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Abstract. Binary and multivalued decision diagrams are closely related
to dynamic programming (DP) but differ in some important ways. This
paper makes the relationship more precise by interpreting the DP state
transition graph as a weighted decision diagram and incorporating the
state-dependent costs of DP into the theory of decision diagrams. It gen-
eralizes a well-known uniqueness theorem by showing that, for a given
optimization problem and variable ordering, there is a unique reduced
weighted decision diagram with “canonical” edge costs. This can lead
to simplification of DP models by transforming the costs to canonical
costs and reducing the diagram, as illustrated by a standard inventory
management problem. The paper then extends the relationship between
decision diagrams and DP by introducing the concept of nonserial deci-
sion diagrams as a counterpart of nonserial dynamic programming.

1 Introduction

Binary and multivalued decision diagrams have long been used for circuit design
and verification, but they are also relevant to optimization. A reduced decision
diagram can be viewed as a search tree for an optimization problem in which
isomorphic subtrees are superimposed, thus removing redundancy.

Dynamic programming (DP) is based on a similar idea. In fact, the state
transition graph for a discrete DP can be viewed as a decision diagram, albeit
perhaps one in which not all redundancy has been removed. Conversely, the
reduced decision diagram for a given problem tends to be more compact when the
problem is suitable for solution by DP. This indicates that there may be benefit
in clarifying the connection between decision diagrams and DP. In particular, it
may be possible to simplify a DP model by regarding its transition graph as a
decision graph and reducing it to remove all redundancy.

However, decision diagrams differ from DP in significant ways. Nodes of the
DP state transition graph are associated with state variables, whereas there
are no explicit state variables in a decision diagram; only decision variables.
Furthermore, arcs of a state transition graph are often labeled with costs, and
this is not true of a decision diagram. A decision diagram can be given arc costs
when the objective function is separable, but costs in a DP transition graph
are more complicated because they are state dependent: they depend on state
variables as well as decision variables.
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Nonetheless, we show that the elementary theory of decision diagrams can
be extended to incorporate state-dependent costs and therefore establish a close
parallel with DP. We define a weighted decision diagram to be a decision diagram
with arbitrary arc costs. Unfortunately, differing arc costs can prevent reduc-
tion of a weighted diagram even when the unweighted diagram would reduce.
However, we show that costs can often be rearranged on the diagram, without
changing the objective function, so as to allow reduction. In fact, we define a
unique canonical set of arc costs for a given objective function and generalize a
well-known uniqueness result for reduced decision diagrams. We show that for
a given optimization problem and variable ordering, there is a unique reduced
weighted decision diagram with canonical costs that represents the problem.

This opens the possibility of simplifying a DP formulation by converting the
transition costs to canonical costs and reducing the state transition diagram that
results. In fact, we show this maneuver results in a substantial simplification even
for a standard DP formulation of production and inventory management that
has appeared in textbooks for decades.

We conclude by extending weighted decision diagram to nonserial decision
diagrams by exploiting an analogy with nonserial DP.

2 Previous Work

Binary decision diagrams were introduced by [1,119,131]]. In recent years they have
been applied to optimization, initially for cut generation in integer programming
19, [11], post-optimality analysis [25, [26], and 0-1 vertex and facet enumeration
[10]. Relaxed decision diagrams were introduced in [3] and further applied in
[21, 27, 128] as an alternative to the domain store in constraint programming,
and they were used in [14, [15] to obtain bounds for optimization problems.
Introductions to decision diagrams can be found in [2, [18].

Dynamic programming is credited to Bellman [12, [13]. A good introductory
text is [24], and a more advanced treatment [17]. Nonserial dynamic program-
ming was introduced by [16]. Essentially the same idea has surfaced in a number
of contexts, including Bayesian networks |30], belief logics [33,134], pseudoboolean
optimization [22], location theory [20], k-trees [4, 5], and bucket elimination [23].

The identification of equivalent subproblems is known as caching in the knowl-
edge representation literature, where it has received a good deal of attention (e.g.,
[6-]8, 129]). However, apparently none of this work deals with state-dependent
costs, which are a unique and essential feature of DP, as it is understood in the
operations research community.

