
Endomorphisms of Classical Planning Tasks

Rostislav Horčı́k1, Daniel Fišer1,2

1 Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

xhorcik@fel.cvut.cz, danfis@danfis.cz

Abstract

Detection of redundant operators that can be safely removed
from the planning task is an essential technique allowing to
greatly improve performance of planners. In this paper, we
employ structure-preserving maps on labeled transition sys-
tems (LTSs), namely endomorphisms that are well known
from model theory, in order to detect redundancy. Comput-
ing endomorphisms of an LTS induced by a planning task
is typically infeasible, so we show how to compute some of
them on concise representations of planning tasks such as fi-
nite domain representations and factored LTSs. We formulate
the computation of endomorphisms as a constraint satisfac-
tion problem (CSP) that can be solved by an off-the-shelf
CSP solver. Finally, we experimentally verify that the pro-
posed method can find a sizable number of redundant opera-
tors on the standard benchmark set.

1 Introduction
One way to improve performance of classical planners (re-
gardless of the employed planning technique) is by reducing
the size of the input planning task by removing operators
and facts so that at least one (optimal) plan is preserved.
The most commonly used method for the reduction of plan-
ning tasks is a reachability analysis in forward and backward
direction using hm heuristics (Haslum and Geffner 2000;
Alcázar and Torralba 2015). This method prunes operators
that are either unreachable or that lead to a dead-end state.
Nevertheless, even if we successfully remove all unreach-
able and dead-end operators, the remaining planning task
may still be unnecessarily large because of many alternative
plans it may contain.

Recently, Fišer, Torralba, and Shleyfman (2019) pro-
posed a technique combining so-called operator mutexes
(op-mutexes) and symmetries in such a way that allows to
identify operators that are redundant in a sense that remov-
ing them still preserves at least one (optimal) plan. The main
idea behind this technique is based on the observation that
if two operators cannot occur simultaneously in an optimal
plan and there is a symmetry mapping one operator to an-
other, then one of the operators can be safely removed. This
method works only on planning tasks exhibiting non-trivial
symmetries.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

s0

s1

s2

s3

o1o5

o3

o2

o4

s1

s0 s2

o2o1

o3

o4
o5

Figure 1: Examples of transition systems with redundant
states. The dashed arrows show where to map redundant
states.

In this paper, we develop a new pruning method allowing
to detect redundant parts of the state space which cannot be
detected by a reachability analysis. Although it can, in some
cases, detect the same redundant operators as the method
based on op-mutexes and symmetries, our method does not
depend on the existence of symmetries.

Consider a simple transition system depicted in Fig. 1
(left) where the cost of o1 and o2 is less than the cost of
o3 and o4, respectively, and o5 has a unit cost. It is obvi-
ous that the plan going through the state s2 is sub-optimal
and we can safely omit the state s2 and operators o3 and
o4. However, the transition system has no symmetries due
to different costs of actions and the operator o5. More-
over, all states are reachable and there are no dead-ends.
Our solution to detect such a redundancy is to look for a
structure-preserving self-map on the transition system which
maps plans to (possibly cheaper) plans. In the situation de-
scribed above, such mapping could map the state s2 to s1,
o3 to o1, o4 to o2, and fix the remaining states and oper-
ators. More precisely, since transition systems can be un-
derstood as first-order structures, we just employ standard
structure-preserving maps from model theory, namely ho-
momorphisms (see, e.g., Hodges 1997). In particular, we
are interested in endomorphisms which are homomorphisms
having the same domain and co-domain. It is well known
that homomorphisms preserve existential-positive formulas
(e.g. Hodges 1997, Section 2.4). As the existence of a plan
of a certain length can be expressed by such a formula, it
follows that an endomorphism maps plans to plans. Conse-
quently, if we find an endomorphism whose image is strictly
smaller than the original transition system, then the states
and operators which are not in its image are necessarily re-
dundant.

PRELIMINARY VERSION: DO NOT CITE
The AAAI Digital Library will contain the published

version some time after the conference

Another example depicted in Fig. 1 (right) shows a tran-
sition system having no non-trivial symmetries due to the
operator o5 and the goal state. Moreover, all states are reach-
able and there are no dead-ends. Still, the state s1 and oper-
ators o1, o2 are redundant. However, there is an endomor-
phism mapping s1 to s2 and operators o1, o2 to o3, o4, re-
spectively, provided o3 (resp. o4) is not more expensive than
o1 (resp. o2).

The endomorphisms are closely related to symmetries
of transition systems. Unlike the symmetries, the endomor-
phisms need not be bijective. Note that none of the endo-
morphisms shown in Fig. 1 is bijective.

Once we know we look for endomorphisms, the necessary
second step is to describe algorithms computing them. Since
classical planning tasks are described in concise representa-
tions and it is infeasible to construct their whole state space,
we cannot hope for computing all existing endomorphisms.
However, we can find at least some of them on concise rep-
resentations. We propose two methods. The first one uses a
set of abstract transition systems (e.g., projections) whose
synchronized product is the whole state space. The second
method uses the finite domain representation. In both meth-
ods, the actual endomorphisms are expressed as solutions
to a constraint satisfaction problem (CSP) and solved by a
standard CSP solver. The computation itself can be seen as
constraint optimization because some of the solutions are
better than others.

2 Background
An FDR planning task Π is specified by a tuple Π =
〈V,O, I, G〉. V is a finite set of variables, each variable
V ∈ V has a finite domain dom(V). A fact 〈V, v〉 is a pair
of a variable V ∈ V and one of its values v ∈ dom(V). The
set of all facts is denoted by F = {〈V, v〉 | V ∈ V, v ∈
dom(V)}, and the set of facts of variable V is denoted by
FV = {〈V, v〉 | v ∈ dom(V)}. A partial state p is a vari-
able assignment over some variables vars(p) ⊆ V . We write
p[V] for the value assigned to the variable V ∈ vars(p) in
the partial state p. We also identify p with the set of facts
contained in p, i.e., p = {〈V, p[V]〉 | V ∈ vars(p)}. A par-
tial state s is a state if vars(s) = V . I is an initial state. G
is a partial state called goal, and a state s is a goal state iff
G ⊆ s. The set of all states is denoted by SΠ.
O is a finite set of operators, each operator o ∈ O

has a precondition pre(o) and effect eff(o), which are par-
tial states over V , and a cost c(o) ∈ R+

0 . An operator
o is applicable in a state s iff pre(o) ⊆ s. The result-
ing state of applying an applicable operator o in a state
s is another state oJsK such that oJsK[V] = eff(o)[V] for
every V ∈ vars(eff(o)), and oJsK[V] = s[V] for every
V ∈ V \ vars(eff(o)).

