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Abstract. Pattern databases enable difficult search problems to be
solved very quickly, but are large and time-consuming to build. They
are therefore best suited to situations where many problem instances are
to be solved, and less than ideal when only a few instances are to be
solved. This paper examines a technique - hierarchical heuristic search -
especially designed for the latter situation. The key idea is to compute,
on demand, only those pattern database entries needed to solve a given
problem instance. Our experiments show that Hierarchical IDA* can
solve individual problems very quickly, up to two orders of magnitude
faster than the time required to build an entire high-performance pattern
database.

1 Introduction

Pattern databases were introduced [3, 4] as a method for defining a heuristic
function to be used by heuristic search algorithms such as A* [9] and IDA* [14].
They have proved very valuable. For example, they are the key breakthrough
enabling Rubik’s Cube to be solved optimally [15], they have advanced the state
of the art of solving the sequential ordering problem [11], and have enabled
the length of solutions constructed using a macro-table to be very significantly
reduced [10]. They have also proven useful in heuristic-guided planning [6].

A pattern database is defined by a goal state and an abstraction, φ, that
maps the given state space, S, to an abstract state space φ(S). The states in
φ(S) are called abstract states or patterns. A pattern database is a lookup table
with an entry for each pattern – the entry for pattern P is the distance in φ(S)
from P to the goal pattern, φ(goal). Given a pattern database, the heuristic
value, h(s), for a state s ∈ S is computed by looking up the entry for φ(s) in
the pattern database. Because φ is an abstraction, h(s) is guaranteed to be an
admissible, monotone heuristic [12].

A pattern database is built by finding a shortest path to the goal pattern for
every pattern in φ(S). Typically this is done by running a breadth-first search
backwards from the goal pattern until φ(S) is fully enumerated.

Building an entire pattern database as a preprocessing step has two disadvan-
tages. The first is the time it takes to build the pattern database. For example,
the “7-8” additive pattern database for the 15-puzzle in [7] takes approximately
3 hours to build and the high-performance pattern database for (17,4)-TopSpin
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in [8] takes approximately 1 hour to build. The second disadvantage is the size
of the pattern database. In solving a single problem, only a tiny fraction of the
pattern database is needed, and therefore most of the memory allocated for the
pattern database, and the time needed to build it, is wasted.

Both disadvantages disappear, to some extent, if the same pattern database
is used to solve many problem instances. For example, if 3 million 15-puzzle
instances are solved using the “7-8” pattern database, the majority of its entries
would be needed and the time to build the pattern database would amount to
less than 10% of the total solution time.

On the other hand, there are circumstances in which the cost of building an
entire pattern database cannot reasonably be amortized over a large number of
problem instances. The obvious such circumstance is when only one or a few
problem instances need to be solved, such as when building a macro-table [10],
or when solving multiple sequence alignment problems [17]. In this case the time
to build the pattern database will dominate the time to solve the problems.

Another circumstance in which the cost of building a pattern database cannot
be amortized is when there are many instances to solve but it is impossible to use
the same pattern database to solve them because they have different goals (and
no simple transformation is possible), or because the operators or their costs
have changed. As will be shown below it can also happen that, even though it
is possible to use the same pattern database for all the problem instances, it is
advantageous, time-wise, to use a different, custom-selected pattern database to
solve different instances.

In this paper we examine a technique - hierarchical heuristic search - that
aims to minimize the time and space overhead of using a pattern database by
computing only those entries of the pattern database that are actually needed
to solve a given problem instance. The idea of on-demand calculation of pattern
database entries by hierarchical heuristic search was introduced in [12]. The
abstraction technique there was so costly, in terms of both time and space, that
it needed to be amortized over a large number of problem instances and therefore
offered little or no advantage over pattern databases. The starting point for the
present paper is the observation that the abstraction technique used for pattern
databases requires negligible space and time, and therefore raises the possibility
of realizing the great potential advantages of hierarchical heuristic search over
pattern databases for solving individual problem instances. In addition to using
a different abstraction technique, the present work also uses IDA* as its basic
search procedure, whereas [12] used A*.