3 Decision Diagrams

For our purposes, decision diagrams can be viewed as representing the feasible
set S of an optimization problem

min {f(x) | @ € S} )
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Table 1. (a) A small set covering problem. The dots indicate which elements belong
to each set i. (b) A nonseparable cost function for the problem. Values are shown only
for feasible x.

(a) (b)
Set i )
123 4 (0,1,0,1) 6
A e e (0,1,1,0) 7
B e o o (0,1,1,1) 8
C . (1,0,1,1) 5
D . (1,1,00) 6
(1,1,0,1) 8
(1,1,1,0) 7
(1,1,1,1) 9
where f(z) is the objective function, and z a tuple (x1,...,x,) of discrete vari-
ables with finite domains D+, ..., D,, respectively.

An ordered decision diagram is a directed, acyclic graph G = (N, A) whose
node set NN is partitioned into n layers 1,...,n corresponding to the variables
Z1,...,Zn, Plus a terminal layer (layer n + 1). Layer 1 contains only a root
node r, and the terminal layer contains nodes 0 and 1. For each node w in layer
i €{1,...,n} and each value d; € D;, there is a directed arc a(u,d;) in A from

u to a node u(d;) in layer i+ 1, which represents setting x; = d;. Each path from
r to 1 represents a feasible solution of S, and each path from r to 0 represents
an infeasible solution. For our purposes, it is convenient to omit the paths to 0
and focus on the feasible solutions.

As an example, consider a set covering problem in which there are four sets
as indicated in Table[Ia), collectively containing the elements A, B, C, D. The
problem is to select a minimum-cost cover, which is a subcollection of sets whose
union is {A, B, C,D}. Let binary variable z; be 1 when set ¢ is selected, and let
f(z) be the cost of subcollection x. The decision diagram in Fig. [[[a) represents
the feasible set S. The 9 paths from r to 1 represent the 9 covers.

A decision diagram is a binary decision diagram if each domain D; contains
two values, as in the example of Fig. [l It is a multivalued decision diagram if
at least one D; contains three or more values. Decision diagrams can be defined
to contain long arcs that skip one or more layers, but to simplify notation, we
suppose without loss of generality that G contains no long arcs.

A decision diagram is reduced when it is a minimal representation of S. To
make this more precise, let G,/ be the subgraph of G induced by the set of
nodes on paths from u to u'. Subgraphs Gy and G, are equivalent when they
are isomorphic, corresponding arcs have the same labels, and u, v belong to the
same layer. A decision diagram is reduced if it contains no equivalent subgraphs.
It is a standard result |19, 35] that there is a unique reduced diagram for any
given S and variable order.
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The reduced decision diagram can be obtained from a branching tree using a
simple procedure. Supposing that the tree contains only the feasible leaf nodes,
we first superimpose all the leaf nodes to obtain terminal node 1, and then
continue to superimpose equivalent subgraphs until none remain. For example,
the branching tree for the set covering problem of Table [[a) appears in Fig.
(ignore the arc labels at the bottom). The tree can be transformed in this manner
to the reduced decision diagram of Fig. [Ii(a).

4 Weighted Decision Diagrams

Given an optimization problem (), we would like to assign costs to the arcs
of a decision diagram to represent the objective function. We will refer to a
decision diagram with arc costs as a weighted decision diagram. Such a diagram
represents (I)) if the paths from r to 1 represent precisely the feasible solutions
of (@), and length of each path z is f(x). The optimal value of () is therefore
the shortest path length from r to 1. We will say that two weighted decision
diagrams are isomorphic if they yield the same unweighted diagram when arc
costs are removed.

The assignment of costs to arcs is most straightforward when the objective
function is separable. If f(z) = 3", fi(x;), we simply assign cost f;(d;) to each
arc a(u, d;) leaving layer i in the reduced decision diagram representing S. For
example, if f(x) = 3x1 4+ 5x2+4x3+ 624, the arc costs are as shown in Fig. [Ii(b),
and the shortest path is z = (0,1,0,1) with cost 11.

