number of solved instances when either P
or T is fixed to zero and the other parameter is varied to show
the behavior of DBFS with extremely ineffective parameter
settings. No heuristic information is used to diversify search
directions with T = 0, while only h-values are considered
for diversity with P = 0. It is not surprising to observe per-
formance degradation compared to the case where P and T
are non-zero, since valuable information (i.e., h-values or g-
values) is unused. However, DBFS still outperformed GBFS
and KBFS with all experimented parameter settings, clearly

indicating the importance of escaping from search plateaus.

Table 5: Performance of DBFS with different random seeds
Heuristic Average Minimum Maximum
FF 1,447 1,443 1,451
CG 1,353 1,349 1,358
CEA 1,381 1,377 1,388

Table 5 shows the performance of DBFS with different
random seeds for each heuristic. We examined five seeds
with fixed parameters P = 0.1 and T = 0.5. This table
clearly shows that DBFS was robust to the change of random
seeds. Almost all the instances remained solvable even if we
changed the seeds. For example, only 11 instances became
unsolvable when the best seed was changed to the worst one
with the CEA heuristic.

Performance Comparisons with an Enhancement

Next, the performance of each algorithm was evaluated with
turning on enhancements. Table 6 shows the number of in-
stances solved by the following algorithms:

EKBFS : KBFS(k) with the FF heuristic, enhanced with
preferred operators (Helmert 2006) (a.k.a. helpful actions
in (Hoffmann and Nebel 2001)). As in (Linares López
and Borrajo 2010) and Fast Forward, our current EKBFS
implementation first expands only preferred successors,
and then performs the KBFS(k) search for the other suc-
cessors. However, unlike in (Linares López and Borrajo
2010), goal agenda was not incorporated, because it was
not implemented in Fast Downward. Additionally, as we
did in the previous subsection, after running KBFS(2l) for
all the cases of integer l satisfying 0 ≤ l ≤ 7, we cal-
culated the total number based on the best result in each
domain.

FD : The state-of-the-art Fast Downward planner with four
enhancements (alternation based on the FF and CEA
heuristics, deferred evaluation, preferred operators and
boosting (Helmert 2006; Richter and Helmert 2009)). In
the preliminary experiments, we tried all combinations of
alternation among the FF, CEA and CG heuristics, and
the other three enhancements, and chose the configuration
with the best solving ability.

DBFS2 : DBFS with the FF heuristic, enhanced with pre-
ferred operators and modified as follows: An additional
global open list was prepared separately for preferred suc-
cessors. After the node-fetching algorithm selects a node
randomly from one of the global open lists, DBFS2 per-
forms GBFS rooted at that node. We used 0.1 for param-
eter P and 0.5 for T .

Table 6: The number of instances solved by each algorithm
with turning on enhancements

EKBFS FD DBFS2

Total (1612) 1,382 1,458 1,481

989

Despite a smaller number of enhancements currently in-
corporated into DBFS2 than FD, DBFS2 solved the largest
number of instances, showing the superiority of our ap-
proach. The performance difference between DBFS2 and
EKBFS became smaller than in Table 1. This was mainly
due to the increased number of instances solved in the
Schedule domain. With the help of preferred operators,
EKBFS solved 142 instances in this domain, while KBFS
did only 46 of 150 instances. However, DBFS2 still outper-
formed EKBFS by a large margin. It seems to exploit the
promising search space that is orthogonal to preferred oper-
ators.

100

101

102

103

104

105

106

100 101 102 103 104 105 106

D
B

FS
2

FD

Figure 5: Comparison of node expansions between FD and
DBFS2

Figure 5 compares node expansions solved by both FD
and DBFS2. DBFS2 drastically reduced node expansions
compared to FD. Of 1,445 instances solved by both, DBFS2
expanded fewer nodes than FD in solving 1,106 instances
and was 1.5 times faster in solving the 1,445 instances.

Figure 6 shows a comparison of plan lengths between FD
and DBFS2. Compared to Figure 4, we observed a smaller

100

101

102

103

100 101 102 103

D
B

FS
2

FD

Figure 6: Comparison of plan lengths between FD and
DBFS2

difference in the quality of plans, because preferred opera-
tors contributed to improving the plan quality of DBFS2 and
Fast Downward often returned longer plans than GBFS.

Performance Comparison to LAMA

The LAMA planner is a variant of Fast Downward and re-
turns the better quality of plans by first performing greedy
best-first search and then refining plans with a series of
weighted A* (WA*) search that gradually decreases weight
values (Richter and Westphal 2010) until it reaches a time
limit. The landmark and FF heuristics are used in LAMA
with various enhancements similar to Fast Downward. One
way to combine our approach with LAMA is to replace the
first phase of greedy best-first search by DBFS2.