This paper reports several experiments with Hierarchical IDA* (HIDA*). The
first shows that even if one abstraction, somewhat arbitrarily chosen, is used to
solve all problem instances for a given state space, an average instance can be
individually solved from scratch by HIDA* in minutes, compared to the one or
more hours it takes to build a high-performance pattern database. Subsequent
experiments show that in some state spaces a substantial additional speedup can
be obtained by using multiple or customized abstractions.
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2 The Hierarchical IDA* Algorithm

Pseudocode for Hierarchical IDA* (HIDA*) is given in Figure 1. The lines high-
lighted in bold font indicate the differences from normal IDA*. To improve per-
formance our actual implementation is somewhat more complex, but this figure
captures the central ideas.

The defining characteristic of hierarchical heuristic search is seen in the
h(s, goal) function in Figure 1. To compute a heuristic for state s, a recursive
call to the search algorithm is made to compute the exact distance between the
abstraction of s, φ(s), and the abstraction of the goal state, φ(goal). Search at
an abstract level is guided by distances computed at an even more abstract level
(in the figure the symbol φ is used to indicate the function that moves from the
current level to the next more abstract level; an alternative notation would have
had a different symbol, φi, for each level).

HIDA∗ (start, goal)
bound ← h(start, goal)
Repeat until goal is found:

bound ← DFS(start, goal, 0, bound)
For all states s on the solution path:

cache[s] ← distance from s to goal
mark cache[s] as an exact distance

———————————————————————-
DFS(s, goal, g, bound)

If s == goal: exit with success
g ← g + 1
newbound ← ∞
Iterate over x ∈ successors(s):
// P-g caching

cache[x] ← max(cache[x],bound-g,h(x,goal))
f ← g + cache[x]

// Optimal path caching
If (f == bound) and (cache[x] is an exact distance):

exit with success
If f ≤ bound: f ← DFS(x, goal, g, bound)
If f < newbound : newbound ← f

Return newbound
———————————————————————-
h(s, goal)

If at the top abstraction level, return 0
If cache[φ(s)] is not an exact distance:

HIDA*(φ(s),φ(goal))
Return cache[φ(s)]

Fig. 1. Pseudocode for Hierarchical IDA*
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Whenever the exact distance from a state to the goal is determined at any
level other than the base level (the original search space), it is stored in a cache
so that it need not be recomputed if it is required again. This is done by the
bold lines of pseudocode in the HIDA* function in Figure 1.

Exact distances to the goal stored in cache[x] for abstract state, x, are ac-
tually used for two different purposes. First, cache[x] is used as the value for
h(s, goal) for any less abstract state, s, for which φ(s) = x. Second, cache[x] is
used in the optimal path caching method that was introduced, for A*, in [12].
If x is reached by a path of length g during a search within x’s abstract level
and cache[x] is an exact distance to goal, it is treated as if the goal had been
reached by a path of length g + cache[x]. See the bold lines after the “Optimal
path caching” comment in the DFS function in Figure 1.

In addition to storing exact distances to the goal, the cache is also used to
store estimated distances to the goal generated by the “P-g” caching technique
that was introduced, for A*, in [12]. “P-g” caching improves (increases) the
heuristic values for abstract states that are expanded during a search, thereby
improving the efficiency of subsequent searches that happen to reach these
states. One possible implementation of “P-g” caching for HIDA* is shown by
the bold lines after the “P-g caching” comment in the DFS function in
Figure 1.

In all experiments the memory used for the cache was limited to 1 Gigabyte.
The implementation of the cache in hierarchical search is less efficient than the
hash table used to implement pattern databases because it is not known ahead
of time which entries, or even how many entries, will be put into the hierarchical
search cache1. By contrast, the exact set of patterns that will index a pattern
database is known ahead of time. This is enormously beneficial in terms of space
because a perfect hash function (collision free, no gaps) can be used, meaning
that nothing identifying the pattern needs to be stored as part of an entry.
Pattern database entries therefore only contain distances, typically needing only
one byte per entry. It is not possible to develop a perfect hash function for
the hierarchical search cache, so the cache must store a unique identifier for
each pattern along with its distance, which increases the size of an entry very
substantially (e.g. from one byte to eight for our 15-puzzle implementation). Not
having a perfect hash function also slows down access, since collisions can occur
and must be detected and resolved.