A sequence of operators π = 〈o1, . . . , on〉 is applicable
in a state s0 if there are states s1, . . . , sn such that oi is
applicable in si−1 and si = oiJsi−1K for i ∈ {1, . . . , n}.
The resulting state of this application is πJs0K = sn and
c(π) =

∑n
i=1 c(oi) denotes the cost of this sequence of op-

erators. A sequence of operators π is called a plan iff π is
applicable in I and πJsK is a goal state, π is called an opti-

mal plan if its cost is minimal among all plans.
A labeled transition system (LTS) is a tuple Θ =

〈S,L, T , sI , S?〉, where S is a finite set of states, L is a
finite set of labels with associated cost c(l) ∈ R+

0 to each
label l ∈ L, T ⊆ S × L × S is a set of transitions, sI ∈ S
is the initial state, and S? ⊆ S is a set of goal states. We
write s l−→ s′ to refer to a transition from s to s′ with the la-
bel l. A sequence of labels π = 〈l1, . . . , ln〉 is called a plan
in Θ if there exist si−1

li−→ si ∈ T for every i ∈ {1, . . . , n}
such that s0 = sI and sn ∈ S?. The cost of the plan π is
c(π) =

∑n
i=1 c(li). A plan π is called optimal plan if the

cost of π is minimal among all plans.
The state space of a planning task Π = 〈V,O, I, G〉 is

the LTS ΘΠ = 〈S,L, T , sI , S?〉, where S := SΠ, sI := I ,
s ∈ S? iff G ⊆ s, the labels L are the operators O with the
given costs, and s o−→ s′ is a transition in T if o is applicable
in s and oJsK = s′.

Given two transition systems Θ = 〈S,L, T , sI , S?〉 and
Θ′ = 〈S ′,L, T ′, s′I , S′?〉 with a common set of labels L,
a synchronized product of Θ and Θ′ is another transition
system Θ⊗Θ′ = 〈S ′′,L, T ′′, s′′I , S′′? 〉, where S ′′ = S ×S ′,
s′′I = 〈sI , s′I〉, S′′? = S?×S′?, and T ′′ = {〈〈s, s′〉, l, 〈t, t′〉〉 |
〈s, l, t〉 ∈ T , 〈s′, l, t′〉 ∈ T ′}.

A factored LTS of a planning task Π = 〈V,O, I, G〉 is
a tuple 〈Θ1, . . . ,Θn〉 of LTSs (also called factors) with a
common set of labels such that Θ1 ⊗ · · · ⊗ Θn = ΘΠ.
Let V = {V1, . . . , Vn} denote the set of variables of Π.
An atomic factored LTS 〈ΘV1

, . . . ,ΘVn
〉 is a factored LTS

where ΘVi
, for every i ∈ {1, . . . , n}, is an atomic projec-

tion of Π to the variable Vi, i.e., ΘVi
= 〈S,L, T , sI , S?〉,

where S = dom(Vi); L = O; sI = I[Vi]; S? = {G[Vi]} if
Vi ∈ vars(G) or S? = S otherwise; and the set of transitions
T consists of transitions s o−→ t for the state s = pre(o)[Vi]
if Vi ∈ vars(pre(o)) or s ∈ dom(Vi) otherwise, and for the
state t = eff(o)[Vi] if Vi ∈ vars(eff(o)) or t = s otherwise.

We have to also recall the Constraint Satisfaction Prob-
lem (CSP) (for details see, e.g., Russell and Norvig 2010,
Chapter 6). Suppose we are given a set X of variables, a fi-
nite domain D where the variables can take values, and a
set of constraints C. The problem is whether there exists an
assignment h : X → D of values D to variables X that sat-
isfies all the constraints. Each constraint C ∈ C is specified
as a pair C = 〈~x,R〉 where ~x is a tuple of variables from
X of length n, and R is an n-ary relation on D. The assign-
ment h satisfies the constraint C = 〈~x,R〉 if h(~x) ∈ R.
CSPs are often formulated in such a way that each variable
x ∈ X has its domain of allowed values Dx ⊆ D. Note
that each such restriction can be equivalently expressed as a
unary constraint 〈〈x〉, Dx〉.

For notational convenience, we will sometimes abuse the
notation for sequences by referring to a sequence as a set.

3 Endomorphisms of Transition Systems
Labeled transition systems can be viewed as first-order rela-
tional structures used in logic and model theory. More pre-
cisely, given an LTS Θ = 〈S,L, T , sI , S?〉, one can sim-
ply understand Θ as a first-order structure defined on S ∪ L

endowed with unary predicates defining states and labels, a
ternary relation T , a constant sI , and unary predicate S?.
The following definition is nothing else than the usual def-
inition of homomorphism used in model theory (see, e.g.,
Hodges 1997; Libkin 2004).1

Definition 1. Let Θ = 〈S,L, T , sI , S?〉 and Θ′ =
〈S ′,L′, T ′, s′I , S′?〉 denote two LTSs. A mapping α : S ∪
L → S ′ ∪ L′ is an LTS homomorphism from Θ to Θ′

if the following conditions are satisfied:

(L1) α(s) ∈ S ′ for every s ∈ S, and
(L2) α(l) ∈ L′ for every l ∈ L, and

(L3) α(s)
α(l)−−→ α(s′) ∈ T ′ for every s l−→ s′ ∈ T , and

(L4) c(α(l)) ≤ c(l) for every l ∈ L, and
(L5) α(sI) = s′I , and
(L6) α(s) ∈ S′? for every s ∈ S?.

An LTS homomorphism from Θ to Θ is called an LTS
endomorphism of Θ.

For notational convenience, we extend the mapping α to
sequences α(〈x1, . . . , xn〉) = 〈α(x1), . . . , α(xn)〉 and sets
α({x1, . . . , xn}) = {α(x1), . . . , α(xn)}.

A bijective LTS homomorphism α whose inverse is an
LTS homomorphism as well is called an LTS isomorphism.
If, in addition, α is an LTS endomorphism then α is called
an LTS automorphism. Note that LTS automorphisms are
structural symmetries stabilized for the initial state and goals
as described by Shleyfman et al. (2015).

Homomorphisms are important because they preserve
existential-positive formulas. In fact, every formula pre-
served by homomorphisms on all finite structures is equiva-
lent to an existential-positive formula (see Rossman 2008).
Consequently, they have to preserve plans. Thus the follow-
ing theorem follows immediately but we provide an elemen-
tary proof for the sake of the reader.