Since the first search phase determines the solving ability,
LAMA with DBFS2 solved 1,481 instances as in Table 6.
On the other hand, LAMA solved 1,445 instances1.

Figure 7 compares plan lengths for the instances solved
by LAMA and LAMA with DBFS2. The plan quality was

100

101

102

103

100 101 102 103

L
A

M
A

 w
ith

 D
B

FS
2

LAMA

Figure 7: Comparison of plan lengths between LAMA and
LAMA with DBFS2

mostly similar between these methods. Of 1,438 instances
solved by both, LAMA with DBFS2 returned plans with the
same lengths as LAMA in 1,310 instances. This indicates
that plans can be later refined by LAMA’s WA* search while
DBFS2 can improve its solving ability.

Conclusions and Future Work

This paper described the DBFS algorithm avoiding plateaus
of search caused by misled heuristic estimates. Experi-
mental results showed that DBFS outperformed GBFS and
KBFS(k) in satisficing planning as well as was robust to
the changes of parameters and random seeds. By incorpo-
rating preferred operators, DBFS performed better than the
Fast Downward planner. Additionally, by combining DBFS
with the LAMA planner, our approach not only improved
the solving ability of LAMA but also returned plans with
reasonable quality. We therefore conclude that DBFS can be
a strong candidate as a new baseline in satisficing planning.

There are several ideas to strengthen DBFS. One is to
develop a better node-fetching method by incorporating

1A main culprit obtaining a smaller number than Fast Down-
ward would be due to a difference in heuristics between LAMA
and Fast Downward (landmark versus CEA). Although this num-
ber could be increased to 1,458 by replacing the first search phase
by Fast Downward, LAMA with DBFS2 still performed better.

990

state-of-the-art techniques elegantly restarting search such
as (Nakhost and Müller 2009). We believe that they can
be transposed to DBFS. Another is to combine DBFS with
some enhancements specific to satisficing planning. In the
current implementation, DBFS is combined with only pre-
ferred operators. Synthesizing DBFS with other enhance-
ments such as goal agenda (Koehler and Hoffmann 2000),
boosting (Richter and Helmert 2009), and multiple heuristic
functions would exploit the more promising search space in
an orthogonal way to DBFS. Additionally, since DBFS is a
general search algorithm, it should not be limited to planning
in principle. Applying DBFS to other domains is therefore
of interest and value as future work. Finally, it is impor-
tant to analyze the behavior of DBFS both theoretically and
empirically. For example, although DBFS achieves dras-
tic improvements in the Schedule domain, we have not yet
had a strong ground to explain why it performs much better
than GBFS. We are currently trying to develop a theoretical
model to analyze the strengths and weaknesses of DBFS.

Acknowledgments
We would like to thank Adi Botea, Alex Fukunaga, Hootan
Nakhost and Martin Müller for their comments on the paper.
This research is supported by the JST PRESTO program.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Botea, A., and Ciré, A. A. 2009. Incremental heuristic
search for planning with temporally extended goals and un-
controllable events. In Proceedings of IJCAI 2009, 1647–
1652.
Coles, A.; Fox, M.; and Smith, A. 2007. A new local-search
algorithm for forward-chaining planning. In Proceedings of
ICAPS 2007, 89–96.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th International Planning
Competition. Technical report, Albert-Ludwigs-Universität
Freiburg, Institute für Informatik.
Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: K-
best-first search. In Annals of Mathematics and Artificial
Intelligence, volume 39, 19–39.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proceedings of ICAPS
2008, 140–147.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proceedings of the 17th European Con-
ference on Machine Learning, volume 4212 of Lecture
Notes in Computer Science, 282–293. Springer.

Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven plan-
ning algorithm. 12:339–386.
Linares López, C., and Borrajo, D. 2010. Adding diver-
sity to classical heuristic planning. In Proceedings of the
Third Annual Symposium on Combinatorial Search (SoCS-
10), 73–80.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In Proceedings of IJCAI 2009,
1766–1771.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proceedings
of ICAPS 2009, 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Proceedings of ICAPS 2010, 246–249.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new
method for solving hard satisfiability problems. In Proceed-
ings of AAAI 1992, 440–446.
Valenzano, R.; Sturtevant, N.; Schaeffer, J.; Buro, K.; and
Kishimoto, A. 2010. Simultaneously searching with mul-
tiple settings: An alternative to parameter tuning for sub-
optimal single-agent search algorithms. In Proceedings of
ICAPS 2010, 177–184.

991