X1 T
X2 T2
€3 T3
Xy Ty
(a) (b)

Fig. 1. (a) Decision diagram for the set covering problem in Table [[(a). Dashed arcs
correspond to setting z; = 0, and solid arcs to setting z; = 1. (b) Decision diagram
showing arc costs for a separable objective function. Unlabeled arcs have zero cost.
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T

(D)

Ty

Fig. 2. Branching tree for the set covering problem in Table [[{a). Only feasible leaf
nodes are shown.

Arc costs can also be assigned when the objection function is nonseparable. In
fact, we will show that the problem is represented by a unique reduced weighted
decision diagram, provided arc costs are assigned in a canonical way.

Consider, for example, the nonseparable objective function of Table [M(b).
There are many ways to capture the function by putting arc costs on the branch-
ing tree in Fig.[2l The most obvious is to assign the value corresponding to each
leaf node to the incoming arc, as shown in the figure, and zero cost on all other
arcs. However, this assignment tends to result in a large decision diagram.

To find a reduced diagram, we focus on canonical arc costs. An assignment of
arc costs to a tree or a decision diagram is canonical if for every level ¢ > 2, the
smallest cost on arcs a(u, d;) leaving any given node w is some predefined value
«;. In the simplest case o; = 0 for all ¢, but it is convenient in applications to
allow other values. We first show that canonical costs are unique.

Lemma 1. For any given decision diagram or search tree representing a feasible
set S, there is at most one canonical assignment of arc costs to G that represents
the optimization problem ().

Proof. To simplify notation, we assume without loss of generality that each
a; = 0. Given node u in layer 4, let ¢(u, d;) be the cost assigned to arc a(u, d;),
and let L, (d) be the length of a path d = (d;, ..., d,) from u to 1 (in a decision
diagram) or to a leaf node (in a tree). We show by induction oni = n,n—1,...,1
that for any node u, L,(d) for any such path d is uniquely determined if the
arc costs are canonical. It follows that all the arc costs are uniquely determined.
First consider any node u on layer n. For any path d = (ds,...,d,—1) from r to
u, we must have

f(d’ dn) - f(da d;L) = c(u, dn) - c(u, d/n)

for any pair of arcs (u,u(dy,)), (u,u(d),)). Because a canonical assignment sat-
isfies ming, {c(u,d,)} = 0, each of the costs ¢(u,d,) is uniquely determined.
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Fori=nn—-1,...,2:
For each node u on layer 4:
Let cmin(u) = minyep,  {Cuu }
For each v’ € Usut:
Let cyur ¢ Cyu’ — Cmin + Q.
For each v’ € Usp:
Let ¢y ¢ Cyr + Cmin — Q.

Fig. 3. Algorithm for converting arc costs to canonical arc costs. Here, Uoyy is the set
of child nodes of node u, and Uj, is the set of parent nodes of u.

Now for any node u in layer i € {1,...,n—1}, suppose that L. q,)(d) is uniquely
determined for any arc a(u,d;) and any path d from wu(d;) to 1 or a leaf node.
Then for any path d = (di, ...,d;—1) from 7 to u and for any pair (d;,d), (d.,d’)
of paths from u to 1 or a leaf node, we must have

f(d7 divd) - f(dv d;v Jl) = Lu(d27d) - Lu(d;a Jl)

= (C(uv dZ) + Lu(d7)(d)) - (C(uv d;) + Lu(d;)(d/)
=c(u,d;) — c(u,d}) + A

where A is uniquely determined, by the induction hypothesis. This and the fact
that ming, {c(u,d;)} = 0 imply that the arc costs c(u,d;) are uniquely deter-
mined. So L, (d;,d) is uniquely determined for any (d;, d), as claimed. O

Canonical arc costs can be obtained in a search tree by moving nonzero costs
upward in the tree. Beginning at the bottom, we do the following: if ¢pin(u) is
the minimum cost on arcs leaving a given node « in layer ¢, then reduce the
costs on these arcs by cpmin(u) — @, and increase the costs on the arcs entering
the node by ¢min(u) — a;. The algorithm appears in Fig. Bl and the result for the
example appears in Fig. d] (assuming each «; = 0). If the algorithm is applied to
the search tree for the separable objective function f(x) = 3z1 +5xo+4ws + 624,
the resulting canonical arc costs are those of Fig. Bl(a).

