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Abstract

Projection can be seem as a unifying concept that
underlies inference in logic and consistency main-
tenance in constraint programming. This perspec-
tive allows one to import projection methods into
both areas, resulting in deeper insight as well as
faster solution methods. We show that inference in
propositional logic can be achieved by Benders de-
composition, an optimization method based on pro-
jection. In constraint programming, viewing con-
sistency maintenance as projection suggests a new
but natural concept of consistency that is achieved
by projection onto a subset of variables. We show
how to solve this combinatorial projection problem
for some global constraints frequently used in con-
straint programming. The resulting projections are
useful when propagated through decision diagrams
rather than the traditional domain store.

1 Introduction
Projection can be seem as a unifying concept that under-
lies both inference in logic and consistency maintenance in
constraint programming. Projection methods that have been
developed in other contexts can therefore be harnessed to help
solve inference and constraint programming problems.

In propositional logic, for example, inference can be con-
ceived as the general problem of deducing all information that
can be expressed in terms of a specified subset of variables
(atomic propositions). This can also be understood as a pro-
jection problem. It can be solved not only by the resolution
method, which is closely parallel to a classical projection
method for linear inequalities (Fourier-Motzkin elimination),
but by Benders decomposition, an optimization method that
may seem unrelated to inference. It is well known that the
Benders method can compute a projection onto a subset of
variables. An extension of the classical method, logic-based
Benders decomposition, solves the inference problem for
propositional logic. Moreover, it can take advantage of clause
learning techniques used in state-of-the-art propositional sat-
isfiability (SAT) solvers.

Consistency maintenance is a fundamental tool of con-
straint programming. Its purpose is to exclude assignments of

values to variables that are inconsistent with any feasible so-
lution of a constraint, thereby reducing the amount of search
necessary to find a solution. The results of consistency main-
tenance for one constraint are propagated to other constraints
through some kind of data structure, such as a domain store,
which consists of the set of possible values for each individual
variable.

Consistency maintenance is both an inference problem and
a projection problem. It is an inference problem because it
deduces constraints that variable assignments must satisfy. It
is a projection problem because excluding infeasible assign-
ments to a subset of variables is equivalent to computing the
projection of the feasible set onto those variables.

This unifying perspective can be exploited in constraint
programming by addressing consistency maintenance explic-
itly as a projection problem. Existing types of consistency are
already forms of projection, including domain consistency,
bounds consistency, and k-consistency. However, viewing
consistency in this light suggests a simple type of consistency
that has not been investigated. We call it J-consistency,
which is achieved by projecting the problem’s solution set
onto a subset J of variables. Achieving J-consistency can
reduce backtracking when the solver propagates through a
richer data structure than a domain store.

This research program poses a problem that might be
called combinatorial projection: projecting a combinatorial
constraint, such as the global constraints routinely used in
constraint programming, onto a subset of variables. We
solve this problem here for a small collection of standard
global constraints: among, sequence, regular, and
all-different.

2 Inference
Inference can be understood as the process of extracting
information that relates to a particular question or topic. For
example, if S is a constraint set that describes the operation
of a factory, we may wish to deduce facts about a certain
product P . Let’s suppose the constraints in S collectively
contain variables x1, . . . , xn, and that x1, . . . , xk are relevant
to product P . For example, x1 may be the model of P

produced, x2 the output level of P , x2 its unit manufacturing
cost, and so forth up to xk. Then we wish to deduce from S

all constraints containing x1, . . . , xk. We will see that this is
a projection problem.
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Table 1: A set of logical clauses.
x1 _x4 _x5

x1 _x4 _ x̄5

x1 _x5 _x6

x1 _x5 _ x̄6

x2 _ x̄5 _x6

x2 _ x̄5 _ x̄6

x3 _ x̄4 _x5

x3 _ x̄4 _ x̄5

2.1 Inference as Projection
To make the connection between inference and projection
more precise, we standardize terminology as follows. For
J ✓ {1, . . . , n}, let xJ be the tuple of variables in {xj | j 2
J} arranged in increasing order of indices, and similarly for
vJ . Let Dj be the domain of xj , with D = D1 ⇥ · · · ⇥ Dn

and DJ =

Q
j2J Dj . Projection can be defined semantically

by saying that a set V 0 ✓ DJ of tuples is the projection onto
xJ of V ✓ D when V

0
= {vJ | v 2 V }. This can be written

V

0
= V |J . However, we are also interested in a syntactic

concept that tells us when a constraint set is a projection onto
xJ of another constraint set.

