A Practical, Integer-Linear Programming Model for the Delete-Relaxation in
Cost-Optimal Planning

Tatsuya Imai
Tokyo Institute of Technology
Japan

Abstract

We propose a new integer-linear programming model for the
delete relaxation in cost-optimal planning. While a naive
formulation of the delete relaxation as IP is impractical,
our model incorporates landmarks and relevance-based con-
straints, resulting in an IP that can be used to directly solve the
delete relaxation. We show that our IP model outperforms the
previous state-of-the-art solver for delete-free problems. We
then use LP relaxation of the IP as a heuristics for a forward
search planner, and show that our LP-based solver is compet-
itive with the state-of-the-art for cost-optimal planning.
[This is the HSDIP workshop version of a paper that will
appear in ECAI-2014 (Imai and Fukunaga 2014) (identi-
cal except for formatting). When citing this work please
cite the ECAI paper.]

1 Introduction

The delete relaxation of a classical planning problem is a
relaxation of a planning problem such that all deletions are
eliminated from its operators. It is clear that A ™, the optimal
value of the delete relaxation of a planning instance is an
admissible, lower bound on the cost of the optimal cost plan
for the instance.

In cost-optimal planning, while h™ is known to be more
accurate than commonly used heuristics such as landmark-
cut (Helmert and Domshlak 2009), current planners to not
directly compute h* because the extra search efficiency
gained from using k™ is offset by the high cost of comput-
ing h*. In fact, computing h™ is known to be NP-complete
(Bylander 1994). As far as we are aware, the first use of h™
inside a cost-optimal planner was by Betz and Helmert (Betz
and Helmert 2009), who implemented domain-specific im-
plementations of h™ for several domains. Haslum eval-
uated the use of a domain-independent algorithm for h™
(Haslum, Slaney, and Thiébaux 2012) as the heuristic func-
tion for cost-optimal planning, and found that the perfor-
mance was relatively poor (Haslum 2012). In recent years,
there have been several advances in the computation of AT
(Gefen and Brafman 2012; Pommerening and Helmert 2012;
Haslum, Slaney, and Thiébaux 2012).

A somewhat separate line of research is the increasing use
of integer/linear programming (ILP) in domain-independent
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planning. The earliest use of linear programming (LP) in
domain-independent planning that we are aware of was by
Bylander, who used an LP encoding of planning as a heuris-
tic function for a partial order planner (Bylander 1997).
Briel and Kambhampati formulated and solved planning as
an integer program (IP) (van den Briel and Kambhampati
2005). Recently, instead of modeling and directly solving
planning as an IP, LP relaxations have been used to com-
pute admissible heuristics in a search algorithm, including a
network flow a LP heuristic for branch-and-bound (van den
Briel, Vossen, and Kambhampati 2008), a heuristic for A
based on the state equations in SAS+ (Bonet 2013), and
most recently, an LP encoding of a broad framework for
operator-counting heuristics (Pommerening et al. 2014). IP
has also been used to compute hitting sets as part of the
computation of AT in delete-free planning (in an improved
version of the algorithm described in (Haslum, Slaney, and
Thiébaux 2012), (Haslum 2014).

In this paper, we propose a new, integer/linear program-
ming approach to computing 4. While a straightforward
ILP model for A" is often intractable and not useful in prac-
tice, we developed an enhanced model, IP¢(TT), which in-
corporates landmark constraints for the delete relaxation, as
well as relevance analysis to significantly decrease the num-
ber of variables. We show that IP¢(T"") allows significantly
faster computation of A+ compared to the state of the art.

Then, we consider the use of A1 as a heuristic for A" in a
cost-optimal, domain-independent planner. We further aug-
ment IP¢(7T"") with constraints that consider some delete ef-
fects, as well as constraints for cycle avoidance, resulting
in a new admissible heuristic which dominates A™. Since
IPe(T™) is an IP, its LP relaxation, LP®(T"), is also an ad-
missible heuristic for domain-independent problem. Since
even LP¢(T'T) can be quite expensive, the ILP model can be
further relaxed by omitting a subset of its constraints, result-
ing in LP¢,(T), an LP for the “relaxed” delete relaxation.

We empirically evaluate the ILP models by embedding
them as heuristics in an A"-based planner. We implemented
a simple method for automatically selecting which LP for-
mulation to use as the heuristic, based on a comparison of
their values at the root node. The resulting planner performs
comparably to the state-of-the-art, cost-optimal planners,
Fast-Downward with the landmark-cut heuristic (Helmert
and Domshlak 2009) and Fast-Downward using the hy-



brid bisimulation merge-and-shrink heuristic (Nissim, Hoff-
mann, and Helmert 2011).

The rest of the paper is organized as follows. Section 2
proposes the basic ILP model for h*. Section 3 describes
enhancements to the ILP model which significantly speeds
up computation of h™. Section 4 augments the ILP model
by adding counting constraints, which results in a IP bound
that dominates 2. Section 5 summarizes the relationship
among ILP models, and describes a simple method for se-
lecting which model to apply to a given problem instance.
Section 6, experimentally evaluates the proposed ILP mod-
els, as well as a portfolio approach that automatically selects
one of the ILP models.