On a modern PC (AMD Athlon, 2.1GHz) our code generates approximately
4.5 million nodes per second at the base level and 1.5 million nodes per second
at the abstract levels. The difference in speed is because the cache operations
are done at each abstract level but not at the base level.

1 This is true only of the lower levels in the abstraction hierarchy. For the upper levels
it is virtually certain that almost all possible entries will be generated. For example,
in the 15-puzzle experiment in the next section over 90% of the possible entries were
generated at each of levels 4-8 in Table 1.
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3 State Spaces Used in the Experiments

Four state spaces are used in these experiments: the 15-puzzle, a novel variant
called the Macro-15 puzzle, (17,4)-Topspin, and the 14-Pancake puzzle. For each
state space 100 randomly generated solvable instances were used for testing.

The 15-puzzle is included in our experiments because it is a standard bench-
mark for heuristic search methods. It is not actually a good example of the
circumstances in which to use HIDA* because a very good, efficiently computed
heuristic (Manhattan Distance) is known for it, and with modern search methods
individual problems can be solved from scratch very quickly [1].

The Macro-15 puzzle is a novel variation on the 15-puzzle inspired by the
fact that in the physical puzzle it takes the same effort to slide any partial row
or partial column of tiles one position towards the blank as it takes to slide a
single tile. Thus, in the 4x4 Macro puzzle used here there are 6 possible moves
in every state (because there are 3 tiles in the same row as the blank and 3 tiles
in the same column as the blank, and any tile in the same row or column as
the blank can be the endpoint of the group that is moved). We call this state
space the Macro-15 puzzle because its additional moves are “macro” moves in
the 15-puzzle. Solution lengths in the Macro-15 state space for the 100 standard
test problems used for the 15-puzzle [14] range from 27 to 38 with the median
and average solution length being 32. By contrast in the normal 15-puzzle these
problems’ solution lengths range from 41 to 66, with a median and average length
of 53. Note that Manhattan Distance is not an admissible heuristic in this space,
and additive pattern databases [7] cannot be used for it.

The (N ,K)-TopSpin puzzle has N tokens arranged in a ring. The tokens can
be shifted cyclically clockwise or counterclockwise. The ring of tokens intersects
a region K tokens in length which can be rotated to reverse the order of the
tokens currently in the region. In our encoding we ignore the cyclic shifts and
only count reversals. Therefore the only moves are to reverse any K adjacent
tokens, where adjacency is defined cyclically. We used N = 17 and K = 4, but
the effective number of tokens is only 16 because one of the tokens is used as
a fixed reference point and therefore is effectively stationary. [2] shows that all
16! states are reachable. In order to reduce the number of transpositions, if two
moves act on non-intersecting sets of positions we force them to be done in a
particular order. This reduces the branching factor to 8.

In the N -Pancake puzzle [5] a state is a permutation of N tokens (0, 1, ...N −
1). A state has N − 1 successors, with the kth successor formed by reversing
the order of the first k + 1 positions of the permutation (1 ≤ k < N). We used
N=14, which has 14! states. Although this space is smaller than the others its
much larger branching factor makes it roughly the same difficulty to search.

4 Using One Abstraction Hierarchy for All Problems

Hierarchical search requires an abstraction hierarchy – a sequence of abstractions
defining the mappings from one level of abstraction to the next. In our state
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Table 1. “Default” Abstraction Hierarchy for the 15-puzzle and the Macro-15 puzzle

8 • • • • • • • • 15
7 • • • • • • • 14 15
6 • • • • • • 13 14 15
5 • • • • • 12 13 14 15
4 • • • • 11 12 13 14 15
3 • • • 10 11 12 13 14 15
2 • • 9 10 11 12 13 14 15
1 • 8 9 10 11 12 13 14 15

base 1-7 8 9 10 11 12 13 14 15

spaces an abstraction is defined by mapping some of the tiles/tokens to a “don’t
care” symbol. If the tokens mapped to “don’t care” by φ1 are a superset of
the tokens mapped to “don’t care” by φ2 then the space defined by φ1 is an
abstraction of the space defined by φ2. Therefore a sequence of successively
more abstract spaces can be defined by partitioning the tokens into groups,
G1, G2, ..., Gn and defining φi as the abstraction in which all tokens in groups
G1, G2, ..., Gi are mapped to “don’t care”.