To this end, we define a constraint to be an object that
contains certain variables and is either satisfied or violated
by any given assignment of values to those variables. An
assignment can satisfy or violate a contraint only when it fixes
all variables in the constraint.

Let DJ(S) be the set of all v 2 DJ for which xJ = v

satifies S (i.e., satisfies all the constraints in S). We say that
S is a constraint set over x when it contains only variables in
x = (x1, . . . , xn), perhaps not all. If S is a constraint set over
x, then S implies constraint C if an assignment to x satisfies
C whenever it satisfies S, or D(S) ✓ D({C}).

Let S0 and S be constraint sets over xJ and x, respectively.
We define S

0 to be a projection onto xJ of S when S

0

describes the projection onto xJ of S’s satisfaction set, or
more precisely, DJ(S

0
) = D(S)|J . It is easy to show that

projection captures exactly what S implies about about xJ ,
in the following sense:

Lemma 1 Let S and S

0 be constraint sets over x and xJ ,
respectively. Then set S0 is a projection of S onto xJ if and
only if S0 implies all and only constraints over xJ that are
implied by S.

As an example, let S consist of the logical clauses in
Table 1. The clause set S

0
= {x1 _ x2, x1 _ x3} is a

projection of S onto (x1, x2, x3). This means that any clause
over (x1, x2, x3) implied by S is implied by S

0. The two
clauses in S

0 capture all that can be inferred in terms of atoms
x1, x2, x3. (In fact, they are the prime implicates of S.)

2.2 Inference for Linear Inequalities
The classical projection method for a system Ax � b of linear
inequalities is Fourier-Motzkin elimination. We can com-
pute the projection onto x1, . . . , xk by eliminating variables
xn, xn�1, . . . , xk+1 one at a time. Let S initially be the set
of inequalities Ax � b. Each variable xj is eliminated as

follows. For each pair of inequalities in S that have the form
cx̄ + c0xj � � and dx̄ � d0xj � �, where c0, d0 > 0 and
x̄ = (x1, . . . , xj�1), we have

� c

c0
x̄+

�

c0
 xj  d

d0
x̄� �

d0

or L  xj  U for short. We therefore add inequality L  U

to S for each such pair. This done, we remove from S all
inequalities that contain xj . The inequalities in S at the end
of the procedure describe the projection and therefore capture
everything that can be inferred from Ax � b in terms of
x1, . . . , xk.

Fourier-Motzkin elimination can also be used to compute
inferences in probability logic, which can formulated as
an optimization problem with linear inequality constraints
[Boole, 1854; Hailperin, 1976; Nilsson, 1986]. It is more effi-
cient, however, to solve the problem with modern linear pro-
gramming (LP) methods that use column generation [Hansen
and Perron, 2008; Hooker, 1988b; Jaumard et al., 1991;
Klinov and Parsia, 2013].

2.3 Inference in Propositional Logic
An elimination procedure based on resolution [Quine, 1952;
1955] solves the projection problem for logical clauses. The
procedure is the same as Fourier-Motzkin elimination, except
that when eliminating variable xj , it considers pairs of clauses
of the form C _xj and D_ x̄j , where no one variable occurs
negated in C and posited in D (or vice-versa). Each pair
generates a resolvent on xj , namely C _ D. Resolution can
in fact be seen as a form of Fourier-Motzkin elimination plus
rounding [Williams, 1987]. It can be shown [Hooker, 1992b;
2012] that eliminating variables xj for j 62 J by resolution
(in any order) yields a projection of S onto xJ .