A reduced weighted decision diagram can now be obtained from the branching
tree of Fig. @ much as in the unweighted case. Let subgraphs G, and G, be
equivalent when they are isomorphic, corresponding arcs have the same labels
and costs, and u,v belong to the same layer. A weighted decision diagram with
canonical arc costs is reduced if it contains no equivalent subgraphs. A reduced
weighted decision diagram can be obtained by superimposing all leaf nodes of the
branching tree to obtain node 1, and then continuing to superimpose equivalent
subgraphs until none remain. The branching tree of Fig. M reduces to the weighted
decision diagram of Fig. Bl(b). Note that the diagram is larger than the reduced
diagram for the separable objective function, which appears in Fig. Bl(a).
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(%)

Ty

Fig. 4. Branching tree with canonical arc costs. Unlabeled arcs have zero cost.

Theorem 1. Any given discrete optimization problem (dl) is represented by a
unique reduced weighted decision diagram with canonical arc costs.

Proof. We first construct a reduced weighted decision diagram G that represents
(@) and has canonical costs, assuming all a; = 0 (the argument is similar for
arbitrary «;). We will then show that G is reduced and unique. Define function
g by g(z) = f(z) when x € S and g(x) = co when z ¢ S. Foreachi=1,...,n
and each d = (dq,...,d;—1) € D1 X -+ x D;_1 define the partial function g;4 by

gid(xia“-vxn) :g(dh'-~7di—1axia-~-7xn)

Let partial function g;q be finite if giq(x;,...,x,) is finite for some x;, ..., z,.
By convention, ¢g,4+1,4() = 0 for d € S. We say that partial functions g;q and g;q
are equivalent if both are finite and agree on relative values; that is,

Gid(Tiy . wn) — gia(xhy o 2)) = Giar (Tiy -y T0) — Giar (Thy ..o, 2h),
for any pair (x;,...,zn), (x5, ..., ).
Now construct G as follows. In each layer i € {1,...,n + 1}, create a node u

in G for each equivalence class of finite partial functions g;4. Create outgoing arc
a(u, d;) for each d; € D; such that g; 11 (4,4, is finite, where g;4 is any function
in the equivalence class for u. For ¢ > 2 let arc a(u,d;) have cost

C(U, dl) = gzd(d27pu(dz)) - Cmin(u) (2)

where p,(d;) is a shortest path from wu(d;) to 1. Then the arc costs are defined
recursively for i = n,n —1,...,2. Arcs a(r,d;) leaving the root node have cost

c(r,di) = g(di, pr(dr)).
We will say that GG,,; represents the finite partial function g;q if

Gid(Tiy o ) — Gia(xhy .o 2)) = Ly(z4y ...y 20) — Ly (2, ... 20) (3)
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Xry

T2

T3

Ty

Fig. 5. (a) Weighted decision diagram with canonical arc costs for a separable objective
function. (b) Canonical arc costs for a nonseparable objective function.

for all pairs (z;, ..., xy), (2}, ..., z],). We will show by induction on ¢ that for any
node w in layer ¢ > 2, (i) path p,(d;) has length zero for any arc a(u, d;), and (ii)
subgraph G, represents any function g;4 in the equivalence class corresponding
to u. Given this, for any feasible solution x = (dy,d), we have

9(d1,d) = g(d1, pr(dr)) + g(d1,d) — g(dy, pr(dr)) (a
dlapT(dl)) + L (dla d) - Lr(dlapr(dl) (b
(T dl) + Lr(dlvd) r(dlvpr(dl)) (C
(rydi) + Ly(d1,d) — [e(r,di) + Ly(ay) (pr(di))]  (d
(r,d1) + Ly(d1,d) — ¢(r,d1) = L,(d1,d) (e

Nag
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(

N
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~—

g
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c
c
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where (b) is due to (ii), (c) follows from the definition of ¢(r,d;), and (e) is due
to (i). This means that for feasible x, g(x) is the length of path = in G. Because
the nodes of G represent only finite partial functions g;4, G contains no path for
infeasible z. Thus, G represents (IJ).