Theorem 2. Let α denote an LTS endomorphism of Θ. If π
is a plan in Θ, then α(π) is a plan in Θ.

Proof. Let Θ = 〈S,L, T , sI , S?〉 and let π = s0
l1−→ s1

l2−→
· · · ln−1−−−→ sn−1

ln−→ sn, where s0 = sI and sn ∈ S?.
It follows directly from Definition 1 that (L5) s0 = sI =
α(sI) = α(s0), and (L6) sn ∈ S? implies α(sn) ∈ S?, and

(L3) si−1
li−→ si ∈ T implies α(si−1)

α(li)−−−→ α(si) ∈ T for
every i ∈ {1, . . . , n}. Therefore, α(π) is a plan in Θ.

Corollary 3. Let α denote an LTS endomorphism of Θ. If π
is an optimal plan in Θ, then α(π) is an optimal plan in Θ.

Proof. It follows from (L4) that c(π) ≥ c(α(π)). Since c(π)
is minimal among all plans, it follows that c(π) = c(α(π)).
The rest follows from Theorem 2.

1The only subtlety is hidden in the cost function. One can re-
gard it as a sort of “fuzzy” predicate which has to be preserved by
the homomorphism like other ”crisp” predicates. Alternatively, it
is possible to encode the condition (L4) as preservation of unary
predicates Cl = {l′ ∈ L | c(l′) ≤ c(l)} for each label l.

Note that the condition (L4) is required only for the
preservation of optimal plans. So, it is possible to weaken
the definition of LTS endomorphisms by removing this con-
dition, which could be useful for satisficing planning where
we are interested in any plans and not necessarily in the op-
timal ones. However, we leave this for future work.

The fact that LTS endomorphisms preserve (optimal)
plans means that once we have an endomorphism α of an
LTS, we can prune the planning task by keeping only its im-
age {α(x) | x ∈ S ∪L} and throwing away everything else.
Formally, we define redundant labels as labels that can be
removed as long as there is at least one optimal plan left.

Definition 4. Let Θ denote an LTS with labels L, and let
X ⊆ L denote a set of labels. We say thatX is redundant in
Θ if there exists an optimal plan π in Θ such that π∩X = ∅.
Theorem 5. Let α denote an LTS endomorphism of Θ with
labels L. Then X = {l ∈ L | ∀l′ ∈ L : α(l′) 6= l} is
redundant in Θ.

Proof. It follows from Corollary 3 that for every optimal
plan π such that π ∩ X 6= ∅ it holds that α(π) is also an
optimal plan. And from the definition of X it follows that
α(π) ∩X = ∅.

In practice, we would like to find the largest possible set of
redundant labels, which means that we would like to find an
LTS endomorphism with the smallest image. Interestingly,
the smallest image is unique (up to an isomorphism) and it
is called a core of the structure. This notion originally comes
from graph theory (Hell and Nešetřil 1992), but it turned out
that it works also for finite relational structures (e.g., Ross-
man 2008). The only endomorphisms of the core are auto-
morphisms. Therefore, in theory, there is a unique optimal
endomorphism. Unfortunately, it is an NP-complete prob-
lem to test whether a finite structure is a core or not. Never-
theless, any non-trivial endomorphism (i.e., endomorphism
whose image is smaller than its preimage) allows to prune
the LTS.

Now we have come to the question of how to actually
compute endomorphisms of an LTS. It is well known that
homomorphisms between finite first-order structures can
be viewed as solutions to a CSP (e.g., Libkin 2004, Sec-
tion 14.3). For the case of LTSs the CSP formulation has
two kinds of variables: a variable Xs for every state s ∈ S ,
and a variable Xl for every label l ∈ L. The constraints
directly corresponds to the conditions (L1)–(L6) from Def-
inition 1. The domain of each Xs is the set of states (L1),
and the domain of Xl is the set of all labels whose cost
is less than or equal to c(l) (L2, L4). There is a constraint
〈〈XsI 〉, {sI}〉 for the initial state sI (L5), and 〈〈XsG〉, S?〉
for every goal state sG ∈ S? (L6). Finally, there is a con-
straint 〈〈Xs, Xl, Xt〉, T 〉 for each transition s l−→ t (L3). A
solution to such CSP with the minimum number of values
assigned to the label variables Xl allows to prune the largest
possible amount of labels.

Of course, the above formulation is not practical because
we would need to construct the whole state space (LTS) in
order to construct the CSP formulation. However, we show

in the next section that we can use a similar approach on
factored transition systems.

4 Endomorphisms of Factored LTSs
We start by showing that endomorphisms of multiple LTSs
naturally extend over their synchronized product as long as
the mapping of labels is the same for all LTSs.
Definition 6. Given two sets of states S and S ′, a set of
labels L, and two mappings α : S ∪L → S∪L and α′ : S ′∪
L → S ′ ∪ L such that α(l) = α′(l) for every l ∈ L, β =
α⊗α′ denotes a new mapping β : (S×S ′)∪L → (S×S ′)∪L
such that β(l) = α(l) = α′(l) for every l ∈ L and β(s, s′) =
〈α(s), α′(s′)〉 for every s ∈ S and every s′ ∈ S ′.
Theorem 7. Let Θ = 〈S,L, T , sI , S?〉, and Θ′ =
〈S ′,L, T ′, s′I , S′?〉 denote two LTSs with a common set of
labels, and let α and α′ denote LTS endomorphisms of Θ
and Θ′, respectively. If α(l) = α′(l) for every l ∈ L, then
β = α⊗ α′ is an LTS endomorphism of Θ⊗Θ′.

Proof. (L1), (L2) and (L4–6) follow trivially from the con-
struction of β and Θ ⊗ Θ′. For (L3), let 〈s, s′〉 l−→ 〈t, t′〉
be a transition in Θ ⊗ Θ′. By the definition of transitions
in Θ ⊗ Θ′, we have s l−→ t in Θ and s′ l−→ t′ in Θ′. Thus

α(s)
α(l)−−→ α(t) ∈ T and similarly α′(s′)

α(l)−−→ α′(t′) ∈ T ′
as α(l) = α′(l). By Definition 6 we have β(s, s′) =
〈α(s), α′(s′)〉, β(t, t′) = 〈α(t), α′(t′)〉, and β(l) = α(l).

Hence β(s, s′)
β(l)−−→ β(t, t′) is a transition in Θ⊗Θ′.