In the experiment in this section the same abstraction hierarchy is used for
all problem instances of each state space. These “default” abstraction hierar-
chies were not carefully chosen, they were among our initial thoughts for each
state space. The abstraction hierarchy used for the 15-puzzle and the Macro-15
puzzle is shown in Table 1, which is read from bottom to top, because the higher
rows represent the higher levels of abstraction. The bottom row (“base” level)
indicates which tile(s) each column is referring to. Each other row indicates how
the tiles are mapped at a certain level of abstraction, the level being indicated
by the number in the first column. For example the row with 1 in the first col-
umn shows that the first level of abstraction is defined by mapping tiles 1-7 to
“don’t care” (indicated by • in the table). The patterns at this abstract level
are the possible ways of placing the blank and the 8 remaining tiles (tiles 8-15)
in the 16 positions of the 15-puzzle. At the most abstract level (level 8) all the
tiles except 15 are mapped to “don’t care”. The patterns at this abstract level
are the possible ways of placing the blank and tile 15 in the 16 positions of the
15-puzzle.

The abstraction hierarchy used for the 14-Pancake puzzle is identical except
that it has only 14 tokens and therefore only seven abstract levels. Note that
“token 1” has the most volatile home position – the token in that position is
changed by every operation. This abstraction therefore abstracts the tokens in
volatile positions and retains the identity of tokens that can be placed in their
home positions and then left unmoved by a judicious choice of operators.

The abstraction hierarchy for (17,4)-TopSpin starts by abstracting tokens 1-9
to define the first abstraction level and abstracts one token per level thereafter
in increasing order (10, then 11, then 12 etc.). Token 0 is the token that is used
as a reference and never moves - it is never abstracted.
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Table 2. CPU times (in seconds) using the default abstraction hierarchy. “all” means
clear every cache between every problem instance. “1-3” means clear levels 1-3 between
every instance, never clear the higher levels. “none” means never clear any cache - this
is possible only if all entries at all levels fit within the 1 Gigabyte memory limit.

State Space Clear Avg Max Median
all 642 20,227 93

15-puzzle
1-3 596 17,827 71
all 132 910 84

Macro-15
1-3 101 959 58
all 766 3,068 680

(17,4)-TopSpin
none 162 1,875 89
all 88 405 54

14-Pancake
none 31 326 4

Table 3. Comparison of the average number of cache entries (in thousands) stored
by HIDA* to the number of entries (in thousands) in the full pattern database (PDB
size) for the first level of abstraction. The last column expresses the average number
of Level 1 cache entries as a percentage of the pattern database size.

State Space Total Level 1 PDB size %
15-puzzle 10,931 2,657 4,151,347 0.06
Macro-15 7,402 787 4,151,347 0.02

(17,4)-TopSpin 8,143 3,423 57,657 5.9
14-Pancake 1,208 229 17,297 1.3

Table 2 shows the average, maximum, and median CPU times over the 100
test problems for each state space. “All” in the “Clear” column indicates that
all caches are cleared completely between each problem instance. This simulates
solving a single problem instance in isolation with no preprocessing or prior
problem-solving experience with the abstraction. The “median” column in the
“all” rows shows that the majority of individual problems can be solved in a
few minutes, compared to the hour or more it takes to build high-performance
pattern databases. Across the entire experiment only three problem instances,
all for the 15-puzzle, take more than an hour to solve.

Table 3 shows the number of cache entries created by HIDA*, on average.
“Total” is the total number of cache entries at all levels. “Level 1” is the number
of cache entries for the first level of abstraction. The rightmost column shows
that this is a small fraction of what would be stored in the pattern database
for this abstraction – well under one-tenth of one percent for the 15-puzzle and
Macro-15 puzzle.

