
Journal of Artificial Intelligence Research 24 (2005) 685-758 Submitted 03/05; published 11/05

Where “Ignoring Delete Lists” Works:

Local Search Topology in Planning Benchmarks

Jörg Hoffmann hoffmann@mpi-sb.mpg.de

Max Planck Institute for Computer Science,

Stuhlsatzenhausweg 85,

66123 Saarbrücken

Germany

Abstract

Between 1998 and 2004, the planning community has seen vast progress in terms of
the sizes of benchmark examples that domain-independent planners can tackle successfully.
The key technique behind this progress is the use of heuristic functions based on relaxing
the planning task at hand, where the relaxation is to assume that all delete lists are empty.
The unprecedented success of such methods, in many commonly used benchmark examples,
calls for an understanding of what classes of domains these methods are well suited for.

In the investigation at hand, we derive a formal background to such an understand-
ing. We perform a case study covering a range of 30 commonly used STRIPS and ADL
benchmark domains, including all examples used in the first four international planning
competitions. We prove connections between domain structure and local search topology
– heuristic cost surface properties – under an idealized version of the heuristic functions
used in modern planners. The idealized heuristic function is called h+, and differs from
the practically used functions in that it returns the length of an optimal relaxed plan,
which is NP-hard to compute. We identify several key characteristics of the topology un-
der h+, concerning the existence/non-existence of unrecognized dead ends, as well as the
existence/non-existence of constant upper bounds on the difficulty of escaping local minima
and benches. These distinctions divide the (set of all) planning domains into a taxonomy
of classes of varying h+ topology. As it turns out, many of the 30 investigated domains lie
in classes with a relatively easy topology. Most particularly, 12 of the domains lie in classes
where FF’s search algorithm, provided with h+, is a polynomial solving mechanism.

We also present results relating h+ to its approximation as implemented in FF. The
behavior regarding dead ends is provably the same. We summarize the results of an em-
pirical investigation showing that, in many domains, the topological qualities of h+ are
largely inherited by the approximation. The overall investigation gives a rare example of a
successful analysis of the connections between typical-case problem structure, and search
performance. The theoretical investigation also gives hints on how the topological phenom-
ena might be automatically recognizable by domain analysis techniques. We outline some
preliminary steps we made into that direction.

1. Introduction

Between 1998 and 2004, one of the strongest trends in the planning community has been that
towards heuristic planners, more specifically towards the use of heuristic distance (in most
cases, goal distance) estimation functions. The best runtime results, progressing far beyond
the sizes of benchmark examples that previous domain-independent planners could tackle
successfully, have been achieved based upon a technique phrased “ignoring delete lists”.

c©2005 AI Access Foundation. All rights reserved.

Hoffmann

There, the heuristic function is derived by considering a relaxation of the planning task at
hand, where the relaxation is to assume that all delete lists (i.e. the negative effects of the
available planning operators) are empty. During search, may it be forward or backward,
state space or plan space, the heuristic value of a search state in this framework is (an
estimate of) the difficulty of extending the state to a solution using the relaxed operators,
where “difficulty” is defined as the number of (relaxed) actions needed.

The number of real actions needed to extend a search state to a solution is at least
as high as the number of relaxed actions needed. So optimal (shortest) relaxed solutions
can, in principle, be used to derive admissible heuristic functions. However, as was first
proved by Bylander (1994), deciding bounded plan existence, i.e., the existence of a plan
with at most some given number of actions, is NP-hard even when there are no delete lists.1

Thus there is not much hope to find optimal relaxed plans (i.e., optimal relaxed solution-
extensions of search states) fast. Instead, one can approximate the length of an optimal
relaxed plan to a search state. Techniques of this kind were first, independently, proposed by
McDermott (1996) and by Bonet, Loerincs, and Geffner (1997), who developed the planners
Unpop (McDermott, 1996, 1999), and HSP1 (Bonet et al., 1997). Both these planners
perform forward state space search guided by an approximation of relaxed goal distance.
Unpop approximates that distance by backchaining from the goals, HSP1 approximates
that distance by a forward value iteration technique.