For the inductive proof, we first observe that for any node u in layer n, path
pu(dy) is snnply node 1 and therefore has length zero, which yields (i). Also for
any pair z,, ,,, we have for any g;q in the equivalence class for u:

/\

gnd(xn) - gnd(xln) = (gnd(xn) - Cmin(u)) - (gnd(x/n) - Cmin(u))
= c(u,zy) — c(u,z),) = Ly(xn) — Ly(2))

n

This means that G,1 represents g,q, and we have (ii).
Supposing that (i) and (ii) hold for layer i + 1, we now show that they hold
for layer i. To show (i), we note that the length of p,(d;) is

gﬂf {e(uldi), dit1) + pu(dis1)]} = glfll {e(u(di), diy1)} =0
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where the first equation is due to the induction hypothesis and the second to
the definition of ¢(u(d;), di+1). To show (ii), it suffices to show (@), which can be
written

Gid(xi,y) — gid(x;ay/) = Ly(xi,y) — Lu(x/ivy/) (4)

where y = (2;41,...,Zy). Note that

gid(zi,y) — gia(@i, y')
= Gid(Ti, pu(®:)) — gia (@7, pu(T}))
+ 9ia(@i, ¥) — Gia(@i, Pu(:)) — [9ia(27,Y') — gia(@i, pu(d)))]  (a)
= Gid(Ti, pu(i)) — gia (@, pu(T}))
= Gid (i, Pu(2i)) — gia(@, pu(7)) + Lu(a,) (¥) = Lu@) (y') (
= c(u, xi) - c(u, x;) + Lu(:m)(y) - Lu(m;)(y/) (d)
= c(u, i) + Lu(a,) (y) — [e(u, 27) + Luer) (y)] (
where (b) is due to the induction hypothesis for (ii), (c¢) is due to the induction
hypothesis for (i), and (d) is due to (2)). This demonstrates ().

We now show that G is minimal and unique. Suppose to the contrary that
some weighted decision diagram G with canonical costs represents ([IJ), is no
larger than G, and is different from G. By construction, there is a one-to-one
correspondence of nodes on layer i of G and equivalence classes of partial func-
tions gq. Thus for some node u on layer i if GG, there are two paths d, d’' from

r to u for which g4 and g4 belong to different equivalence classes. However, G
represents g, which means that for any path y = (yi,...,yn) from u to 1,

9a(y) = L(d) + Lu(y)
gar(y) = L(d') + Lu(y)
where L(d) is the length of the path d from 1 to u in G, and L, (y) the length of

the path y from v to 1 in G. This implies that for any two paths y and 3’ from
u to 1 in G,

()

9a(y) — 9a(¥') = ga(y) — 9a(y') = Lu(y) — Lu(y')

which contradicts the fact that g; and g4 belong to different equivalence
classes. d

5 Separable Decision Diagrams

A separable decision diagram is a weighted decision diagram whose arc costs are
directly obtained from a separable objective function. For example, the diagram
of Fig. [Mi(b) is separable. More precisely, a decision diagram is separable if on
any layer i, c(u,d;) = c(v',d;) = ¢;(d;) for any d; and any two nodes u,u’'.
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Separable decision diagrams have the advantage that they can be reduced
while ignoring arc costs. That is, the reduced diagram is obtained by removing
arc costs, reducing the diagram that results, and then putting cost ¢;(d;) on each
arc a(u, d;).

Converting costs to canonical costs can destroy separability. For example, the
separable decision diagram of Fig. [[[(b) becomes the nonseparable diagram of
Fig. Bl(a) when costs are converted to canonical costs. However, the reduced dia-
gram remains the same. Thus Fig. Bl(a) is a reduced weighted decision diagram.