2 ILP model for h™

A STRIPS planning task is defined by a 4-tuple 7' =
(P,A,I,G). P is a set of propositions. A is a set of ac-
tions. A state is represented by a subset of P, and ap-
plying an action to a state adds some propositions and re-
moves some propositions in the state. Each action a € A
is composed of three subsets of P, (pre(a),add(a), del(a))
which are called the preconditions, add effects, and delete
effects. An action a is applicable to a state S iff it satis-
fies pre(a) C S. By applying a to S, propositions in S
change from S to S(a) = ((S\ del(a)) Uadd(a)). For a se-
quence of actions ™ = (ag, - - -, ay ), we use S() to denote
((((S'\ del(ap)) Uadd(ag)) \ del(a1)) U---) Uadd(ay,).

Let I C P be the initial state and G C P the goal.
The target of a planning task is to find a sequence of ac-
tions to transform I to a state S that satisfies G C S.
Formally, a feasible solution, i.e., a plan, is a sequence of
actions m = (ag,---,a,) that satisfies (i) Vi, pre(a;) C
I((ag,---,a;—1)), and (ii) G C I(w). The target of a cost-
optimal STRIPS planning is to find a shortest plan, or to find
a plan 7 that minimizes ) . c(a) when the non-negative
cost ¢(a) of each action a is defined.

The delete relaxation of a task 7', denoted by T'T, is a
task (P, AT, I, G) where A7 is a set of delete-free actions
defined as AT = {(pre(a),add(a),0) | a € A}. We also
use 7" to denote a task that is delete-free from the beginning
without being relaxed.

2.1 ILP formulation of a delete-free problem

We formulate a delete free task 77 = (P, AT, I,G) as an
integer-linear program. IP(T) denotes the IP problem de-
rived from T, and we use 7 = (af, - -,a}) to denote
an optimal plan for 7" derived from an optimal solution of
IP(T*). Similarly LP(7") denotes the LP relaxation of
IP(T*). Note that for any feasible and non-redundant (i.e.,
same actions appear only once) solution of IP(7'T) (not just
the optimal solution), we can derive a corresponding, feasi-
ble plan for 7" that has same cost as the IP(7'") solution.
First, we define the variables of IP(7'"). In addition to
being able to derive a plan from IP(7T'T), there always exists
a injective mapping from a feasible non-redundant plan to
an IP(T) solution. Thus, we also show the feasible assign-
ments of variables that can be derived from a feasible plan
of T'", as well as the meanings and roles of the variables.
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proposition: Vp € P,U(p) € {0,1}. U(p) = 1iffp €
I(m™).

action: Va € A,U(a) € {0,1}. U(a) = 1iff a € 7* holds.

add effect: Va € A,Vp € add(a),&(a,p) € {0,1}.
E(a,p) = 1iff a € 7* holds and a achieves p first.

time (proposition): Vp € P, 7T (p) € {0,---,|A[}. T(p) =
t when p € I(n*) and p is added by a;_; first. T(p) =0
forp & I(w*).

time (action): Va € A, T (a) € {0,---,|A|—-1}. T(a) =t
whena = a}. T(a) = |A] — 1 whena & 7*.

initial proposition: Vp € P,Z(p) € {0,1}. Z(p) = 1 iff
pel

If p € P appears more than once, use first indices for 7 (p).
Variables Z(p) are auxiliary variables for computing h*. Al-
though they are redundant when solving a delete-free task
only one time, they are useful to avoid reconstructing con-
straints for each state when IP(T'") or LP(T'") are embed-
ded as a heuristic function in a forward-search planner and
called for each state.

The  objective
e clai(a).

Because of this objective function, the cost of an IP so-
lution is equal to the cost of the corresponding (delete-free)
plan.

Finally we define following six constraints.

function seeks to  minimize

.Vpe G, U(p) =1.
. Ya € A, V¥p € pre(a),U(p) > U(a).
. VYa € A, Vp € add(a),U(a) > E(a,p).

. vp € P7 I(p) + ZaeA s.t.p€add(a) E(CL,p) 2 M(p)
. Ya € A, Vp € pre(a), T(p) < T(a).

. Yae A Vpeadd(a), T(a)+1 < T(p)+ (|A|+1)(1—

&(a,p)).

There exists a feasible plan only if IP(7'1) has a feasible
solution. When IP(T'T) is solved optimally, an optimal plan
for T'F is obtained according to following lemma. For a
variable V of IP(T"), V describes the assignment of V on
a solution F of IP(T).

Proposition 1. Given a feasible solution F for TP(T™),
the action sequence obtained by ordering actions in the set
{a|U(a)r = 1} in ascending order of T (a)p is a feasible
plan for T,

Proof: At first we show that 7 satisfies the condition (ii)
of aplan (i.e., G C I()) by proof of contradiction. Assume
that there exists a proposition g € G that satisfies g & I ().
There exists no action achieving ¢ in 7 according to the as-
sumption. Since F' is a solution of IP(T"), U(g)r = 1
holds according the constraint 1. Since g & I(7) deduces
g € I, Z(g)r = 0. Therefore, to satisfy the condition 4,
there must exist an action a € A that satisfies g € add(a)
and £(a,g9)r = 1. However, to satisfy the constraint 3,
U(a)r = 1 has to hold. This means a € , and this contra-
dicts the assumption.