Let 〈Θ1, . . . ,Θn〉 denote a factored LTS of a planning
task Π. It follows from Theorem 7 that if we find an LTS
endomorphism αi for each individual factor Θi and all these
endomorphisms agree on the common set of labels, then
α1 ⊗ · · · ⊗ αn is an LTS endomorphism of the whole state
space ΘΠ (i.e., Θ1 ⊗ · · · ⊗ Θn). Therefore, we can use this
mapping for the inference of redundant labels (operators)
according to Theorem 5.

The construction of CSP for the factored LTS follows the
same construction laid out in the previous section: Each fac-
tor Θi is encoded individually, but all encodings for all fac-
tors share the same set of variables for labels. This way, ev-
ery solution to such CSP will produce the same mapping
over the set of labels in all factors.

The size of the resulting CSP is polynomial in the size
of the factored LTS. Assume we have F many factors each
having at most M states, i.e., for an atomic factored LTS
F = |V|, andM is the size of the largest domain. Since LTSs
corresponding to planning problems are deterministic, each
label l can induce at mostM many transitions on each factor.
So there are at most |L|·M ·F transitions to be encoded into
constraints. Moreover, there are at most |L| ·M admissible
triples of values for each such constraint. Thus the size of
constraints encoding the condition (L3) is bounded by 3 ·
|L|2 ·M2 ·F . The sizes of all other constraints are negligible
in comparison to (L3).
Example 8. Fig. 2 shows an example of a planning task.
It is easy to see that the factor ΘV1

has an endomorphism
α such that α(v1) = α(v2) = α(v3) = v3, α(o1) =

O pre(o) eff(o)
o1 V1=v0, V2=va V1=v1, V2=vb
o2 V1=v0, V2=va V1=v2, V2=vc
o3 V1=v0 V1=v3
p1 V1=v1, V2=vb V1=v4, V2=va
p2 V1=v2, V2=vb V1=v4, V2=va
p3 V1=v3 V1=v4

V = {V1, V2}
dom(V1) = {v0, v1, v2, v3, v4}
dom(V2) = {va, vb, vc}
I = {V1=v0, V2=va}
G = {V1=v4}

ΘV1
: ΘV2

:v0

v3v1 v2

v4

o1

p1

o2

p2

o3

p3
vb

va

vc

o1

p1, p2

o2

o3, p3 o3, p3

o3, p3

Figure 2: Example planning task with atomic factored LTS
〈ΘV1 ,ΘV2〉. All operators have a unit cost.

α(o2) = α(o3) = o3, α(p1) = α(p2) = α(p3) = p3,
and α(v0) = v0 and α(v4) = v4. The factor ΘV2

has an en-
domorphism α′ such that α′(o) = α(o) for all operators o ∈
{o1, o2, o3, p1, p2, p3} and α′(vb) = α′(vc) = α′(va) = va.
By Theorem 7, α⊗ α′ is an endomorphism on the synchro-
nized product of both factors. Therefore, the labels (opera-
tors) o1, o2, p1, p2 are redundant by Theorem 5.

5 Endomorphisms of Finite Domain
Representations

The size of the CSP formulation for the factored LTSs can
be still computationally prohibitive in practice, because the
number of transitions even on relatively small factors may
be too large. In this section, we define endomorphisms di-
rectly on FDR and show how to formulate a CSP for finding
such endomorphisms that is smaller than the CSP for the
endomorphisms of the corresponding atomic factored LTS.
The price for the smaller CSP is that there can be solutions
to the CSP for the atomic factored LTS that are not FDR
endomorphisms.
Definition 9. Let Π = 〈V,O, I, G〉 be an FDR planning
task with facts F . A mapping φ : F ∪ O → F ∪ O is an
FDR endomorphism of Π if the following conditions are
satisfied2:
(F1) φ(FV) ⊆ FV for every V ∈ V , and
(F2) φ(O) ⊆ O, and
(F3) φ(pre(o)) ⊇ pre(φ(o)) for every o ∈ O, and
(F4) φ(eff(o)) = eff(φ(o)) for every o ∈ O, and
(F5) c(φ(o)) ≤ c(o) for every o ∈ O, and
(F6) φ(I) = I , and
(F7) φ(G) = G.
Theorem 10. Every FDR endomorphism of Π induces an
LTS endomorphism of ΘΠ.

Proof. Let φ denote an FDR endomorphism of Π. Note that
each fact can be mapped only to facts from the same vari-
able (F1). Therefore, vars(p) = vars(φ(p)) holds for every

2As in the case of the LTS endomorphism, we extend φ to se-
quences and sets. In particular, we can apply φ to partial states.

(partial) state p. So, it is easy to see that φ(s) ∈ SΠ for every
state s (so (L1) holds); and the initial state is preserved (L5);
and the goal states are preserved (L6). It is also easy to see
that (L2) and (L4) hold because φ maps operators to opera-
tors (F2) with possibly smaller costs (F5). What remains to
show is that the conditions (F3) and (F4) preserve transitions
within ΘΠ (L3).

Let s o−→ oJsK denote a transition in ΘΠ. Now, we need to

show that φ(s)
φ(o)−−−→ φ(oJsK) is also a transition in ΘΠ. We

already showed that φ(s), φ(oJsK) ∈ SΠ and φ(o) ∈ O, so
what remains to show is that (i) φ(o) is applicable in φ(s)
and (ii) φ(o)Jφ(s)K = φ(oJsK).

By the definition of transitions in ΘΠ we have pre(o) ⊆ s,
and from (F3) we have pre(φ(o)) ⊆ φ(pre(o)) ⊆ φ(s).
Therefore, φ(o) is applicable in φ(s).

For (ii), note that vars(eff(o)) = vars(φ(eff(o))) =
vars(eff(φ(o))). Further observe that p[V] = p′[V] implies
φ(p)[V] = φ(p′)[V] for any partial states p, p′ and any
variable V ∈ V . Therefore, for every V ∈ vars(eff(o)) it
holds that φ(oJsK)[V] = φ(eff(o))[V] = eff(φ(o))[V] =
φ(o)Jφ(s)K[V], and for every V ′ ∈ V \ vars(eff(o)) it holds
that φ(oJsK)[V ′] = φ(s)[V ′] = φ(o)Jφ(s)K[V ′].

Each FDR endomorphism induces endomorphisms on its
respective variable projections and all these endomorphisms
agree on labels. So, every FDR endomorphism is an endo-
morphism of the atomic factored LTS of the same FDR plan-
ning task. On the other hand, there are endomorphisms of the
atomic factored LTS that are not FDR endomorphisms.