This means that there is nothing lost by converting to canonical costs when
the diagram is separable, and perhaps much to be gained when it is nonseparable,
because in the latter case the diagram may reduce further.

Lemma 2. A separable decision diagram that is reduced when costs are ignored
s also reduced when costs are converted to canonical costs.

Proof. Suppose that G is reduced when costs are ignored, but it is not reduced
when costs are converted to canonical costs. Then some two weighted subgraphs
G1 and Gy1 are equivalent. This means, in particular, that they are isomorphic.
But this contradicts the assumption that G without costs is reduced. O

6 Dynamic Programming

A dynamic programming problem is one in which the variables x; are regarded
as controls that result in transitions from one state to the next. In particular,
control z; takes the system from the current state s; to the next state

Siv1 = ¢i(si,xi), i=1,...n (6)

where the initial state s; is given. It is assumed that the objective function f(x)
is a separable function of control/state pairs, so that

n

fl@) =" cilwi, ) (7)

i=1

The optimization problem is to minimize f(z) subject to () and z; € X;(s;) for
each 4.

The attraction of a dynamic programming formulation is that it can be solved
recursively:

gi(x;) = min  {ei(ss, @) + giv1(i(si, i)}, i=1,...,n (8)
z, €Xi(s4)
where gn11(Sn+1) = 0 for all s,41. The optimal value is g1(s1). To simplify
discussion, we will suppose that X,,(s,) is defined so that there is only one final
state sp41.
To make a connection with decision diagrams, we will assume that the control
variables x; are discrete. Then the recursion (8) describes a state transition
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Fig. 6. (a) State transition graph for a set covering instance. (b) State transition graph
for a production and inventory management problem. (c) Reduced state transition
graph after converting costs to canonical costs.

graph in which each node corresponds to a state, and there is a directed arc
(84, di(si, ;) with cost ¢;(s;, x;) for each control z; € X;. The state transition
graph is a binary decision diagram in which s; is the root node and s,41 the
terminal node.

In the set covering example, the state s; can be defined as the set of elements
that have been covered after variables x1, ..., x;_1 have been fixed. The resulting
state transition graph appears in Fig. Ba).

We see immediately that the state transition graph, when viewed as a decision
diagram, may allow further reduction. Two of the nodes on level 4 of Fig. [f}a)
can be merged even though they correspond to different states.

7 Reducing the State Transition Graph

It may be possible to reduce the size of a DP state transition graph by viewing it
as a weighted decision diagram. Even when arc costs as given in the graph prevent
reduction, conversion of the arc costs to canonical costs may allow significant
reduction that simplifies the problem.

For example, this idea can be applied a textbook DP model that has remained
essentially unchanged for decades. The objective is to adjust production quan-
tities and inventory levels to meet demand over n periods while minimizing
production and holding costs. We will suppose that h; the unit holding cost in
period 7, and ¢; is the unit production cost. Let x; be the production quantity
in period 7, and let the state variable s; be the stock on hand at the beginning
of period 7. Then the recursion is

gz(sz) = min ){Ci$i+hisi+gi+1(8i—‘rl‘i—di)}, 1=1,...,n (9)

z;€X5(s;

where d; is the demand in period 1.
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If we suppose that the warehouse has capacity m in each period, the state
transition graph has the form shown in Fig. B(b). Note that the set of arcs
leaving any node is essentially identical to the set of arcs leaving any other node
in the same stage. The controls x; and the costs are different, but the controls
can be equalized by a simple change of variable, and the costs can be equalized
by transforming them to canonical costs.