A L B WD =



Next we show that =7 satisfies condition (i) (i.e.,
Vi, pre(a;) € I((ag,---,a;—1))). For the base case of in-
ductive proof, assume that there exists a proposition p € P
satisfying p € pre(ag) and p & I. Since ag € w, U(ag)r =
1 has to hold, and U(p)r = 1 has to hold according to the
constraint U (p)r > U(ap)p. Then, similar to the proof of
condition (ii), there must exist an action a € A that satis-
fies p € add(a), U(a)p = 1, and E(a,p)r = 1. However,
to satisfy constraint 5, 7 (p) < T (ag) has to be true, and
T (a) + 1 < T (p) has to hold to satisfy condition 6. There-
fore we have U(a)p = 1 and T (a) < T (ao), but ay is the
first action of 7, a contradiction.

Similar to the case of i« = 0, when ¢ > 0, if pre(a;) C
I((ag,- - -,a;—1)) is not true, there must exist an action a &
(ao, - -, a;—1) that satisfies U(a)p = 1 and T (a) < T (a;),
contradicting the fact that a; is the ¢-th action of the se-
quence 7. O

3 Enhancements for ILP model

In this section, we introduce some variable elimination tech-
niques and some modifications of constraints. As we will
show in the experimental results, these enhancements sig-
nificantly reduce the time to solve IP(7T") and LP(T™).
Some of the enhancements are adopted into our IP frame-
work from previous work in planning research. In particular,
landmarks, which have been extensively studied in recent
years, play very important role.

Note that while some of the enhancements introduce cuts
that render some solutions of IP(7"") mapped from feasi-
ble plans infeasible, at least one optimal plan will always
remain.

3.1 Landmark Extraction and Substitution

A landmark is an element which needs to be used in every
feasible solution. We use two kinds of landmarks, called fact
landmarks and action landmarks as in (Gefen and Brafman
2012). A fact landmark of a planning task 7" is a proposition
that becomes true on some state of every feasible plan, and
an action landmark of a planning task 7" is an action that
is included in every feasible plan. We also say that a fact
or action landmark [ is a landmark of a proposition p if
is a landmark of the task (P, A, I, {p}). Similarly we also
say that a landmark [ is a landmark of an action a if [ is a
landmark of the task (P, A, I, pre(a)). In the IP model of
a delete-free task 7', if a proposition p is a fact landmark,
then we can substitute 2/ (p) = 1. Similarly, if an action a is
an action landmark, then we can substitute U(a) = 1.

In this work, we extract some kinds of action landmarks
and fact landmarks according to following facts. The con-
trapositions of these propositions are clearly true.

Proposition 2. Given a feasible delete-free task T, an
action a € A is an action landmark of T if the task
(P, A\ {a},I,G) is infeasible.

Proposition 3. Given a feasible delete-free task T, a
proposition p € P is a fact landmark of T if the task
(P, A\ A4 T\ {p},G) is infeasible, where A% is de-
fined as A% = {a | p € add(a)}.
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Zhu et al. defined a kind of fact landmark called causal
landmark (Zhu and Givan 2003). A proposition p is a causal
landmark if (P, A\ Apre, T\ {p}, G) is infeasible, where

Agrc — {CL | p € pre(a)}. If <P,A\Agm7]\{p}7G>
does not have any solution, then (P, A\ A4, 1\ {p},G)

is also infeasible, therefore using A214 instead of AP™ can
extract larger set of fact landmarks. Keyder et al. proposed
AND-OR graph based landmark extracting method general-
ized from a causal landmark extracting algorithm proposed
Zhu et al. (Keyder, Richter, and Helmert 2010). We use
similar algorithm to extract both of our fact landmarks and
action landmarks.

3.2 Relevance Analysis

Backchaining relevance analysis is widely used to eliminate
irrelevant propositions and actions of a task. An action a is
relevant if (i) add(a) N G # 0, or (ii) there exists a rele-
vant action a’ satisfying add(a) N pre(a’) # 0. A propo-
sition p is relevant if (i) p € G, or (ii) there exists a rel-
evant action ¢ and p € pre(a) holds. In addition to this,
as Haslum et al. noted, it is sufficient to consider relevance
with respect to only a subset of first achievers of add effect
(Haslum, Slaney, and Thiébaux 2012). Although they de-
fined a first achiever by achievability of a proposition, it is
completely equivalent to the following definition: an action
a is a first achiever of a proposition p if p € add(a) and p
is not a fact landmark of a. When we use fadd(a) to denote
{p € add(a) | a is a first achiever of p}, it is sufficient to use
fadd instead of add on the above definition of relevance.

If a € Aorp € P is not relevant, we can eliminate a
variable as U(a) = 0 or U(p) = 0. In addition to this, if
p € add(a) but a is not a first achiever of p, we can eliminate
a variable as £(a, p) = 0.

3.3 Dominated Action Elimination

On a delete-free task, if two actions have same add effect,
then it is clearly sufficient to use at most one of two ac-
tions. Here we introduce a technique that eliminates an use-
less action (dominated action) extending this idea. If there
exists a dominated action a, we can eliminate a variable as
U(a) = 0. We omit the proof due to space.