Example 11. In the example planning task in Fig. 2, there is
an FDR endomorphism φ such that φ(o2) = o1, φ(p2) = p1,
φ(v2) = v1, and φ(vc) = vb (the rest of the mapping is
identity, i.e., φ(x) = x for x 6∈ {o2, p2, v2, vc}). Note that
in the definition of φ we tacitly identified facts with their
values, e.g. 〈V1, v2〉 was identified with v2.

Therefore, the operators (labels) o2, p2 are redundant.
However, the LTS endomorphism α ⊗ α′ from Example 8
is not an FDR endomorphism. For instance, we cannot map
o1 to o3 because vars(eff(o1)) 6= vars(eff(o3)) which is re-
quired for the condition (F4) to hold.

To formulate an FDR endomorphism as a CSP we
strengthen the condition (F3) as φ(pre(o)) = pre(φ(o)) for
all operators o ∈ O to simplify the CSP formulation, and
we directly encode the conditions (F1)–(F7) as constraints.
For every variable V ∈ V and every value v ∈ dom(V)
we define a CSP variable Xv with the domain dom(V) (F1)
(we assume w.l.o.g. that variable domains are pairwise dis-
joint), and for every operator o ∈ O we define a CSP vari-
able Xo with the domain Do = {o′ ∈ O | c(o′) ≤ c(o)}
(F2, F5). The initial state I = {〈V1, v1〉, . . . , 〈Vn, vn〉} is
encoded as the constraint 〈〈Xv1 , . . . , Xvn〉, {〈v1, . . . , vn〉}〉
(F6), and the goal G = {〈Vi1 , vi1〉, . . . , 〈Vik , vik〉} as the
the constraint 〈〈Xvi1

, . . . , Xvik
〉, {〈vi1 , . . . , vik〉}〉 (F7).

Finally, every operator o is encoded with two con-
straints Cpre(o) and Ceff(o) as follows. Let o ∈ O denote
an operator with pre(o) = {〈Vi1 , vi1〉, . . . , 〈Vik , vik〉}.
The strengthened condition (F3) is encoded with
Cpre(o) = 〈〈Xo, Xvi1

, . . . , Xvik
〉,Uo〉 where

Uo = {〈o′,pre(o′)[Vi1], . . . ,pre(o′)[Vik]〉 | o′ ∈
Do, vars(pre(o′)) = vars(pre(o))}. The condition
(F4) is encoded with Ceff(o) constructed analogously to
Cpre(o) but from eff(o).

The size of the CSP formulation is polynomial in the size
of FDR and, again, the size of operator constraints Cpre(o)

and Ceff(o) is the most critical. For each operator o ∈ O
there are 2 · |O| constraints Cpre(o) and Ceff(o) altogether.
The arities of these constraints are bounded by the num-
ber of variables V . For each of them, there are at most |O|
many |V|-tuples of allowed values. Thus the size of these
constraints is bounded by 2 · |O|2 · |V|. Nevertheless, this
bound is often too pessimistic because the domains of pre-
conditions and effects are often much smaller than |V| and
operators are rarely allowed to be mapped to all operators.

If we rewrite the bound for factored LTS 3·|L|2·M2·F for
the case of an atomic factored LTS of the FDR planning task,
we get 3·|O|2 ·d2

max ·|V|, where dmax is the size of the largest
domain. So, it is easy to see that for a given FDR planning
tasks, the FDR endomorphism has a smaller CSP formula-
tion then the corresponding LTS endomorphism (even if we
consider the too pessimistic bound for the FDR endomor-
phism).

6 Related Work
The investigated endomorphisms are related to the already
studied notion of structural symmetry (e.g., Pochter, Zohar,
and Rosenschein 2011; Shleyfman et al. 2015), which is
nothing else than an automorphism of the transition system
in terms of model theory. Moreover, the homomorphisms
are related to abstractions. In particular, abstractions form a
certain subclass of homomorphisms because they always act
as identity on the labels and are always surjective. However,
abstractions were used mainly for computing heuristics and
not for a detection of redundant operators.

The most commonly used method for removing redun-
dant operators is reachability analysis using hm heuristic,
usually for m = 2, in forward and backward direction
(Alcázar and Torralba 2015). This method can, however, find
only the redundant operators that are either unreachable or
lead to a dead-end state, i.e., they can never be part of any
plan. Our proposed method via endomorphisms is therefore
complementary—it can, in some cases, prune unreachable
or dead-end states/operators, but it does not dominate hm-
based methods. Consider, for example, an LTS with an un-
reachable part which cannot be mapped into the reachable
part by an endomorphism. Conversely, our method finds re-
dundant operators in situations where hm pruning fails. Con-
sider for instance the examples in Fig. 1 as there are neither
unreachable states nor dead-ends.

Another related method is the combination of operator
mutexes (op-mutexes) and symmetries proposed by Fišer,
Torralba, and Shleyfman (2019). The main idea behind this
technique is based on the observation that if two operators
cannot co-occur in the same optimal plan (i.e., they form
an op-mutex) and there is a symmetry (stabilized for both
the initial state and goals) mapping one operator to another,
then one of the operators can be safely removed. So, as our

0

1 2

3

l1

l3

l2

l4

l5

l6

(a)

Θ: Θ′:
s0

s1 s2

s3

l1

l3

l2

l4

sb

sa

sc

sd se

l1

l3

l2

l4

(b)

Figure 3: (a) an example of a symmetric LTS; (b) a factored
LTS 〈Θ,Θ′〉.

method, this method can prune operators that can be part of
some plan, but it requires an existence of a non-trivial sym-
metry, whereas our method does not need any symmetries.
Again, consider the LTS depicted in Fig. 1 (right) having
no non-trivial symmetry. Conversely, there are symmetric
transition systems where the method employing op-mutexes
finds redundant operators but our method fails. Consider the
LTS depicted in Fig. 3 (a). All labels have a unit cost. The
shown LTS is in fact a core. The operators l1 and l2 form an
op-mutex and there is a symmetry mapping l1 to l2, which
means that l1 (or l2) can be removed as redundant.

Our method is also tightly related to methods applying
a dominance relation to prune states and operators during
search. Torralba and Hoffmann (2015) used cost-simulations
which are dominance relations respecting transitions. A bi-
nary relation � ⊆ S × S is said to be goal-respecting if
s � t, s ∈ S? implies t ∈ S?, and � is called a cost-
simulation for Θ if, whenever s � t, for every transition

s
l−→ s′ there is a transition t l′−→ t′ such that s′ � t′ and

c(l′) ≤ c(l).