In the 1st international planning competition, IPC-1 (McDermott, 2000), hosted at
AIPS-1998, HSP1 compared well with the four other competitors. This inspired the de-
velopment of HSP-r and HSP2 (Bonet & Geffner, 1999, 2001b, 2001a), GRT (Refanidis &
Vlahavas, 1999, 2001), AltAlt (Nguyen & Kambhampati, 2000; Srivastava, Nguyen, Kamb-
hampati, Do, Nambiar, Nie, Nigenda, & Zimmermann, 2001), as well as FF (Hoffmann,
2000; Hoffmann & Nebel, 2001a; Hoffmann, 2001a). HSP-r avoids heuristic re-computations
by changing the search direction. HSP2 implements the various HSP versions in a config-
urable hybrid system. GRT avoids heuristic re-computations by changing the heuristic
direction (the direction in which relaxed plans are computed). AltAlt uses a planning
graph to extract heuristic values. FF uses a modified technique for approximating optimal
relaxed plan length (namely, by computing a not necessarily optimal relaxed plan, which
can be done in polynomial time), as well as new pruning and search techniques. FF in-
spired the integration of heuristic search engines into Mips (Edelkamp & Helmert, 2001)
and STAN4 (Fox & Long, 2001), using elaborated variations of FF’s relaxed plan length
estimation technique.

In the 2nd international planning competition, IPC-2 (Bacchus, 2001), hosted at AIPS-
2000, the heuristic planners dramatically outperformed the other approaches runtime-wise,
scaling up to benchmark examples far beyond reach of previous, e.g., Graphplan-based
(Blum & Furst, 1995, 1997), systems. This caused the trend towards heuristic planners
to still increase. Various researchers extended relaxed plan distance estimation techniques
to temporal and numeric settings (Do & Kambhampati, 2001; Hoffmann, 2002, 2003a;
Edelkamp, 2003b). Others adapted them for use in partial order plan-space search (Nguyen

1. For parallel planning, where the bound is on the number of parallel time steps needed, deciding bounded
plan existence is easy without delete lists. However, heuristic functions based on this observation have
generally not been found to provide useful search guidance in practice (see, for example, Haslum &
Geffner, 2000; Bonet & Geffner, 2001b).

686

Where “Ignoring Delete Lists” Works

& Kambhampati, 2001; Younes & Simmons, 2002), developed variations of them to provide
new means of heuristic guidance (Onaindia, Sapena, Sebastia, & Marzal, 2001; Sebastia,
Onaindia, & Marzal, 2001), or modified them to take exclusion relations in a planning graph
into account (Gerevini & Serina, 2002; Gerevini, Serina, Saetti, & Spinoni, 2003).

In the 3rd international planning competition, IPC-3 (Long & Fox, 2003), hosted at
AIPS-2002, out of 11 domain-independent competing systems, 7 were using relaxed plan
distance estimations in one or the other form. The 1st prize winner LPG (Gerevini & Serina,
2002; Gerevini, Saetti, & Serina, 2003) uses, amongst other heuristics, a relaxed planning
technique to estimate the difficulty of sub-goal achievement in a planning graph. In the
4th international planning competition, IPC-4 (Hoffmann & Edelkamp, 2005; Edelkamp,
Hoffmann, Englert, Liporace, Thiebaux, & Trüg, 2005), hosted at ICAPS-2004, out of 13
competing sub-optimal systems, 12 were using relaxed plan based heuristics. There were
two 1st prize winners in that category: Fast-Downward (Helmert, 2004; Helmert & Richter,
2004) and SGPlan (Chen & Wah, 2003; Chen, Hsu, & Wah, 2004). The latter uses the
numeric version of FF as a sub-process. One version of the former combines FF’s heuristic
estimates with a new heuristic function based on causal graph analysis (Helmert, 2004).

In the investigation at hand, we derive a formal background as to what classes of do-
mains methods of the kind described above are well suited for. We make two simplifying
assumptions. First, we consider forward state space search only, as used by, for example,
Unpop, HSP, Mips, FF, and Fast-Downward. In a forward state space search, one starts
at the initial state and explores the space of reachable states until a goal state is found.
The state transitions follow a sequential planning framework, where only a single action is
applied at a time.2 Assuming forward search makes the investigation easier since such a
search is a very natural and simple framework. Our second simplifying assumption is to
idealize matters in that we consider the heuristic value given by the optimal relaxed plan
length (the length of a shortest sequential relaxed plan) to each search state s; we denote
that value with h+(s). Under this assumption, as we will see there are many provable
connections between domain structure and heuristic quality. Of course, the simplifying as-
sumptions restrict the relevance of the results for practical planners. More on this is said
below in this section, and in Section 7. Another, more benign, restriction we make is to
consider solvable tasks only. This is a very common restriction in AI Planning, particularly
in the competitions, where the main focus is on how good planners are at finding plans.
More specifically, the main focus of the investigation at hand is to characterize the kinds of
domains in which (relaxed-plan based) heuristic planners can find plans fast.