Proposition 4. Given a feasible delete-free task T, there
exists an optimal plan that does not contains a € A if there
exists an action o’ € A satisfying following: (i) fadd(a) C
fadd(a’), (ii) for any p € pre(a’), p is a fact landmark of a
orp € I, and (iii) c¢(a) > c(a’).

Robinson proposed similar constraints for a MaxSAT-
based planner, but his condition is stricter than condition (ii)
(Robinson 2012).

3.4 Immediate Action Application

On a delete-free task 7', applying some types of actions to
the initial state do not hurt optimality. We adopt to use an ac-
tion with cost zero as (Gefen and Brafman 2011) and an ac-
tion landmark as (Gefen and Brafman 2012) to this enhance-
ment. For a delete-free task 7T, if an action a € A satisfies



¢(a) = 0 and pre(a) C I, then a sequence made by connect-
ing a before an optimal plan of (P, A\ {a}, I Uadd(a),G)
is an optimal plan of TF. Similarly, if an action a is an ac-
tion landmark of 7'+ and a is applicable to I, you can apply
a to I immediately.

For IP(T"), variables T (p) for p € I can be eliminated
by substituting zero. Given a sequence of immediate appli-
cable actions (ag, - - -, ay) (it must be a correct applicable
sequence), we can eliminate some variables as follows: (i)
U(a;) = 1, (i) T (a;) = 4, (iii) Vp € pre(a;),U(p) = 1, and
(i) ¥p € add(a;) \ I((ag, - - ai 1)), U(p) = 1, T(p) = i
and £(a;,p) = 1.

3.5 Iterative Application of Variable Eliminations

The variable elimination techniques described above can in-
teract synergistically with each other resulting in a cascade
of eliminations. For example, landmarks increase non rele-
vant add effects, which increases dominated actions, which
can result in new landmarks. Therefore, we used a itera-
tive variable eliminating algorithm which applies elimina-
tions until quiescence.

A full landmark extraction pass after each variable elimi-
nation would be extremely expensive, but landmark extrac-
tion can be implemented incrementally. Hence we perform a
complete landmark extraction once for each state, and after
that, the incremental extraction is executed after each vari-
able reduction.

3.6 Inverse action constraints

We define the following inverse relationship between a pair
of actions for a delete-free task T+, For two actions a1, as €
A, ay is an inverse action of as if it satisfies following: (i)
add(a;) C pre(asz), and (i) add(az) C pre(ay). By the
definition, it is clear that if aq is an inverse action of as,
then ao is an inverse action of a;. Inverse actions satisfy
following fact (proof omitted due to space).

Proposition 5. For a delete-free task T™, a feasible solution
7w = (ag, -, ay) is not optimal if a; € w is an inverse
action of a; € 7 and both of a; and a; have non-zero cost.

Let inv(a, p) denote the set of inverse actions of an action
a which have p as add effect. There are several possible
ways to use above proposition (e.g., U(a) + U(a’) < 1, for
all € inv(a)). On IP(T"), due to avoid adding a huge
number of constraints, we modify constraint 2 as follows:

2. Va € A, Vp € pre(a), U(p)— Xy cin(ap €(@p) =
U(a).

We use e (e.g. LP¢(TT)) to denotes the ILP after all of
the reductions in Sections 3.1-3.6 have been applied.

3.7 Constraint Relaxation

So far in this section, we have presented enhancements
which seek to speed up the computation of A™. As we show
experimentally in Section 6, computing IP(7T) or LP(T'")
remains relatively expensive, even if we use all of the en-
hancements described above.

Thus, we introduce a relaxation for IP(TT). We call
IP(T) without constraints 5 and 6 fime-relaxed IP(T™),
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denoted TPy, (T'"). Similarly we call LP(T") without same
constraints time-relaxed LP(T), denoted LP,(T"). It can
be seen that if the relevance of propositions and actions has
an ordering (i.e. it does not have a cycle) on TF, then
the optimal costs of IP(7"F) and LP(T) are the same as
the optimal costs of 1P, (7T") and LP¢.(TF) respectively.
We shall show experimentally in Section 6.1 that the relax-
ation is quite tight (i.e., IP(T") and IP;.(T") often have
the same cost), and that [P, (7'") can be computed signif-
icantly faster than IP(7F). LP(T7"),LPe(TT),IP¢(T)
have same behavior.

4 Counting Constraints

So far, we have concentrated on efficient computation of A ™,
and all of our relaxations are bounded by h*. However, our
IP model can be extended with constraints regarding delete
effects. By adding variables and constraints related to delete
effects of actions, our model can also calculate lower bounds
on the number of times each action must be applied. New
variables are defined as follows:

e Va e A, N(a) € {0,1,---}: N(a) = niff ais used n
times.

e Vpe P,G(p) € {0,1}: G(p) =1iffp € G.

G(p) is also an auxiliary variable as Z(p). New constraints
are defined as follows:

7. Ya € A,N(a) > U(a).
8.Vp € PG + X cprediN(@ <
Zpéadd(a) Na),

where predel(a) = pre(a) N del(a). Finally, the objective
function is modified so as to minimize ) . , c(a)N (a).