Lemma 12. An LTS endomorphism α (viewed as a relation)
is a goal-respecting cost-simulation.

Proof. An endomorphism α induces a binary relation � on
states consisting of pairs of the form 〈s, α(s)〉, i.e., we define
s � t iff t = α(s). Since α(S?) ⊆ S?, we have α(s) ∈ S?
provided that s ∈ S?, i.e., � is goal-respecting.

Next, we have to prove that � is a cost-simulation. As-
sume s � t and s l−→ s′. We have to find t′ and l′ such that
t

l′−→ t′, s′ � t′, and c(l′) ≤ c(l). By definition of � we
have t = α(s). As α is an endomorphism, it follows that

t = α(s)
α(l)−−→ α(s′) and c(α(l)) ≤ c(l). Since s′ � α(s′),

α(s′) is the witnessing state t′ and α(l) is the witnessing
label l′.

Therefore, LTS endomorphisms are just functional goal-
respecting cost-simulations. Similarly, as it is infeasible to
search for endomorphisms directly on the LTS induced by a
planning task, cost-simulations have to be computed on the
factored LTS as well. Thus Torralba and Hoffmann (2015)
defined a label-dominance (LD) simulation. Given a fac-
tored LTS 〈Θ1, . . . ,Θn〉, a tuple 〈�1, . . . ,�n〉 of relations,
each �i being a goal-respecting relation on Θi, is called
label-dominance simulation if, whenever s �i t in Θi, for

every transition s l−→ s′ in Θi there is a transition t l′−→ t′ in
Θi such that s′ �i t′ and c(l′) ≤ c(l) and for all j 6= i the
label l′ dominates l in Θj given�j . We say that l′ dominates

l in Θj given �j if for all s l−→ t in Θj there exists s l′−→ t′

in Θj such that t �j t′.
Note that particular relations �i in the LD simulation

are goal-respecting cost-simulations. Thus it is reasonable
to ask whether the endomorphism obtained by Theorem 7
forms an LD simulation. The answer is negative as shown
in the following example. Thus we get a separation of endo-
morphisms from LD simulations. Consider the factored LTS
consisting of two factors Θ and Θ′ depicted in Fig. 3 (b). As-
sume that c(l1) ≤ c(l2) and c(l3) ≤ c(l4). There are clearly
non-trivial endomorphisms on both LTSs such that l2 7→ l1,
l4 7→ l3, s2 7→ s1, sc 7→ sb, and se 7→ sd. Consequently,
by Theorem 7 there is a non-trivial endomorphism on the
synchronized product Θ ⊗ Θ′ mapping 〈s2, sc〉 to 〈s1, sb〉.
Nevertheless, there is no LD simulation which would al-
low to prune state 〈s2, sc〉. Indeed, suppose there are cost-
simulations � and �′ respectively on Θ and Θ′ such that
s2 � s1 and sc �′ sb. For the transition s2

l4−→ s3 there has
to be a transition going from s1. The only one is s1

l3−→ s3.
Consequently, l3 has to dominate l4 in Θ′ by the definition
of LD-simulation. However, this is not the case because l3 is
not applicable in the state sc.

7 Experimental Evaluation
The inference of endomorphisms and pruning of redundant
operators was implemented3 in C and experimentally evalu-
ated on a cluster of computing nodes with Intel Xeon Scal-
able Gold 6146 processors. We used all planning domains
from the optimal tracks of International Planning Compe-
titions (IPCs) from 1998 to 2018 excluding the ones con-
taining conditional effects after translation (leaving 65 do-
mains). We used fact-alternating mutex groups (Fišer and
Komenda 2018; Fišer 2020) for the construction of FDR
variables and for removing unreachable and dead-end facts
and operators. For comparison, we used pruning using h2

heuristic in forward and backward direction (Alcázar and
Torralba 2015) which we refer to as h2 pruning.

For solving CSPs, we used CP Optimizer from IBM
ILOG CPLEX Optimization Studio v12.9. This solver con-
tains an objective function that returns the number of differ-
ent values assigned to a specified set of variables. We use the
minimization of such objective function over operator (la-
bel) variables to obtain optimal solutions. Moreover, CP Op-
timizer is able to report all sub-optimal solutions found dur-
ing the search for the optimal solution—we use this feature
to obtain a sub-optimal solution for tasks where the search
terminates prematurely because of a time or memory limit.

In the first set of experiments we aimed at (i) finding
which domains contain non-trivial (i.e., non-identity) endo-
morphisms; (ii) how many operators can be identified as
redundant by endomorphisms; (iii) how often can we find
an optimal solution and how often the search for the op-

3https://gitlab.com/danfis/cpddl, branch aaai21-endomorphism

domain fdr without h2 ts without h2 h2 fdr with h2 ts with h2

red fail sym %avg red fail sym %avg %avg red fail sym %avg %avg2 red fail sym %avg %avg2