If a small batch of problem instances with the same goal is to be solved using
the same abstraction, HIDA*’s caches need not be cleared between instances: the
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cache entries created for one instance will be correct for others. The abstractions
being used for (17,4)-TopSpin and 14-Pancake are sufficiently coarse-grained that
1 Gigabyte allows all caches at all levels to be made large enough to hold all
possible entries. Therefore, it is never necessary to clear any cache. The “none”
rows in Table 2 show the CPU times for these puzzles if the 100 test problems
are solved as a batch in the random order in which they were generated with no
clearing of the caches. Batch-solving substantially reduces the average, median,
and the maximum solution times. A batch of 18 average problems can be solved
in the time it takes to build a high-performance pattern database for (17,4)-
TopSpin.

For the 15-puzzle and Macro-15 puzzle abstractions levels 1, 2, and 3 are
sufficiently fine-grained that they must be cleared at some point in order to solve
the 100 test problems. The “1-3” rows in Table 2 show the CPU times that result
if only the caches at levels 1, 2, and 3 are cleared between each problem instance.
This produces a modest reduction in the time to solve problems. Batches of
approximately 17 15-puzzle problems and batches of 97 Macro-15 problems can
be solved in the time it takes to build a high-performance pattern database for
these puzzles.

The fact that HIDA* solves tens of problem instances, on average, in the
time required to build a high-performance pattern database does not rule out
the possibility that HIDA* would be outperformed by a smaller pattern database
when only one or a few problem instances are to be solved. To see why this will
not happen, in general, consider the Macro-15 puzzle. To build the complete
pattern database for the first level abstraction in Table 2 takes 2.73 hours. The
pattern database based on the second level abstraction is much smaller and takes
only 452 seconds to build. This is still substantially more than the time it takes
HIDA* to solve a single Macro-15 problem on average. A pattern database based
on an even coarser abstraction would take fewer than 100 seconds to build but
would provide such poor heuristic guidance for the base level search that the
time to solve a problem would far exceed HIDA*’s. As a general rule, a pattern
database that can be fully computed in a time less than HIDA*’s will offer much
weaker guidance than HIDA*’s first level of abstraction and therefore have higher
problem-solving runtimes.

5 Multiple Abstractions

[13] shows that for a fixed amount of memory, taking the maximum of several
smaller pattern databases outperforms using a single large pattern database.
This technique can be applied to hierarchical heuristic search by using multiple
abstractions instead of just one at one or more of the abstraction levels. However,
it is not obvious if this will lead to improved performance for hierarchical heuris-
tic search because, unlike in the pattern database studies, the time required to
calculate the entries for the additional abstractions is now counted as part of
the execution time.
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Table 4. CPU times (in seconds) using multiple abstractions

State Space Clear Avg Max Median
all 131 1,047 78

15-puzzle
none 31 364 7
all 88 392 65

Macro-15
none 17 162 5
all 982 2,394 919

(17,4)-TopSpin
none 88 927 50
all 95 329 72

14-Pancake
none 10 197 2

In this section we define multiple abstractions only at the first level of ab-
straction. Each of those abstractions then has only one abstraction above it,
created by abstracting one additional tile/token, and those abstractions each
have only one above them, etc. As in [13], in computing h(s) the calculation of
the maximum value given by the different abstractions is aborted if a value is
returned that is large enough to ensure that f(s) = h(s) + g(s) exceeds IDA*’s
current depth bound.

For (17,4)-TopSpin and the 14-Pancake puzzle, two first-level abstractions are
used: the default abstraction from the previous section and a complementary one.
For (17,4)-TopSpin the complementary abstraction abstracts tokens 8-16 at the
first level (the default abstraction abstracts tokens 1-9) and then abstracts one
additional token per level in decreasing order (7, then 6, then 5 etc.). Similarly,
the complementary abstraction for the 14-Pancake puzzle abstracts tokens 7-
13 (the default abstracts tokens 0-6) and then abstracts one additional token
per level in decreasing order. The results are shown in Table 4. The “all” and
“none” rows in Table 4 have the same meaning and can be directly compared to
the corresponding rows in Table 2. The multiple abstractions in this experiment
increase the CPU time for solving individual problems in isolation (the “all”
rows) but significantly decrease the time for solving small batches of problems
(the “none” rows).