It is common knowledge that the behavior of heuristic search methods (may they be
global or local, i.e., with or without backtracking mechanisms) depends crucially on the
quality of the underlying heuristic function. This has, for example, been studied in the
SAT community, for example by Frank, Cheeseman, and Stutz (1997). In their work, these
authors empirically investigate properties of the local search topology, i.e., of topological
properties like the sizes of local minima etc., in SAT instances under a standard heuristic
function. We adapt Frank et al.’s definitions to AI planning. In difference to Frank et
al., we take a more analytical approach where we prove properties that are valid across

2. In principle, a parallel forward search is possible, too. To the best of the author’s knowledge, there
is no published work about an implementation of this, at the time of writing. The main difficulty is,
presumably, the high branching factor.

687

Hoffmann

certain ranges, namely domains, of example problem instances. We investigate a range of
30 commonly used STRIPS and ADL benchmark domains including all examples used in
the first four international planning competitions. We identify several key characteristics of
the topology of the respective search spaces under h+. The characteristics are the following.

1. In 24 of the benchmark domains, there are no unrecognized dead ends, i.e., no states
from which the goal is unreachable but for which there is a relaxed plan.

2. In 17 of the above 24 benchmark domains, the “maximal exit distance from local
minima” is constantly bounded, i.e., one can always escape local minima (regions
where all neighbors have a higher heuristic value) within a number of steps that is
constant across all instances of the domain, regardless of their size (in fact, in 13 of
these domains there are no local minima at all).

3. In 12 of the above 17 benchmark domains, the “maximal exit distance from benches”
is constantly bounded, i.e., one can always escape benches (regions where all states
have the same heuristic value) within a number of steps that is constant across all
instances of the domain, regardless of their size (in 6 domains the bound is 1, in one
domain it is even 0).

Beside the “positive” results proving characteristic qualities of the h+ function, the
investigation also provides (parameterized) counter-examples in the negative cases. The
results divide the investigated domains (more generally, all possible planning domains) into
a meaningful taxonomy of classes which differ in terms of their topological behavior with
respect to h+. Many of the 30 investigated domains lie in relatively easy classes, i.e., classes
where h+ is a – provably – high-quality heuristic. Most particularly, the 12 domains with
all the above properties lie in classes where FF’s search algorithm is a polynomial solving
mechanism, under the idealizing assumption that FF’s approximative heuristic function
identifies the real h+ distances. FF’s search algorithm, called enforced hill-climbing, tries
to escape local minima or benches by means of a breadth-first search. Breadth-first search
is exponential only in the search depth. So if local minima and benches can always be
escaped from within a constant number of steps – as is the case in these 12 domains – then
the effort spent in the search is polynomially bounded. In this way, our results provide
non-trivial insights into typical-case problem structure (in benchmarks), and its possible
effects on search performance. Examples of successful theoretical investigations of this kind
are extremely rare in the AI literature.

To give the reader a feeling for what we are looking at, Figure 1 shows two visualized
state spaces. The shown tasks are instances of two domains from the easiest classes of the
taxonomy, Gripper and Logistics. The graph nodes are the states, the edges are the state
transitions (action applications), the height is given by the h+ value.3 In both pictures, the
initial state is somewhere in the left top part. The goal states are, of course, the states with
minimal – zero – h+ value. The Gripper picture speaks for itself. The Logistics topology
is less extreme, but still the state space forms one big valley at the bottom of which there
are the goal states.

3. The h+ values here, and in an empirical investigation (Hoffmann, 2001b, 2003b) preceding our theoretical
analysis, were computed by an iterative deepening forward search in the space of relaxed action sequences.

688

Where “Ignoring Delete Lists” Works

(a) (b)

Figure 1: Visualized state space under h+ of (a) a Gripper and (b) a Logistics instance.