These constraints correspond to the net change constraints
that were recently proposed in (Pommerening et al. 2014),
as well as the action order relaxation in (van den Briel et al.
2007), (both are based on SAS™ formulations). Intuitively,
the final constraint states that the number of times actions
adding p are used must be equal to or larger than the number
of times actions requiring and deleting p same time are used.
Given a non delete-free task 7', we use IP(7") to denote an IP
problem composed of IP(7") and above new variables and
constraints. We also use LP and tr as same as corresponding
relaxations for IP(7T). For any T and any feasible plan 7
for T', there exists a feasible solution of IP(7T") with same
cost as 7, since the delete relaxation of 7 is a feasible plan of
T*. Hence the optimal cost of naive IP(7) is an admissible
heuristic for 7T'.

Unfortunately these new constraints conflict with domi-
nated action elimination and zero cost immediate action ap-
plication. When counting constraint is used, it is necessary
to disable zero cost immediate action applying and to mod-
ify the condition of dominated action: an action a is a dom-
inated action of action o’ if (i) add(a) C add(a’), (ii) for
any p € pre(a’), p is a fact landmark of a or p € I, (iii)
c(a) > c(a’), and (iv) pre(a’) Ndel(a’) C pre(a) Ndel(a).
On the other hand, following fact ensures that other enhance-
ments do not hurt admissibility of IP(7"). We omit detailed
discussion due to space. We also use e (e.g. LP¢(T)) to

I(p) +



denotes the ILP after all of the valid reductions have been
applied.

Proposition 6. Given a task T, let IP*(TV) be a variable-
reduced IP for TT, and 1P®(T) be an IP made from
IPe(T™) with counting constraints. For any feasible solu-
tion @ of T, if there exists a solution of TP*(T") derived
from a subsequence of ™, then there exists a feasible solu-
tion of IP¢(T') that has same cost as .

5 Relationship among the ILP bounds

Based on the definitions, we know that: TP (TT) <
IPe(TT) < IP(TT) = IP(TT) < IP(T) = IP(T).
As for the LP relaxations, we know that LP(T") <
LPe(TT), LPS.(TT) < LP(TT), LP.(T) < LP¢(T),
and LP¢.(T) < LP*(T'). However, LP°(T) does not al-
ways dominate LP¢(7T") since sets of eliminated variables
are different because of dominated action elimination and
zero-cost immediate action application. Figure 1 illustrates

the dominance relationships among the bounds.

[ ey Bl e P ety = ey = it B ey o] Leen) |
A * /

[ o Leen |

LP(Th) P 1PE(TH)

(e P ey

Figure 1: Dominance relationships. Edge L; — L; indi-
cates “L; < L;”. The 4 highlighted LP’s are used in the
A’/autoconf in Tables 2-3.

5.1 Automatic bound selection for each problem

While LP¢,(T") and LP¢,(T) are dominated by LP¢(T)
and LP¢(T), respectively, the time-relaxed LPs are signif-
icantly cheaper to compute than their non-relaxed counter-
parts. Similarly, although IP¢(7") dominates IP¢(T'"), it is
possible for LP¢(TT) to be larger than LP¢(T"). Thus, we
have a set of 4 viable LP heuristics, none of which dominate
the others when considering both accuracy and time. The
“best” choice to optimize this tradeoff between heuristic ac-
curacy and node expansion rate depends on the problem in-
stance.

We implemented a simple mechanism for automatically
selecting the LP to be used for each problem. First, we com-
pute LP¢(T""), LP¢(T), LP{,(T'"), LP{(T) for the prob-
lem instance (i.e., at the root node of the A" search). We then
select one based on the following rule: Choose the heuristic
with the highest value. Break ties by choosing the heuristic
that is cheapest to compute. Although the “cheapest’ heuris-
tic could be identified according to the cpu time to compute
each heuristic, for many problems, the computations are too
fast for robust timing measurements, so we simply break
ties in order of LP{, (T'T), LPS.(T), LPe(T™), LP¢(T) (be-
cause this ordering usually accurately reflects the timing or-
der). A more sophisticated method for heuristic selection
may result in better performance (c.f. (Domshlak, Karpas,
and Markovitch 2012)), and is an avenue for future work.
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6 Experimental Evaluation

Below, all experiments used the CPLEX 12.6 solver to
solve integer linear programs. All experiments were single-
threaded and executed on a Xeon E5-2650, 2.6GHz. We
used a set of 1,366 IPC benchmark problems (from 1998 to
2011) distributed with Fast Downward. Our planner can cur-
rently handle the subset of PDDL which includes STRIPS,
types, and action-costs. The full list of domains and # of
instances per domain is shown in Table 3.

6.1 Comparison of ILP Bounds

We evaluate the quality of the integer/linear programming
bounds by evaluating the optimal costs computed for these
bounds.

First, we compute the ratio between the optimal cost of
the LP relaxation and the IP (Figure 2). We take the ceiling
of the LP cost, because the IPC benchmarks have integer
costs. As shown in Table 2, the gap between the LP and
IP relaxation are quite small. In fact, for the majority of
problems, the gap between the rounded-up LP value and IP
value is 0 for IP¢(T1), IP*(T), IPS.(T1), IPE,(T), so the
LP relaxation is frequently a perfect approximation of 1.