Resolution tends to be impractical, but Benders decompo-
sition [Benders, 1962] can be much more efficient, especially
when J is small. The classical Benders method applies only
to problems with an LP subproblem, but we use logic-based
Benders decomposition, which is suitable for general con-
straint solving and optimization [Hooker, 2000; 2007; 2012;
Hooker and Ottosson, 2003].

We apply Benders decomposition to a clause set S as
follows. The master problem (initially empty) consists of
Benders cuts in the form of clauses over xJ . Each iteration
of the Benders method begins by checking if the master
problem is infeasible, in which case the procedure terminates.
Otherwise a solution x̄J of the master problem is obtained.
This defines a subproblem S(x̄J) that is the result of fixing
xJ to x̄J in S. If S(x̄J) is infeasible, a Benders cut or nogood
clause is generated that excludes x̄J , as well as perhaps other
values of xJ for which S(xJ) is infeasible for similar reasons.
If S(x̄J) is feasible, a clause (enumerative Benders cut) is
generated that excludes only x̄J . In either case, the Benders
cut is added to the master problem, and the process repeats.
At termination, the nogood clauses in the master problem
define the projection of S onto xJ [Hooker, 2012].

This procedure can be implemented by a single depth-
first branching algorithm that generates conflict clauses. Let
the variables in xJ be first in the branching order. When
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unit propagation detects unsatisfiability at a node of the tree,
generate conflict clauses and backtrack (see [Beame et al.,
2003] for a survey of these concepts). Subsequent branches
must be consistent with the conflict clauses so far generated.
When a feasible node is reached, backtrack to the last variable
in xJ . When enumeration is complete, the conflict clauses
over xJ define the projection of S onto xJ . Because the
search backtracks to level |J | when a satisfying solution is
found, the algorithm can be practical when J is not too large.

Suppose, for example, that we wish to project the clause
set in Table 1 onto xJ for J = {1, 2, 3}. A branching tree
appears in Fig. 1. Upon completion of the search, the set of
conflict clauses over (x1, x2, x3) is a projection onto xJ , in
this case {x1 _ x2, x1 _ x3}.

Other adaptations of resolution and Fourier-Motzkin elim-
ination can be used to compute projections for cardinality
clauses [Hooker, 1988a], 0–1 linear inequalities [Hooker,
1992a], and general integer linear inequalities [Williams and
Hooker, 2014].

3 Consistency Maintenance
A constraint set S over x is domain consistent when for each
variable xj and each value v 2 Dj , the assignment xj = v

is part of some assignment x = v that satisfies S. This is
equivalent to saying that {xj 2 Dj} is a projection of S

onto xj , or Dj = D(S)|{j}, for j = 1, . . . , n. Maintaining
domain consistency (or an approximation of it) for some indi-
vidual constraints in S, and propagating the reduced domains
through a domain store, tends to reduce the search tree due to
smaller domains.

Another type of consistency related to backtracking is k-
consistency. It is again achieved by projection, but by project-
ing only subsets of constraints over k variables onto subsets
of k � 1 variables [Freuder, 1982].

3.1 J-Consistency
We propose a type of consistency that is more directly related
to projection and naturally generalizes domain consistency.
Let S be J-consistent when some S

0 ✓ S is a projection of
S onto xJ . That is, S contains constraints that describe its
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Figure 1: Branching tree for a SAT instance. Dashed arcs indicate
xj = F and solid arcs xj = T. Conflict clauses are shown at failure
nodes. Solutions are found at remaining leaf nodes, from which the
search backtracks to x3.

projection onto xJ , or DJ(SJ) = D(S)|J . If we view S as
containing the in-domain constraints xj 2 Dj , S is domain
consistent if and only if it is {j}-consistent for j = 1, . . . , n.

If we branch on variables in the order x1, . . . , xn, a
natural strategy is to project out variables in reverse order
xn, xn�1, . . . until the computational burden becomes ex-
cessive. We will see below that for some important global
constraints, it is relatively easy to project out some or all of
the variables.