airport04 (50) 0 29 0 0.00 16 29 0 2.00 73.41 0 29 0 73.41 0.00 0 29 0 73.41 0.00
blocks00 (35) 0 0 0 0.00 35 0 35 70.24 0.00 0 0 0 0.00 0.00 35 0 35 70.24 70.24
caldera18 (20) 0 0 0 0.00 (5) 8 12 0 28.44 55.35 0 0 0 55.35 0.00 (5) 11 9 0 74.53 34.09
cavediving14 (20) 8 0 5 13.66 3 13 1 6.24 0.54 8 0 5 14.20 13.72 3 13 1 6.79 6.29
data-network18 (20) 0 0 0 0.00 19 1 0 2.81 0.00 0 0 0 0.00 0.00 19 1 0 2.81 2.81
mystery98 (30) 4 3 8 1.10 8 16 10 6.28 46.39 3 12 2 46.79 0.87 1 21 1 46.64 0.42
organic-synthesis18 (20) 0 14 0 0.00 6 14 0 55.42 89.96 0 14 0 89.96 0.00 3 14 0 92.89 27.78
parcprinter08 (30) 26 0 8 5.23 28 0 17 20.38 44.87 0 0 0 44.87 0.00 20 0 16 57.46 22.35
parcprinter11 (20) 18 0 8 5.57 19 0 13 17.64 44.20 0 0 0 44.20 0.00 12 0 10 55.96 20.25
pathways06 (30) 0 0 0 0.00 5 10 0 0.05 3.94 0 0 0 3.94 0.00 5 10 0 3.98 0.05
pegsol08 (30) 2 0 0 0.30 3 0 0 0.38 19.14 0 0 0 19.14 0.00 0 0 0 19.14 0.00
pipesworld-notank04 (50) 0 0 0 0.00 12 18 4 1.51 6.12 0 0 0 6.12 0.00 0 14 0 6.12 0.00
psr-small04 (50) 0 0 0 0.00 38 0 0 2.49 23.51 0 0 0 23.51 0.00 11 0 0 23.75 0.25
rovers06 (40) 38 0 5 21.74 17 21 5 8.82 46.68 38 0 5 57.99 21.74 17 21 5 51.61 8.82
spider18 (20) 0 1 0 0.00 3 17 0 0.43 13.26 0 2 0 13.26 0.00 0 17 0 13.26 0.00
storage06 (30) 0 0 0 0.00 2 13 1 1.37 0.00 0 0 0 0.00 0.00 2 13 1 1.37 1.37
tidybot11 (20) 0 0 0 0.00 9 11 0 14.70 52.16 0 0 0 52.16 0.00 0 8 0 52.16 0.00
tpp06 (30) 10 2 0 7.69 (2) 6 14 0 2.53 39.74 10 2 0 43.50 7.76 4 12 0 41.60 3.32
transport08 (30) 13 0 12 2.69 1 21 1 0.29 0.00 13 0 12 2.69 2.69 1 21 1 0.29 0.29
transport11 (20) 11 0 11 5.10 1 16 1 0.43 0.00 11 0 11 5.10 5.10 1 16 1 0.43 0.43
transport14 (20) 15 0 14 6.44 1 17 1 0.99 0.00 15 0 14 6.44 6.44 1 17 1 0.99 0.99
trucks06 (30) 0 14 0 0.00 12 18 0 1.19 29.46 0 0 0 29.46 0.00 0 16 0 29.46 0.00
visitall11 (20) 6 0 6 5.19 6 0 6 5.19 0.00 6 0 6 5.19 5.19 6 0 6 5.19 5.19
visitall14 (20) 6 0 6 1.28 6 0 6 1.28 0.00 6 0 6 1.28 1.28 6 0 6 1.28 1.28
woodworking08 (30) 0 0 0 0.00 30 0 0 21.52 48.54 0 0 0 48.54 0.00 23 0 0 49.94 2.61
woodworking11 (20) 0 0 0 0.00 20 0 0 21.08 49.01 0 0 0 49.01 0.00 18 0 0 50.54 2.95
overall from above (735) 157 63 83 3.13 314 261 101 10.34 24.10 110 59 61 25.97 2.69 199 252 84 30.22 7.94

Table 1: red: number of tasks with at least one redundant operator (all non-trivial endomorphisms were optimal, except in
caldera18 and tpp06, where the number of optimal solutions is given in parenthesis); fail: number of tasks where the inference
failed due to a time or memory limit; sym: number of tasks in which symmetries appear after pruning; %avg: average percentage
of removed operators per task within the whole domain; %avg2: same as %avg but the basis is the number of operators after h2

pruning, i.e., it measures the number of removed operators on top of those already removed by h2; overall is a sum for red, fail,
and sym, and it is the average percentage of removed operators over all tasks for %avg and %avg2.

timal solution fails because it requires too many computa-
tional resources; and (iv) whether the theoretical dominance
of the LTS endomorphism over the FDR endomorphism can
be actually measured on the standard benchmark set. To that
end, we compared the FDR endomorphism (denoted by fdr)
with the LTS endomorphism of the factored LTS constructed
from projections to the found mutex groups (denoted by ts).

Table 1 shows the results where the time limit for the in-
ference of endomorphisms was set to 90 seconds and the
memory limit was set to 16 GB. The table shows only the
domains in which at least one variant found at least one re-
dundant operator (or in other words, where at least one vari-
ant found a non-trivial endomorphism). The left side of the
table shows results without the h2 pruning and the right side
show the behaviour of our pruning when used after the tasks
were already pruned using h2.

Even with h2 pruning, we were able to find non-trivial
FDR endomorphisms in 9 domains (out of 65) and in most
of other domains, we were able to prove that there exist only
identity FDR endomorphisms. Non-trivial LTS endomor-
phisms after h2 pruning were found in 20 domains, but the
inference failed on a memory limit much more frequently
(the time limit was an issue in a very few tasks). For exam-
ple, we were not able to find out whether there is an LTS en-
domorphism in domains such as agricola18, airport04, park-

ing11/14, or petri-net-alignment18. The relative number of
pruned operators varied greatly depending on the domain,
which is an expected behaviour.

The comparison between the variants with and without
h2 pruning clearly demonstrate that, on one hand, endomor-
phisms can sometimes prune a subset of unreachable opera-
tors found by h2 (e.g., in airport04, pegsol08, pipesworld-
notankage04, spider18, tidybot11, and trucks06). And on
the other hand, endomorphisms are able to prune opera-
tors that are reachable and thus undetectable by h2, e.g.,
blocks00, transport08/11/14, and visitall08/11 are domains
without unreachable or dead-end operators and endomor-
phisms were able to detect redundant operators there.

As we already described in Section 3, the only non-
identity endomorphisms of a core are automorphisms, i.e.,
symmetries. So, we were also wondering whether remov-
ing redundant operators using endomorphisms can expose
symmetries (on the so-called Problem Description Graph
(Pochter, Zohar, and Rosenschein 2011)) that could not be
found otherwise. As can be seen in Table 1, this behaviour is
actually quite common, which is a promising result consid-
ering other planning methods depending on structural sym-
metries of planning tasks (e.g., Sievers et al. 2015; Shleyf-
man et al. 2015; Gnad et al. 2017; Fišer, Torralba, and Sh-
leyfman 2019).

domain lmc pot ms symba scrp
B E B E B E B E B E

blocks00 (35) 28 35 29 35 21 35 31 35 28 35
cavediving14 (20) 7 7 7 7 7 7 8 10 7 7
hiking14 (20) 11 11 14 14 14 14 16 15 16 16
parcprinter08 (30) 23 24 28 28 25 26 22 24 30 30
parcprinter11 (20) 18 19 20 20 19 19 17 18 20 20
rovers06 (40) 9 9 8 8 8 8 14 14 10 11
tetris14 (17) 9 9 17 17 13 13 11 11 14 13
transport14 (20) 6 6 7 8 7 8 9 9 10 10
visitall14 (20) 6 6 13 13 13 13 6 7 13 13
woodworking08 (30) 24 25 19 19 17 17 28 28 30 30
woodworking11 (20) 16 17 14 14 12 12 20 20 20 20
overall (1697) 885 896 1 025 1 032 935 951 1 002 1 011 1 113 1 120

Table 2: Number of solved tasks per domain and over all 65 domains. B: base variant with h2 and without endomorphisms, E:
pruning with h2 and endomorphisms.