For the 15-puzzle and the Macro-15 puzzle, the default abstractions fill avail-
able memory, so there is no room available for additional abstractions. Instead,
we use four first-level abstractions that are each considerably smaller than the
default. One of them abstracts 8 tiles, the others abstract 9 tiles (the default
abstracts only 7 tiles). Comparing the “all” rows in Table 4 to the corresponding
rows in Table 2 we see that individual problems are solved much more quickly
using multiple abstractions. The average time for solving individual problems,
131 seconds for the 15-puzzle and 88 seconds for Macro-15, is two orders of mag-
nitude less than the time required to build a high-performance pattern database
for these puzzles. The multiple abstractions used here are sufficiently coarse-
grained that 1 Gigabyte is enough to create perfect hash tables for all caches at
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all levels. This enables batches of problems to be solved without ever clearing
any caches, producing the results shown in the “none” rows in Table 4. In both
spaces the entire batch of 100 test problems is solved in well under an hour.

6 Customized Abstractions

The first experiment showed that individual problem instances can be solved
quickly using a default abstraction hierarchy. This section shows that this per-
formance can be significantly improved, in some state spaces, by tailoring the
abstraction hierarchy to each instance. In this experiment all caches are cleared
between each instance.

For the 15-puzzle and Macro-15 puzzle we use a simple method for creating
the customized abstraction hierarchy. The key idea is to choose a good order in
which the tiles will be abstracted. The first level abstracts the first seven tiles
according to the order, and each level after that abstracts the next tile in the
ordering. The tile ordering we used is based on each tile’s Manhattan distance,
i.e. the number of moves required to get the tile from its position in the start
state to its goal position. The tiles are sorted in increasing order of this distance,
with ties broken arbitrarily.

78 of the 15-puzzle problems are solved more quickly with the customized
abstraction than with the default abstraction. The 22 that are slower are all
“easy” problem instances. The hardest problem instances have all been sped up
substantially by using a customized abstraction; some now run almost 50 times
faster than before. The longest-running instance now takes 1,517 seconds. The
average time to solve a problem instance is reduced from 642 to 99 seconds,
and the median time drops from 93 to 42 seconds. These results are signifi-
cantly better than the results with generic multiple abstractions (row “all” in
Table 4).

The Macro-15 puzzle also benefits significantly from custom abstractions,
although not as much as the 15-puzzle. Average solution time is reduced to 99
seconds from 132, and the median drops to 64 seconds from 84.

For (17,4)-TopSpin and the 14-Pancake puzzle numerous methods of custom
abstraction were explored. For the 14-Pancake puzzle none outperformed the
default abstraction. For (17,4)-TopSpin we identified an abstraction2 that was
significantly better than the default for certain problems. However, there was
no obvious rule to decide which abstraction to use on a given problem instance.
Our solution was to compute h(start) using each of the abstractions and then
use the abstraction that gave the higher value to solve the instance. This is a
rather expensive selection rule, because the cache entries created when comput-
ing h(start) using the first abstraction have to be cleared in order to compute
h(start) using the second abstraction, and then have to be recomputed if the
first abstraction is chosen for solving the problem. This overhead must be in-

2 The first level abstracts tokens 8-16, subsequent levels eliminate one additional token
in decreasing order (7 then 6 then 5 etc).



Hierarchical Heuristic Search Revisited 131

cluded in the total time to solve a problem, and doing so leaves the average and
median solution times virtually the same as always using the default abstraction.
However, this method does reduce the time to solve the most difficult problem
from 3068 to 2304 seconds.