Next, to understand the impact of various sets of con-
straints in the ILP formulations, Table 1 compares pairs of IP
and LP formulations. The IP ratio for IP(7'%) vs IP¢(T)
is always 1 because they both compute 4. However, on al-
most every single domain, the LP value of the extended for-
mulation LP®(7T'") is significantly better (higher) than the
basic formulation LP(7"), indicating that variable elim-
ination and the additional constraints serve to tighten the
LP bound. Thus, the enhancements to the basic model de-
scribed in Section 3 provide a significant benefit. LP¢(T")
tends to be higher than LP¢(7), indicating that that count-
ing constraints enhances accuracy; note that in some cases
LP¢(T™") is higher than LP®(T). The time-relaxations
LP¢.(TT) and LP¢,(T) are usually very close to LP¢(T)
and LP¢(T), indicating that the time relaxation achieves a
good tradeoff between computation cost and accuracy.

90 T T
80 LP(TY ( 777) 3
70 LPE(T*) (1,141) 1
60 LPZ(T) ( 973) =
50 LP(T*) (1,323) mmmmm
0 LPS(T) (1,261) mummm
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Figure 2: Ratio between the optimal costs of the IP’s and
their LP relaxations, categorized into buckets. [x:y) = “% of
instances where the LP/IP ratio is in the range [x:y).

6.2 Evaluating ILP for Delete-free planning

To evaluate the speed of our ILP approach, we com-
pared IP¢(T+) with Haslum et al.’s h* algorithm (Haslum,
Slaney, and Thiébaux 2012) (“HST”), which is one of the
state-of-the art solvers for the delete relaxation, of a set of
1,346 IPC benchmarks from the Fast Downward benchmark



Table 1: Comparison of bounds: il* = ILP(T), il*t = ILP(T™), il® = ILP¢(T), il$," = ILPS.(T), il = ILPS,(T).

™ it il® /i1t aAsT /4l ilg, 1 il°

LP| IP LP| 1IP LP| IP LP| IP
airport .53 | 1.00 99 | 1.00 .99 .99 | 1.00 .99
blocks .92 | 1.00 .92 .92 | 1.00 | 1.00 | 1.00 | 1.00
depot .54 | 1.00 .93 .99 .99 92 | 1.00 .99
driverlog .97 | 1.00 91 .95 .96 .84 | 1.00 .96
elevators-opt08 39 | 1.00 | 1.16 .96 97 .64 | 1.00 .70
elevators-opt11 36 | 1.00 | 1.17 .96 .96 .62 | 1.00 73
floortile-opt11 .99 | 1.00 93 94 | 1.00 97 | 1.00 98
freecell A48 | 1.00 | 1.01 | 1.00 .97 .92 | 1.00 .98
grid - - .79 .85 .98 .79 | 1.00 .88
gripper 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
logistics98 .54 | 1.00 .89 | 1.00 .98 .88 | 1.00 | 1.00
logistics00 47 | 1.00 .99 | 1.00 .99 .99 | 1.00 | 1.00
miconic 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
movie 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
no-mprime .58 | 1.00 | 1.10 .97 .88 .66 | 1.00 .94
no-mystery .58 | 1.00 | 1.03 .98 .92 .72 | 1.00 .96
nomystery-optl1 97 | 1.00 97 97 | 1.00 | 1.00 | 1.00 | 1.00
openstacks .38 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

openstacks-opt08 0| 100 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
openstacks-opt11 - - 1100 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
parcprinter-08 .99 | 1.00 92 92 | 1.00 | 1.00 | 1.00 | 1.00

parcprinter-opt11 .99 | 1.00 94 94 1 1.00 | 1.00 | 1.00 | 1.00
parking-opt11 .90 | 1.00 97 97 .94 .87 94 .86
pegsol-08 0| 1.00 .81 72 | 1.00 .68 | 1.00 .86
pegsol-optl1 0 | 1.00 .88 73 | 1.00 .67 | 1.00 .86
pipes-notankage .62 | 1.00 94 .95 92 .83 97 .90
pipes-tankage .62 | 1.00 .95 .96 .98 .87 | 1.00 .96
psr-small .87 | 1.00 .38 .38 | 1.00 | 1.00 | 1.00 | 1.00
rovers .63 | 1.00 .86 .77 | 1.00 | 1.00 | 1.00 | 1.00
satellite .99 | 1.00 .99 .99 | 1.00 | 1.00 | 1.00 | 1.00
scanalyzer-08 1.00 | 1.00 | 1.00 | 1.00 | 1.00 .96 | 1.00 | 1.00
scanalyzer-optll | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 96 | 1.00 | 1.00
sokoban-opt08 .37 | 1.00 .88 .87 .99 .95 .99 .94
sokoban-opt11 .34 | 1.00 .90 .88 .99 97 | 1.00 .96
storage .55 | 1.00 .95 91 | 1.00 | 1.00 | 1.00 | 1.00
transport-opt08 .26 | 1.00 | 3.42 | 1.00 .99 .36 | 1.00 .58
transport-optl11 - - - - .99 43 - -
visitall-opt11 1.00 | 1.00 .95 .93 .99 97 .99 .95

woodworking08 .81 | 1.00 94 .94 | 1.00 | 1.00 | 1.00 | 1.00
woodworking11 .80 | 1.00 .94 .94 1 1.00 | 1.00 | 1.00 | 1.00
zenotravel .99 | 1.00 .92 .98 .96 .90 | 1.00 .99
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suite. Both solvers were run with a 15-minute time limit on
each instance. The most recent version of HST was config-
ured to use CPLEX to solve the hitting set subproblem, as
suggested by Haslum (Haslum 2014).