To equalize the controls, let the control z be the stock level at the beginning
of the next stage, so that =} = s; + 2; — d;. Then the controls leaving any node

are 2; =0,...,m. The recursion (@) becomes
gi(si) = min  {c/(z; —si+di) + hisi + giva(2)}, i=1,...,n  (10)
z;€{0,...,m}

To transform the costs to canonical costs, we subtract h;s; + (m — s;)¢; from
the cost on each arc (s;, s;+1), and add this amount to each arc coming into s;.
Then for any period i, the arcs leaving any given node s; have the same set of
costs. Specifically, arc (s;, s;+1) has cost

Ci(si+1) = (di + Six1 — m)c; + Sig1hip1 + (M — sip1)ciq1

and so depends only on the next state s;;1. These costs are canonical for a; =
ming, , e{o,...,m}{Gi(si+1)}-

In any given period 4, the subgraphs G, are now equivalent, and the decision
diagram can be reduced as in Fig. [fl(c). There is now one state in each period
rather than m, and the recursion is

gi= min  {c;/(di +z; —m)+ hi12, + civa(m — ) + giv1} (11)
z;€{0,...,n}
If z,...,Z/ are the optimal controls in , the resulting stock levels are given
1 n

by s;+1 = %} and the production levels by z; = &, — s; + d;.

There is no need for experiments to determine the effect on computation time.
The reduction of the state space implies immediately that the time is reduced
by a factor of m.

8 Nonserial Dynamic Programming

In serial dynamic programming, the state variables s; are arranged linearly as a
path. In nonserial dynamic programming, they are arranged in a tree. Because
formal notation for nonserial DP is rather complex, the idea is best introduced
by example. To simplify exposition, we will discuss only problems with separable
objective functions.

Figure [[(a) shows a small set partitioning problem. The goal is to select a
minimum subcollection of the 6 sets that partitions the set {A, B, C,D}. Thus
there are 4 constraints, corresponding to the elements (A, B, C, D), each requir-
ing that only one set containing that element be selected. The 3 feasible solutions
are (z1,...,2¢) = (0,0,0,1,1,1),(0,1,1,0,0,0,0),(1,0,0,0,0,1), where z; = 1
indicates that set 7 is selected. The last two solutions are optimal.
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gQw

Ts5

Fig. 7. (a) A small set partitioning problem. The dots indicate which elements belong to
each set i. (b) Dependency graph for the problem. The dashed edge is an induced edge.

A nonserial recursion can be constructed by reference to the dependency graph
for the problem, shown in Fig. [f{b). The graph connects two variables with an
edge when they occur in a common constraint. We arbitrarily select a variable
ordering x1,...,xg and remove vertices in reverse order, each time connecting
vertices adjacent to the vertex removed. Edges added in this fashion are induced
edges. As in serial DP, we let the state contain the information necessary to
determine the feasible choices for x;. Now, however, the feasible values of z;
depend on the set of variables to which z; was adjacent when removed. We
therefore let x depend on (x2, x3), and similarly for the other control variables.

The problem can be solved recursively as follows. Let Ca (z1, x3, z5), Cs(x3, ¢),
Cc(z1, 22, 24), and Cp(x2, x6) be the constraints corresponding to elements A, B,
C, and D, respectively. The recursion is

g6(r2,23) = min {xg | Cc(zs, z6) A Cp(x2,z6)}
z6€{0,1}

g5(x1,23) = min {x5 | Ca(x1,23,75)}
z5€{0,1}

ga(z1,22) = min {z4 | Co(xr,z2,24)}
w4€{0,1}

g3(x1,w2) = min {x3 + ge(r2,23) + g5(21,23)}
z3€{0,1}

g2(w1) = min {xa + ga(21,22) + g3(71,22)}

z2€{0,1}
91() = mlren{i&} {z1 4+ g2(s(1))}

The smallest partition has size g (), which is infinite if there is no feasible parti-
tion. The induced width (treewidth) of the dependency graph is the maximum
number of state variables that appear as arguments of a g;(-), in this case 2.