7 Related Work

[17] observes that the pattern database entry for φ(s) is not needed if

d(φ(s), φ(goal)) + d′(φ(start), φ(s)) > U

where d(x, y) is the true distance from x to y, U ≥ d(start, goal), and d′(x, y) ≤
d(x, y). Given an upper bound, U , on the solution cost in the original space
and a function, d′(x, y), that never overestimates distance in the abstract space,
[17] runs A∗ backwards from the abstract goal state until it has enumerated
all abstract states φ(s) with d(φ(s), φ(goal)) + d′(φ(start), φ(s)) ≤ U . The re-
sulting table of abstract distances is called a space-efficient pattern database
(SEPDB).

If the abstraction used for the SEPDB is used to define HIDA*’s first abstract
level and search at this level is guided by the same heuristic in both systems,
HIDA*’s first-level cache will always contain a subset of the SEPDB entries.
The SEPDB hash table, like HIDA*’s caches, must store pattern identification
information along with the distance information when there is not sufficient
memory to store all possible entries for the full pattern database. Thus, SEPDB’s
memory needs cannot be less than HIDA*’s.

To see precisely how SEPDB’s memory requirements compare to HIDA*’s
we ran SEPDB using the default abstractions for our state spaces. The second
abstract level was used as the heuristic to guide SEPDB’s A*. The resulting
SEPDB is therefore the counterpart of HIDA*’s first level cache. To make the
comparison as favourable to SEPDB as possible the upper bound it was given
was the actual solution length for each problem instance. The results are shown
in Table 5. SEPDB has at least 32% more entries than HIDA*’s first level cache,
even when given a perfect upper bound. If this upper bound is increased to be just
one larger than the optimal value, the size ratios for Macro-15, (17,4)-Topspin
and 14-Pancake increase to 3.52, 1.75, and 4.05 respectively. For the 15-puzzle
the next larger meaningful upper bound is two larger than the optimal value. In
this case, the average size of the SEPDB rises to 13,515,134, which is 5.08 times
larger than HIDA*’s first-level cache.

The CPU times for SEPDB and HIDA* cannot be compared in this experi-
ment because the second level of abstraction is computed by HIDA* but assumed
to be given, without computation, by SEPDB. To make a fair time comparison,
a hierarchical version of SEPDB would be needed. Hierarchical SEPDB might
possibly run faster than HIDA*, but, as this experiment has shown, it would
require more memory.

“Reverse Resumable A*” [16], like SEPDB, computes pattern database en-
tries by backwards A* search at the abstract level. Unlike SEPDB, it stops when
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Table 5. Comparison of the sizes of HIDA*’s first-level cache and the corresponding
SEPDB

Space HIDA* SEPDB Ratio
15-puzzle 2,657,511 6,430,269 2.42
Macro-15 787,664 1,309,100 1.66

(17,4)-TopSpin 3,423,746 4,534,162 1.32
14-Pancake 339,328 467,237 1.38

it closes the abstract start state. If an entry is needed during the base level search
that has not been generated, A* search at the abstract level is resumed until
the entry is generated. This produces a subset of the SEPDB, and avoids the
need for an upper bound on solution length, but requires additional memory for
preserving A*’s Open list so that A* can be resumed.

8 Conclusion

This paper has shown that hierarchical heuristic search can solve individual
problems very quickly, up to two orders of magnitude faster than building a
high-performance pattern database. Hierarchical heuristic search is therefore
preferable to pattern databases when only one or a few problem instances with
the same goal are to be solved. On the other hand, pattern databases are prefer-
able when many problem instances with the same goal are to be solved. In cases
where it is unclear which method to use, the two can be used in parallel. While
the pattern database is being built, hierarchical heuristic search can be applied
to the problem instances, perhaps with a time limit for each problem instance.
Sometimes all the instances will be solved before the pattern database is com-
plete. If this does not happen, the remaining problems can be solved quickly
using the pattern database.
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10. I. T. Hernádvölgyi. Searching for macro operators with automatically generated
heuristics. Advances in Artificial Intelligence - Proceedings of the Fourteenth Bien-
nial Conference of the Canadian Society for Computational Studies of Intelligence
(LNAI 2056), pages 194–203, 2001.
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