There is no point in maintaining J-consistency for individ-
ual constraints when propagation is through a domain store.
However, recent research shows that propagation through
relaxed decision diagrams can be substantially more effec-
tive than domain propagation [Bergman et al., 2014; 2016;
2011; Ciré and van Hoeve, 2012; Cire and van Hoeve, 2013].
Maintaining J-consistency could have a significant effect on
propagation in this context. This is illustrated in [Hooker,
2016].

3.2 Projection of Among Constraint
Projecting out variables in an among constraint [Beldiceanu
and Contejean, 1994] is relatively simple because each vari-
able elimination yields another among constraint. If x =

(x1, . . . , xn), the constraint among(x, V, `, u) requires that
at least ` and at most u of the variables in x take a value
in V . Variable xn is projected out as follows. Let ↵+

=

max{↵, 0}, and assume 0  `  u  n,

Theorem 2 The projection of among(x, V, `, u) onto x̄ =

(x1, . . . , xn�1) is among(x̄, V, `0, u0
), where

(`

0
, u

0
) =

8
<

:

((`� 1)

+
, u� 1), if Dn ✓ V

(`,min{u, n� 1}), if Dn \ V = ;
((`� 1)

+
,min{u, n� 1}), otherwise

Variables xn, xn�1, . . . , x1 are projected out sequentially
by applying the theorem recursively. The original constraint
is feasible if and only if `

0  u

0 after projecting out all
variables.

3.3 Projection of Sequence Constraint
Fourier-Motzkin elimination provides a fast and convenient
method for projecting a sequence constraint. The con-
straint has an integrality property that makes a polyhedral
projection technique adequate, and Fourier-Motzkin simpli-
fies to the point that a single generalized sequence constraint
describes the projection after each variable elimination.

We assume without loss of generality that the sequence
constraint applies to 0-1 variables x1, . . . , xn [van Hoeve et
al., 2006; Régin and Puget, 1997]. It enforces overlapping
constraints of the form

among((x`�q+1, . . . , x`), {1}, L`, U`) (1)

for ` = q, . . . , n, where L`, U` are nonnegative integers,
and where domain Dj is defined by ↵j  xj  �j for
↵j ,�j 2 {0, 1}. Note that we allow different bounds for
different positions ` in the sequence. The following theorem
provides a recursion for eliminating xn, . . . , x1:
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Figure 2: State transition graph for a shift scheduling problem
instance. Dj is the original domain of xj , and D

0
j result of achieving

domain consistency. States 3, 4, 5, and 8 are valid terminal states
in the automaton. Dashed lines lead to nonterminal states that are
infeasible because there are no out-transitions consistent with the
given variable domains.

Theorem 3 Given any k 2 {0, . . . , n}, the projection of
the sequence constraint defined by (1) onto (x1, . . . , xk)

is described by a generalized sequence constraint that
enforces constraints of the form

among

⇣
(xi, . . . , x`), {1}, L`

`�i+1, U
`
`�i+1

⌘
(2)

where i = `� q + 1, . . . , ` for ` = q, . . . , k and i = 1, . . . , `

for ` = 1, . . . , q � 1. The projection of the sequence

constraint onto (x1, . . . , xk�1) is given by (2) with L

`
`�i+1

replaced by ˆ

L

`
`�i+1 and U

`
`�i+1 by ˆ

U

`
`�i+1, where

ˆ

L

`
i =

⇢
max{L`

i , L
k
i+k�` � U

k
k�`}, i = 1, . . . , q � k + `,

L

`
i , for i = q � k + `+ 1, . . . , q

ˆ

U

`
i =

⇢
min{U `

i , U
k
i+k�` � L

k
k�`}, i = 1, . . . , q � k + `,

U

`
i , for i = q � k + `+ 1, . . . , q

The worst-case complexity of projecting out each variable xk

is O(kq).