Of course, FF’s approximation of h+, which we refer to as hFF , does not always identify
the real h+ values, and so it is a priori not evident what relevance the theoretical results
about h+ have for FF’s efficiency in practice. Additionally, most forward searching planners
do not use enforced hill-climbing, for which the topological results have the most striking
impact. Finally, and most importantly, several competitive other planners do not even
perform a forward search, or use additional/new techniques in the heuristic function that
are explicitly aimed at identifying better information than relaxed plans. Prominent systems
of the former kind are HSP-r and LPG, prominent systems of the latter kind are LPG and
Fast-Downward.

As for the relevance of the results for the performance of FF, the practical performance of
FF coincides quite well with them. More concretely, the behavior of h+ with respect to dead
ends is provably the same as that of hFF . Moreover, a large-scale empirical investigation
(contained in Hoffmann, 2003b) has shown that, in many domains, the topology of h+ is
largely preserved by hFF . We include a section containing a brief summary of these results.
The relevance of the topological results for forward search algorithms other than enforced
hill-climbing, and the performance of planners using other search paradigms or enhanced
heuristics, is discussed in Section 7.

We remark that our topological investigation was not specifically intended to identify
properties relevant to enforced hill-climbing. The theoretical investigation was preceded
by an empirical investigation (Hoffmann, 2001b, 2003b) where we measured all kinds of
topological parameters, including, for example, size and diameter of local minima, benches,
and other structures such as so-called “valley” regions. It turned out that the only topology
parameters that showed interesting behavior across a significant number of domains were
the maximal exit distance parameters considered in the investigation at hand. This, in fact,
came as a surprise to us – we invented enforced hill-climbing in FF before it became clear

689

Hoffmann

that many of the planning benchmarks share topological properties favoring precisely this
particular search algorithm.

Observe that the proved results are of a worst-case nature, i.e., a heuristic search using
h+ can show good behavior in an example suite of a domain even if that domain lies in
a very difficult class of the taxonomy – given the particular example instances in the test
suite do not emphasize on the worst cases possible in the domain. Where relevant, we will
discuss this issue with regards to the example suites used in the competitions.

The employed proof methods give hints as to how the topological phenomena might be
automatically detectable using general domain analysis techniques. In an extra section, we
report on a first (not yet very successful) attempt we made to do that.

The proofs for the individual planning domains are, in most cases, not overly difficult,
but the full details for all domains are extremely space consuming. The details (except for
the 5 IPC-4 domains), i.e., PDDL-like definitions of the domains as well as fully detailed
proofs, can be looked up in a long (138 pages) technical report (Hoffmann, 2003c) that also
forms an online appendix to the article.4 The article itself provides proof sketches, which
are much better suited to get an overall understanding of the investigation and its results.
Since even the proof sketches are sometimes hard to read, they are moved into an appendix;
another appendix provides brief descriptions of all domains. The main body of text only
gives the results and an outline of the main proof arguments used to obtain them.

The paper is organized as follows. Section 2 provides the necessary background, i.e.
a straightforward formal framework for STRIPS and ADL domains, an overview of the
investigated domains, and the definitions of local search topology. Section 3 presents some
core lemmas underlying many of the proofs in the single domains, and illustrates the lemmas’
application in a small example. Section 4 gives all the results with a brief proof outline,
and shows the resulting planning domain taxonomy. Section 5 presents the results relating
h+ to hFF , and Section 6 reports on our first attempt to design domain analysis techniques
for automatically detecting the h+ topological phenomena. Section 7 concludes the article
with a brief discussion of our contributions and of future work. Appendix A contains the
proof sketches for the individual domains, Appendix B contains the domain descriptions.

2. Background

Background is necessary on the planning framework, the investigated domains, and local
search topology.

2.1 Planning Framework

To enable theoretical proofs to properties of planning domains rather than single tasks, we
have defined a formal framework for STRIPS and ADL domains, formalizing in a straight-
forward manner the way domains are usually dealt with in the community. We only outline
the rather lengthy definitions, and refer the reader to the TR (Hoffmann, 2003c) for details.
In what follows, by sets we mean finite sets unless explicitly said otherwise.

4. We remark that the TR is not a longer version of the paper at hand. The TR’s overall structure and
presentation angle are very different, and it is only intended as a source of details if needed.