The number of delete-free, relaxed instances that are
solved by both planner is 905. HST solved 1,117 in-
stances, and IP®(T") solved 1,186 instances. IP°(7") was
faster than HST on 575 instances, and HST was faster than
IP¢(T™*) on 330 instances. Figure 3 shows the ratio of run-
times of HST to our solver, sorted in increasing order of the
ratio, time(HST’s A™)/time(IP®(TT)). The horizontal axis
is the cumulative number of instances. Overall, IP¢(T'T)
outperform the state-of-the-art delete-free solver and indi-
cates that direct computation of ™ using integer program-
ming is a viable approach (at least for computing A once
for each problem).
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Figure 3: Computation of h™: Comparison of IP¢(T*) and
HST on delete-free, relaxed problems

6.3 Evaluating 2™ -based heuristics in a
cost-optimal planner

We embedded the I L P model into a A*-based, cost-optimal
forward search planner. We first compared various config-
urations of our planner, as well as several configurations of
Fast Downward (FD), given 5 minutes per problem instance
and a 2GB memory limit. For the FD bisimulation merge-
and-shrink heuristic, we use the IPC2011 hybrid bisimula-
tion m&s configuration (seg-opt-merge—and-shrink).!
The # of problems solved by each configuration is shown in
Table 2.

As shown in Table 2, the basic IP model performs the
worst, and is comparable to A/hT. As noted in (Haslum
2012), straightforward use of h™ as a heuristic is unsuc-
cessful (significantly worse than FD using h™?*). How-
ever, the addition of landmark constraints is sufficient to
significantly increase the number of solved problems com-
pared to A"/h*, and A"/IP¢(T+), outperforms h™2* and
can be considered a somewhat useful heuristic. The time-
relaxation results in significantly increases performance
compared to A*/IP¢(T%) and A*/IP¢(T). In addition,
for all IP models, A" search using their corresponding
LP relaxations as the heuristic function performs signifi-
cantly better than directly using the IP as the A" heuristic.
A"/LPe(TT), A" /LPS,(T+), and A" /LPS,(T), are all com-
petitive with the bisimulation merge-and-shrink heuristic.

'While this is tuned for 30 minutes and suboptimal for 5 min-
utes, we wanted to use the same configuration as in the 30-minute
experiments below.
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While A" /LP¢(T), does not perform quite as well, there are
some problems where A" /LP¢(T') performs best. Finally,
A /autoconf, which uses LP heuristic selection (Section 5.1)
performs quite well, significantly better than its 4 compo-
nents (LP®(T'1), LP¢ (T), LPS.(T), LPe(T)).

Table 3 compares the coverage following algorithms
on the IPC benchmark suite with 30 minute CPU time
limit and 2GB memory limit: (1) A’/autoconf, which
uses the LP heuristic selection mechanism described
in Section 5.1 to choose among LP¢(TT), LP¢(T),
LP{.(T"), LP¢.(T), (2) FD using the Landmark Cut
heuristic (Helmert and Domshlak 2009), and (3) FD us-
ing the IPC2011 bisimulation merge-and-shrink configu-
ration (seg-opt-merge—and-shrink)(Nissim, Hoff-
mann, and Helmert 2011).

Our results indicate that A"/autoconf is competitive with
both Fast Downward using Landmark Cut, as well as the
IPC2011 Merge-and-shrink portfolio configuration. None
of these planners dominate the others, and each planner per-
forms the best on some subset of domains. Compared to
the two other methods, A*/autoconf seems to perform par-
ticularly well on the freecell, parcprinter, rovers, trucks,
and woodworking domains. A’/h*(Haslum, Slaney, and
Thiébaux 2012) solved 443 problems with a 30-minute time
limit, which is significantly less coverage than than our LP-
based planners with a 5-minute time limit (Table 2).

As described in Section 5.1, A*/autoconf selects the LP
heuristic to use for each problem based on a comparison
of LP values at the root node. LP¢ (T") was selected on
755 problems, LP¢.(T) on 447 problems, LP¢(7T") on 119
problems, and LP¢(T) on 25 problems. On the remaining
20 problems, A”/autoconf timed out during LP computations
for the bound selection process at the root node, indicating
that for some difficult problems, the LP computation can be
prohibitively expensive.

7 Conclusion

This paper proposed a new, integer-linear programming
formulation of the delete relaxation h™ for cost-optimal,
domain-independent planning. The major contribution of
this paper are: (1) We propose an enhanced IP model for
h* using landmarks, relevance analysis, and action elim-
ination, which is outperforms one of the previous state-
of-the-art techniques for computing h™ (Haslum, Slaney,
and Thiébaux 2012); (2) We showed that the LP relax-
ations of the IP models are quite tight; and (3) We embed-
ded our relaxed LPs in a A*-based forward search planner,
A’/autoconf. We showed that A" search using LP¢(T"),
LP¢.(TT), or LP¢.(T) as its heuristic is competitive with
the hybrid bisimulation merge-and-shrink heuristic (Nissim,
Hoffmann, and Helmert 2011). Using a simple rule to select
from among LP¢(TT), LP¢(T'), and LP{.(TT), LPE.(T),
A’/autoconf is competitive with the landmark cut heuris-
tic. A*/autoconf performs well in some domains where other
planners perform poorly, so our ILP-based methods are com-
plementary to previous heuristics.