In the second set of experiments, we applied the prun-
ing using endomorphisms in various planners and counted
the number of solved tasks under 30 minutes time limit and
16 GB memory limit. Since FDR endomorphisms are easier
to infer and LTS endomorphisms can be found in more do-
mains, we decided to combine both methods. We run the in-
ference of FDR endomorphisms and after that the inference
of LTS endomorphisms both with 90 seconds time limit.
However, if the inference of FDR endomorphisms fails on a
memory limit, we skip the inference of LTS endomorphisms,
because the previous data showed that it is also very likely to
fail. Moreover, we combined our proposed pruning with the
h2 pruning, because the previous set of experiment showed
that the combination of the two is able to prune more opera-
tors.

We used the heuristic search planner Fast Downward
(Helmert 2006) with A? and the LM-Cut (lmc) heuristic
(Helmert and Domshlak 2009); the merge-and-shrink (ms)
heuristic with SCC-DFP merge strategy and non-greedy
bisimulation shrink strategy (Helmert et al. 2014; Sievers,
Wehrle, and Helmert 2016); the potential (pot) heuristic en-
hanced with disambiguations and optimized for all syntactic
states with added constraint for the initial state (Seipp, Pom-
merening, and Helmert 2015; Fišer, Horčı́k, and Komenda
2020); and the Scorpion planner (scrp) (Seipp 2018; Seipp
and Helmert 2018) that performed very well in the last IPC
2018; and the symbolic planner SymbA? (symba) (Torralba
et al. 2017) used as a baseline in IPC 2018.

Table 2 shows that the number of solved tasks is moder-
ately increased due to the pruning, and the extra time spent
in the inference of endomorphisms impacts the results neg-
atively only in a very few cases. The table shows only the
domains in which the pruning with endomorphisms resulted
in a different number of solved tasks than in the case without
endomorphisms for at least one of the planners. To demon-
strate that the pruning has a positive effect even on tasks
that were solved by both variants within the time limit, we
show the number of expanded states (excluding the last f
layer) as scatter plots for lmc, pot, and ms in Fig. 4. One
can clearly see, that, on one hand, the number of expanded
states is rarely higher with pruning (due to a differently con-
structed heuristic function). And on the other hand, pruning

10 102 103 104 105 106 107 108

B

10

102

103

104

105

106

107

108

E

lmc

10 102 103 104 105 106 107 108

B

pot

10 102 103 104 105 106 107 108

B

ms

Figure 4: Number of expansions before the last f layer for
tasks solved both with and without pruning using endomor-
phisms where at least one operator was pruned. B and E as
in Table 2.

using endomorphisms can greatly reduce the number of ex-
panded states.

8 Conclusions
We introduced the notion of endomorphism into classical
planning and we showed how to use it for detection of re-
dundant operators. We proposed two methods for computing
endomorphisms via a CSP solver. Experimental evaluation
showed that a substantial number of IPC domains exhibit
non-trivial endomorphisms. Nevertheless, it is necessary to
further explore efficient methods for computing them, be-
cause, on one hand, our method for factored LTSs might pro-
duce too large CSP instances. And on the other hand, FDR
endomorphisms are maybe too weak as only a few domains
contain non-trivial FDR endomorphisms.

Acknowledgements
This work was funded by the Czech Science Foundation
(grant no. 18-24965Y) and by DFG grant 389792660 as part
of TRR 248 (see https://perspicuous-computing.science).
The experimental evaluation was supported by the OP
VVV funded project CZ.02.1.01/0.0/0.0/16 019/0000765
“Research Center for Informatics”.

References
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-

ning. In Proc. ICAPS’15, 2–6.

Fišer, D. 2020. Lifted Fact-Alternating Mutex Groups and
Pruned Grounding of Classical Planning Problems. In Proc.
AAAI’20, 9835–9842.

Fišer, D.; Horčı́k, R.; and Komenda, A. 2020. Strengthening
Potential Heuristics with Mutexes and Disambiguations. In
Proc. ICAPS’20, 124–133.

Fišer, D.; and Komenda, A. 2018. Fact-Alternating Mutex
Groups for Classical Planning. Journal of Artificial Intelli-
gence Research 61: 475–521.

Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator
Mutexes and Symmetries for Simplifying Planning Tasks. In
Proc. AAAI’19, 7586–7593.

Gnad, D.; Torralba, Á.; Shleyfman, A.; and Hoffmann, J.
2017. Symmetry Breaking in Star-Topology Decoupled
Search. In Proc. ICAPS’17, 125–134.

Haslum, P.; and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc. AIPS’00, 140–149.

Hell, P.; and Nešetřil, J. 1992. The core of a graph. Discrete
Mathematics 109(1-3): 117–126.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS’09, 162–169.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & Shrink Abstraction: A Method for Generat-
ing Lower Bounds in Factored State Spaces. Journal of the
Association for Computing Machinery 61(3): 16.1–16.63.

Hodges, W. 1997. A Shorter Model Theory. Cambridge
University Press. ISBN 978-0-521-58713-6.

Libkin, L. 2004. Elements of Finite Model Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer.
ISBN 978-3-540-21202-7.

Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In Proc.
AAAI’11.

Rossman, B. 2008. Homomorphism preservation theorems.
Journal of the Association for Computing Machinery 55(3):
15:1–15:53.

Russell, S.; and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach (Third Edition). Englewood Cliffs, NJ:
Prentice-Hall. ISBN 0-13-103805-3.

Seipp, J. 2018. Fast Downward Scorpion. In IPC 2018 plan-
ner abstracts, 77–79.

Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research 62: 535–577.

Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New
Optimization Functions for Potential Heuristics. In Proc.
ICAPS’15, 193–201.

Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classical
Planning. In Proc. AAAI’15, 3371–3377.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Analy-
sis of Merge Strategies for Merge-and-Shrink Heuristics. In
Proc. ICAPS’16, 294–298.
Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015. Factored Symmetries for Merge-and-Shrink
Abstractions. In Proc. AAAI’15, 3378–3385.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artificial Intelligence 242: 52–79.

Torralba, Á.; and Hoffmann, J. 2015. Simulation-Based Ad-
missible Dominance Pruning. In Proc. IJCAI’15, 1689–
1695.