690

Where “Ignoring Delete Lists” Works

A planning domain is defined in terms of a set of predicates, a set of operators, and
a possibly infinite set of instances. All logical constructs in the domain are based on the
set of predicates. A fact is a predicate applied to a tuple of objects. The operators are
(k-ary, where k is the number of operator parameters) functions from the (infinite) set of
all objects into the (infinite) set of all STRIPS or ADL actions. A STRIPS action a is a
triple (pre(a), add(a), del(a)): a’s precondition, which is a conjunction of facts; a’s add list,
a fact set; and a’s delete list, also a fact set. An ADL action a is a pair (pre(a), E(a)) where
the precondition pre(a) is a first order logical formula without free variables, and E(a) is
a set of effects e of the form (con(e), add(e), del(e)) where con(e), the effect condition, is
a formula without free variables, and add(e) (the effect’s add list) as well as del(e) (the
effect’s delete list) are fact sets. If the add list of an action/effect contains a fact p, we also
say that the action/effect achieves p.

An instance of a domain is defined in terms of a set of objects, an initial state, and a goal
condition. The initial state is a set of facts, and the goal condition is a formula without free
variables (in the STRIPS case, a conjunction of facts). The facts that are contained in the
initial state are assumed to be true, and all facts not contained in it are assumed to be false,
i.e., as usual we apply the closed-world assumption. An instance of a domain constitutes,
together with the domain’s operators, a planning task (A, I,G) where the action set A is
the result of applying the operators to the instance’s objects (i.e., to all object tuples of the
appropriate lengths), and the initial state I and goal condition G are those of the instance.
We identify instances with the respective planning tasks.

A state s is a set of facts. A logical formula holds in a state if the state is a model of
the formula according to the standard definition for first order logic (where a logical atom,
a fact, holds iff it is contained in the state). The result Result(s, 〈a〉) of applying an action
sequence consisting of a single STRIPS or ADL action a to a state s is defined as follows.
If the action’s precondition does not hold in s, then Result(s, 〈a〉) is undefined. Otherwise,
Result(s, 〈a〉) is obtained from s by including all of a’s add effects, and (thereafter) removing
all of a’s delete effects – if a is an ADL action, only those add effects add(e) are included
(delete effects del(e) are removed) for which the respective effect condition con(e) holds in
s. The result of applying a sequence 〈a1, . . . , an〉 consisting of more than one action to a
state s is defined as the iterative application of the single actions in the obvious manner:
apply a1 to s, then apply a2 to Result(s, 〈a1〉), and so on.

A plan, or solution, for a task (A, I,G) is a sequence of actions P ∈ A∗ that, when
successively applied to I, yields a goal state, i.e., a state in which G holds. (We use the
standard notation M∗, where M is a set, to denote the set of all sequences of elements of
M .) For many proofs we need the notion of optimality. A plan P for a task (A, I,G) is
optimal if there is no plan for (A, I,G) that contains fewer actions than P .

Note that, as announced in the introduction, the definition, in particular the definition
of plan optimality, stays within the forward state space search framework where plans are
simple sequences of actions. Note also that ignoring the delete lists simplifies a task only if
all formulas are negation free. For a fixed domain, tasks can be polynomially normalized to
have that property: compute the negation normal form to all formulas (negations only in
front of facts), then introduce for each negated fact ¬B a new fact not-B and make sure it
is true in a state iff B is false (Gazen & Knoblock, 1997). This is the pre-process done in,

691

Hoffmann

for example, FF. In the investigation at hand, we have considered the normalized versions
of the domains.5

We also consider a few domains, from the IPC-4 collection, that feature derived predi-
cates. Such predicates are not affected by the effects of the operators, and their truth value
is instead derived from the values of the other, basic, predicates, via a set of derivation
rules. A derivation rule has the form φ(x) ⇒ P (x) where P is the derived predicate and
φ (a formula) is the rule’s antecedent, both using the free variables x. The obvious idea
is that, if φ(x) holds, then P (x) can be concluded. In a little more detail, the semantics
are defined as follows. In the initial state, and whenever an action was applied, first all
derived predicate instances (derived facts) are assumed to be false, then all derivation rules
are applied until a fixpoint occurs. The derived facts that could not be concluded until
then are said to be false (this is called negation as failure). Derived predicates can be used
just like any other predicate in the operator preconditions, in the effect conditions, and in
the goal condition. However, to ensure that there is a unique fixpoint of rule application,
the use of derived predicates in derivation rule antecedents is restricted (in the context of
IPC-4) to a positive use in the sense that these predicates do not appear negated in the
negation normal form of any rule antecedent (Hoffmann & Edelkamp, 2005).