While it has long been believed that h™ is too expensive
to be useful as a heuristic for forward-search based plan-
ning, our work demonstrates that an LP relaxation of ht



Table 2: IPC benchmark problems: # solved with 5 minute time limit.

Configuration # solved Description
FD/LM-cut 746 Landmark Cut (seg—opt—1mcut)
FD/M&S 1PC2011 687 IPC 2011 Merge-and-Shrink (Nissim, Hoffmann, and Helmert 2011)
FD/h™* 551 hrax
A'/hT 342 | hsp_f planner using A" and A" heuristic (Haslum, Slaney, and Thiébaux 2012; Haslum 2012)
A/IP(TT) 358 basic IP formulation for ™
A/LP(T™) 477 LP relaxation of IP(T'")
A" /TP(T)+land 425 IP(T™") + Landmarks
A" /LP(T7")+land 564 LP relaxation of IP(T'")
A /TPS(TT) 582 IP(T™) with all enhancements in Sections 3.1-3.6
A /LP(TT) 652 LP relaxation of IP¢(7'")
A" /IPS(T) 463 IP¢(T") with counting constraints (Section 4)
A" /LP(T) 608 LP relaxation of IP°(T")
A /TIPS (TT) 606 time-relaxation (Section 3.7) of IP®(T™)
A /LPE(TT) 674 LP relaxation of IPg,(T")
A /TPS.(T) 554 time-relaxation of IP°(T")
A /LPL(T) 661 LP relaxation of IPg, (T")
A’/autoconf 722 Automated selection of LP at root node(Section 5.1)

can achieve the right tradeoff of speed and accuracy to be
the basis of a new class of heuristics for domain-independent
planning. Integrating additional constraints to derive heuris-
tics more accurate than h™ (e.g., the inclusion of net change
constraints (Pommerening et al. 2014) in Section 4) offers
many directions for future work.
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Table 3: 30 minutes, 2GB RAM: “evals”’=# of calls to heuristic function

Fast Downward LM-Cut

Fast Downward M&S

A’ Jautoconf

Domain (# problems) | solved evals | solved evals | solved evals
airport(50) 28 13403 23 461855 25 4640
barman-opt11(20) 4 | 1614605 4 5944586 3 | 473561
blocks(35) 28 95630 28 880799 29 51523
depot(22) 7 261573 7 1746549 7 34046
driverlog(20) 14 245920 13 4355507 13 56933
elevators-opt08(30) 22 | 1189951 14 | 10132421 13 66011
elevators-opt11(20) 18 | 1196979 12 | 11811143 10 65695
floortile-opt11(20) 7 | 2354266 7 | 10771362 7 | 152836
freecell(80) 15 180560 19 6291413 45 2177
grid(5) 2 94701 3 | 11667600 3 14197
gripper(20) 7 | 1788827 20 3131130 6 | 404857
logistics98(35) 6 169645 5 6825245 7 | 143897
logistics00(28) 20 212998 20 3007288 20 | 212985
miconic(150) 141 16635 77 3872365 141 15087
movie(30) 30 29 30 29 30 31
no-mprime(35) 24 55549 22 1490714 18 7260
no-mystery(30) 16 880031 17 3725239 12 1105
nomystery-opt11(20) 14 20744 19 9951860 14 754
openstacks(30) 7 157100 7 202732 7 4973
openstacks-opt08(30) 19 | 3254361 21 6347048 11 | 165070
openstacks-opt11(20) 14 | 4412937 16 8326670 6 | 294006
parcprinter-08(30) 19 699592 17 3129238 29 668
parcprinter-opt11(20) 14 949416 13 4091925 20 854
parking-opt11(20) 3 435359 7 8044843 1 2991
pegsol-08(30) 27 224149 29 705639 26 85760
pegsol-opt11(20) 17 370401 19 1092529 16 | 151110
pipes-notankage(50) 17 234717 17 1777823 13 6021
pipes-tankage(50) 12 361767 16 2447552 7 1926
psr-small(50) 49 178328 50 221152 50 4056
rovers(40) 7 77783 8 3395947 11 | 209551
satellite(36) 7 155990 7 1890912 10 26897
scanalyzer-08(30) 15 259961 14 6785907 8 4374
scanalyzer-opt11(20) 12 324943 11 8636568 5 6975
sokoban-opt08(30) 30 669669 24 3938226 23 75743
sokoban-opt11(20) 20 173004 19 3338708 19 77681
storage(20) 15 86439 15 1006600 15 21598
transport-opt08(30) 11 16807 11 1158282 10 58616
transport-opt11(20) 6 30550 7 4473292 5 | 116375
trucks(30) 10 462320 8 8478357 15 61067
visitall-opt11(20) 11 | 1255455 16 129229 17 20378
woodworking08(30) 17 759825 14 876479 28 767
woodworking11(20) 12 | 1076372 9 1357935 18 699
zenotravel(20) 13 318142 12 6727643 12 16571
Total (1366) 87 727 785
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