3.4 Projection of Regular Constraint
The regular constraint [Pesant, 2004] formulates schedul-
ing and related constraints as regular expressions. Projec-
tion can be carried out by constructing and truncating the
state transition graph for the associated deterministic finite
automaton. For example, the regular expression

(((aa|aaa)(bb|bbb))⇤|((cc|ccc)(bb|bbb))⇤)⇤(✏|(aa|aaa)|(cc|ccc))

represents a shift scheduling problem and generates the tran-
sition graph of Fig. 2 over a 7-day period, where a, b, c are
shifts and xj is the assigned shift for day j. The graph
shows 2 feasible shift assignments: aabbaaa and ccbbaaa.
Truncating the graph at stage j = 4 yields a projection onto
(x1, x2, x3), which has the two feasible solutions aab and ccb.
Details may be found in [Hooker, 2016].

3.5 Projection of All-different Constraint
The constraint alldiff(x) requires that x1, . . . , xn take
different values. While domain consistency is relatively easy
to achieve for the constraint, using a matching algorithm,
general projection is surprisingly complex. The projection
onto x

k
= (x1, . . . , xk) takes the form of a disjunction

of constraint sets, each of which consists of an alldiff

constraint and a family of atmost constraints. The number
of disjuncts can grow quite large in principle, but the disjuncts
tend to simplify and/or disappear as variable elimination pro-
ceeds, particularly if the domains are small.

The projection onto x

k is a disjunction of constraint sets,
each of which has the form

alldiff(x

k
); atmost(x

k
, Vi, bi) for i 2 I;

xj 2 Dj for j = 1, . . . , k

(3)

where bi < k for i 2 I . The atmost constraint says that
at most bi occurrences of values in Vi appear in x

k. When
k = n there are no atmost constraints. We also note that
atmost(xk

, Vi, bi) is redundant if the number of variables in
x

k whose domains intersect Vi is at most bi, or in particular
if k  bi. Algorithm 1 is applied to compute the projection
onto x

n�1, . . . , xk sequentially.
Theorem 4 Algorithm 1 correctly computes the projection of
(3) onto x

k�1.

Algorithm 1 Given a projection of alldiff(xn) onto x

k, compute
a projection onto x

k�1. The projection onto x

k is assumed to be a
disjunction of constraint sets, each of which has the form (3). The
algorithm is applied to each disjunct, after which the disjunction of
all created constraint sets forms the projection onto x

k�1.

For all i 2 I: if atmost(xk
, Vi, bi) is redundant then

remove i from I .
For all i 2 I:

If Dk \ Vi 6= ; then
If bi > 1 then

Create a constraint set consisting of alldiff(xk�1),
atmost(xk�1

, Vi0 , bi0) for i0 2 I \ {i}, and
atmost (xk�1

, Vi, bi � 1).
Let R = Dk \

S
i2I Vi.

If |R| > 1 then
Create a constraint set consisting of alldiff(xk�1),
atmost(xk�1

, Vi0 , bi0) for i0 2 I , and
atmost (xk�1

, R, |R|� 1).
Else if |R| = 1 then

Let R = {v} and remove v from Dj for j = 1, . . . , k � 1 and
from Vi for i 2 I .

If Dj is nonempty for j = 1, . . . , k � 1 then
For all i0 2 I: if atmost(xk�1

, Vi0 , bi0) is redundant
then remove i

0 from i.
Create a constraint set consisting of alldiff(xk�1) and
atmost(xk�1

, Vi0 , bi0) for i0 2 I .

As an example, suppose we wish to project alldiff(x5
),

where the domains D1, . . . , D5 are {a, b, c}, {c, d, e},
{d, e, f}, {e, f, g}, and {a, f, g}, respectively. The projec-
tion onto x

4 is

alldiff(x

4
), atmost(x

4
, {a, f, g}, 2)

The projection onto x

3 is the disjunction of the following two
constraint sets:

alldiff(x

3
), atmost(x

3
, {a, f, g}, 1)

alldiff(x

3
), D1, . . . , D3 = {a, b, c}, {c, d}, {d, f}
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