To make ignoring delete lists a simplification, one also needs that the derived facts are
used only positively in the operator preconditions, effect conditions, and goal condition
(otherwise the derived predicates can, for example, be used to model negated precondi-
tions etc.). Due to the negation as failure semantics of derived predicates, there isn’t a
simple compilation of negations as in the pure ADL case. The approach we take here,
and that is implemented in, for example, the version of FF that treats derived predicates
(Thiebaux, Hoffmann, & Nebel, 2003, 2005), is to simply ignore (replace with true) negated
derived predicates in (the negation normal form of) operators and the goal (see also below,
Section 2.3).

2.2 Domains Overview

As said before, our case study covers a total of 30 commonly used STRIPS and ADL bench-
mark domains. These include all the examples from the first four international competitions,
plus 7 more domains used in the literature. Brief descriptions of all domains can be looked
up in Appendix B, full formal definitions of the domains (except the 5 IPC-4 domains) are
in the TR (Hoffmann, 2003c). Note that, for defining a domain, one must amongst other
things decide what exactly the instances are. Naturally, to do so we have abstracted from
the known example suites. In most cases the abstraction is obvious, in the less obvious
cases the respective subsection of Appendix B includes some explanatory remarks.

Here, we provide a brief overview of the 30 analyzed domains. The domains are cate-
gorized into three groups according to their semantics, at a high level of abstraction. The
categorization is not, in any way, related to the topological characterization we will derive
later. We use it only to give the overview some structure.

5. Ignoring delete lists in the normalized domains comes down to a relaxation that, basically, allows (the
translated) facts to take on both truth values at the same time.

692

Where “Ignoring Delete Lists” Works

1. Transportation domains. These are domains where there are locations, objects
that must be transported, and vehicles that are the means of transportation.6 Op-
erators mostly either move a vehicle, or load (unload) an object onto (from) a vehi-
cle. The domains differ in terms of various constraints. An important one is that, in
many domains, vehicles can move instantaneously between any two locations, while in
other domains the movable links between locations form arbitrary road maps. There
are 13 transportation domains in the collection we look at. Logistics – the classi-
cal transportation domain, where trucks/airplanes transport objects within/between
cities. Gripper – a robot with two gripper hands transports a number of balls (one
at a time in each hand) from one room to another. Ferry – a single ferry transports
cars one at a time. Driverlog – trucks need drivers on board in order to move, the
location links form bi-directional road maps (which can be different for trucks and
drivers). Briefcaseworld – a briefcase moves, by conditional effects, all objects along
that are inside it. Grid – a robot transports keys on a grid-like road map where
positions can be locked and must be opened with keys of matching shapes. Miconic-
STRIPS – an elevator transports passengers, using explicit actions to board/deboard
passengers. Miconic-SIMPLE – like Miconic-STRIPS, but passengers board/deboard
“themselves” by conditional effects of the action that stops the elevator at a floor.
Miconic-ADL – like Miconic-SIMPLE, but various constraints must be obeyed (for
example, VIPs first). Zenotravel – airplanes use fuel items that can be replenished
one by one using a refuel operator. Mprime – on an arbitrary road map, trucks use
non-replenishable fuel items, and fuel can be transferred between locations. Mystery
– like Mprime, but without the possibility to transfer fuel. Airport – inbound and
outbound planes must be moved safely across the road map of an airport.

2. Construction domains. These are generally not as closely related as the trans-
portation domains above. What the construction domains have in common, roughly,
is that a complex object must be built out of its individual parts. There are 6 such
domains in the collection we look at. Blocksworld-arm – the classical construction
domain, where blocks are picked up/put down or stacked onto/unstacked from each
other by means of a robot arm. Blocksworld-no-arm – like above, but blocks are
moved around directly from a block to a block / from the table to a block / from a
block to the table. Depots – a combination of Blocksworld-arm and Logistics, where
objects must be transported between locations before they can be stacked onto each
other. Freecell – an encoding of the solitaire card game that comes with Microsoft
Windows (the “complex object” to be constructed is the final position of the cards).
Hanoi – an encoding of the classical Towers of Hanoi problem. Assembly – a complex
object must be assembled together out of its parts, which themselves might need to
be assembled beforehand.