To write the general recursion for nonserial DP, let (J) = {z; | j € J}. Let
each constraint C; contains the variables in x(J;), and let each g;(-) be a function
of x(I;). The recursion is

gi(z(L;)) = max ci(z;) +j%:igj($(fj)) /j\C'j(x(Jj))
I; C I; JiCI,

The complexity of the recursion is @(2"+1), where W is the induced width.
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As in serial DP, we can introduce state variables s; to encode the necessary
information for selecting x;. In the present case, we let s; be the multiset of
elements selected by the variables in z(1I;), where elements selected by two vari-
ables are listed twice. For example, sg is the multiset of elements selected by x-
and z3. In general, we will let s(I;) denote the multiset of elements selected by
the variables in z(I;), so that s; = s(I;). The solution can now be calculated as
shown in Table

The state transition graph for the example appears in Fig. B((a). Here each
stage is labeled by the state variable s; rather than the decision variable x;.
The initial state is associated with state variable s;. Decision x; is taken at each
value of state variable s;. Because state variables s3 and s4 are identical, they are
superimposed in the graph. The choice of x3 leads to states s5 and sg, with two
outgoing arcs corresponding to each choice. The choice of x4 leads to a terminal
node.

Feasible solutions correspond to trees that are incident to the initial state and
3 terminal nodes. The tree shown in bold is one of the two optimal solutions.
Note that its cost is 2 even though it contains 3 solid arcs, because two of the
arcs correspond to the same choice x3 = 1. States that are part of no feasible
solution (tree) are omitted from the diagram.

As an illustration, consider state s3 = {A, C}. The arcs for z3 = 0 lead to the
states s5 = {A,C} and sg = . Arcs for 3 = 1 are not shown because they are
not part of a feasible solution. One can check from Table [2] that when x5 =1,

3+ g6(s6) + 95(s5) = 1+ g6({A,B}) + 95({A,C,C,D}) = o0

Now consider state s4 = {A, C}, which corresponds to the same node. The arc
for 4, = 0 leads to a terminal node. The arc for x4 = 1 is not shown because
{A,C,C} violates constraint Cc.

9 Nonserial Decision Diagrams

The state transition graph for a nonserial DP can be regarded as a decision
diagram, as in the case of serial DP. The diagram can also be reduced in a similar
fashion. For example, the diagram of Fig. [[(a) reduces to that of Fig.[7(b). Note
that two nodes are merged, resulting in a smaller diagram. Feasible solutions
correspond to trees that are incident to the root node and the two terminal
nodes. The reduction in size can be significant, as in the case of serial decision
diagrams.

Table 2. Recursive solution of the set partitioning example

s6  ge(se) s5  gs(ss) 54 ga(sa) sz g3(s3)  s2 ga(s2)

0 1 0 1 0 1 0 2 0 2
(AB} (AC) 0 (AC) 0 (AC} 1 {AB} 2
(€D} oo {AB} 0 {cD} 0 {cD} 1

{A,B,C,D} 0 {A,A,B,C} o {A,C,C,D} c© {A,C,C,D} c© a()=2
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Fig. 8. (a) Nonserial state transition graph for a set partitioning problem. Only nodes
and arcs that are part of feasible solutions are shown. Each feasible solution corresponds
to a tree incident to the root and both terminal nodes. The boldface tree corresponds to
optimal solution (z1,...,26) = (0,1,1,0,0,0). (b) Reduced nonserial decision diagram
for the same problem.

10 Conclusion

We showed how decision diagrams can be extended to weighted decision diagrams
so as to establish a precise parallel with dynamic programming (DP). In particu-
lar, we proved that for a given optimization problem and variable ordering, there
is a unique reduced decision diagram with canonical arc costs that represents the
problem. We also showed how this perspective can allow one to simplify a discrete
DP model by transforming arc costs on its state transition graph to canonical arc
costs and reducing the diagram that results. Finally, we introduced nonserial de-
cision diagrams as a counterpart to nonserial dynamic programming.

It remains to investigate other possible simplifications of DP models based
on the decision diagram perspective, as well as to generalize the uniqueness
result to nonserial decision diagrams. Another possible development is to merge
relaxed decision diagrams, mentioned in Section Bl with approximate dynamic
programming [32]. This may allow algorithms for relaxing a decision diagram to
generate an efficient state space relaxation for approximate DP.
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