3. Other domains. There are 11 domains in the collection whose semantics do not
quite fit into either of the above groups. Simple-Tsp – a trivial STRIPS version of the

6. The term “transportation domains” was suggested, for example, by Long and Fox (2000) and Helmert
(2003). The transportation benchmarks are generally more closely related than the other groups of
domains overviewed below, and we will sometimes discuss transportation domains on a rather generic
level.

693

Hoffmann

TSP problem, where the move operator can be applied between any two locations.
Movie – in order to watch a movie, one must buy snacks, set the counter on the video
to zero, and rewind the tape. Tireworld – a number of flat tires must be replaced,
which involves various working steps (like removing a flat tire and putting on a new
one). Fridge – for a number of fridges, the broken compressors must be replaced,
which involves various working steps (like loosening/fastening the screws that hold
a compressor). Schedule – objects must be processed (painted, for example) on a
number of machines. Satellite – satellites must take images (of phenomena in space),
using appropriate instruments. Rovers – rovers must navigate along a road map, take
soil/rock samples as well as images, and communicate the resulting data to a lander.
Pipesworld – oil derivatives must be propagated through a pipeline network. PSR –
some lines must be re-supplied in a faulty electricity network. Dining-Philosophers –
the deadlock situation in the Dining-Philosophers problem, translated to ADL from
the automata-based “Promela” language (Edelkamp, 2003a), must be found. Optical-
Telegraph – similar to Dining-Philosophers, but considering an encoding of a telegraph
communication system.

2.3 Local Search Topology

Remember that we only consider solvable tasks, since the main focus of the investigation is
to characterize the kinds of domains in which heuristic planners can find plans fast. Some
discussion of unsolvable tasks is in Section 7.

Given a planning task (A, I,G). The state space (S, T) is a graph where S are all states
that are reachable from the initial state, and T is the set of state transitions, i.e., the set of
all pairs (s, s′) ∈ S × S of states where there is an action that leads to s′ when executed in
s. The goal distance gd(s) for a state s ∈ S is the length of a shortest path in (S, T) from s

to a goal state, or gd(s) = ∞ if there is no such path. In the latter case, s is a dead end; we
discuss such states directly below. A heuristic is a function h : S 7→ N∪ {∞}.7 A heuristic
can return ∞ to indicate that the state at hand might be a dead end.

Given a STRIPS action a = (pre(a), add(a), del(a)), the relaxation a+ of a is
(pre(a), add(a), ∅). Given an ADL action a = (pre(a), E(a)), the relaxation a+ of a is
(pre(a), E(a)+) where E(a)+ is the same as E(a) except that all delete lists are empty. For
a set A of actions, the relaxation A+ of A is A+ := {a+ | a ∈ A}. An action sequence
〈a1, . . . , an〉 is a relaxed plan for (A, I,G) if 〈a+

1 , . . . , a+
n 〉 is a plan for (A+, I,G). With that,

for any state s, h+(s) = min{n | P = 〈a1, . . . , an〉 ∈ A∗, P is relaxed plan for (A, s,G)},
where the minimum over an empty set is ∞.

In the presence of derived predicates, as said above we additionally relax the planning
task by ignoring (replacing with true) all negated derived predicates in the negation normal
forms of preconditions, effect conditions, and the goal condition. Note that, with this
additional simplification, it can happen that h+(s) is 0 although s is not a goal state,
because the simplification might relax the goal condition itself. Indeed, this happens in the
PSR domain. In all other domains we consider here, derived predicates are either not used
at all or used only positively, so there h+(s) = 0 iff s is a goal state.

7. While the article focuses mainly on the h+ heuristic, we keep the topology definitions – which do not
depend on the specific heuristic used – somewhat more general.

694

Where “Ignoring Delete Lists” Works

One phenomenon that is clearly relevant for the performance of heuristic state space
search is that of dead end states s, gd(s) = ∞. A heuristic function h can return h(s) = ∞.
Taking this as an indication that s is a dead end, the obvious idea is to remove s from the
search space (this is done in, for example, HSP and FF). This technique is only adequate if
h is completeness preserving in the sense that h(s) = ∞ ⇒ gd(s) = ∞ for all s ∈ S. With
a completeness-preserving heuristic, a dead end state s is called recognized if h(s) = ∞ and
unrecognized otherwise. Note that h+ is completeness preserving. If a task can not be solved
even when ignoring the delete lists, then the task is unsolvable. From now on we assume
that the heuristic we look at is completeness preserving. With respect to dead ends, any
planning state space falls into one of the following four classes. The state space is called:

1. Undirected, if, for all (s, s′) ∈ T , (s′, s) ∈ T .

2. Harmless, if there exists (s, s′) ∈ T such that (s′, s) 6∈ T , and, for all s ∈ S, gd(s) < ∞.

3. Recognized, if there exists s ∈ S such that gd(s) = ∞, and, for all s ∈ S, if gd(s) = ∞
then h(s) = ∞.

4. Unrecognized, if there exists s ∈ S such that gd(s) = ∞ and h(s) < ∞.

In the first class, there can be no dead ends because everything can be undone. In the
second class, some things can not be undone, but those single-directed state transitions do
not “do any harm”, in the sense that there are no dead end states. In the third class, there
are dead end states, but all of them are recognized by the heuristic function. The only
critical case for heuristic search is class four, where a search algorithm can run into a dead
end without noticing it. This is particularly relevant if, potentially, large regions of the
state space consist of unrecognized dead end states. To capture this, we define the depth of
an unrecognized dead end s as the number of states s′ such that s′ is an unrecognized dead
end, and s′ is reachable from s by a path that moves only through unrecognized dead ends.

Our investigation determines, for each of the 30 benchmark domains looked at, exactly in
which of the above four dead end classes the instances of the domain belong. For the domains
where it turns out that there can be unrecognized dead ends, we construct parameterized
examples showing that the unrecognized dead ends can be arbitrarily deep. In several
domains, individual instances can fall into different classes. In this case we associate the
overall domain with the worst-case class, i.e., the class with highest index in the above.
For example, in Miconic-ADL, if there are no additional constraints to be obeyed on the
transportation of passengers then the state space is harmless as in Miconic-SIMPLE. But
if constraints on, for example, the possible direction of travel and the access to floors are
given, then unrecognized dead ends can arise. To avoid clumsy language, henceforth, if we
say that a state space is harmless/recognized/unrecognized, then we mean that it falls into
the respective class, or into a class below it.

We now get into the definitions of general topological phenomena, i.e., of relevant prop-
erties of the search space surface. We adapt the definitions given for SAT by Frank et al.
(1997). The difference between the SAT framework there, and the planning formalism here,
lies in the possibly single-directed state transitions in planning. In the search spaces consid-
ered by Frank et al., all state transitions can be traversed in both directions. Single-directed

695

Hoffmann

state transitions can have an important impact on the search space topology, enabling, for
example, the existence of dead ends.8

The base entity in the state space topology are what Frank et al. name plateaus. These
are regions that are equivalent under reachability aspects, and look the same from the point
of view of the heuristic function. For l ∈ N∪{∞}, a plateau P of level l is a maximal subset
of S for which the induced subgraph in (S, T) is strongly connected, and h(s) = l for each
s ∈ P .9 Plateaus differ in terms of the possibilities of leaving their heuristic level, i.e., of
reaching an exit. For a plateau P of level l, an exit is a state s reachable from P , such that
h(s) = l and there exists a state s′, (s, s′) ∈ T , with h(s′) < h(s). Based on the behavior
with respect to exits, we distinguish between five classes of plateaus. We need the notion
of flat paths. These are paths in (S, T) on that the value of h remains constant.

1. A recognized dead end is a plateau P of level l = ∞.

2. A local minimum is a plateau P of level 0 < l < ∞ from that no exit is reachable on
a flat path.

3. A bench is a plateau P of level 0 < l < ∞, such that at least one exit is reachable
from P on a flat path, and at least one state on P is not an exit.

4. A contour is a plateau P of level 0 < l < ∞ that consists entirely of exits.

5. A global minimum is a plateau P of level 0.

Each plateau belongs to exactly one of these classes. Intuitively, the roles that the different
kinds of plateaus play for heuristic search are the following. Recognized dead ends can
be ignored with a completeness-preserving heuristic function. Local minima are difficult
because all neighbors look worse, so it is not clear in which direction to move next. Benches
are potentially easier, because one can step off them without temporarily worsening the
heuristic value. From contours, one can step off immediately.10

The main difficulty for a heuristic search is how to deal with the local minima and the
benches. In both cases, the search algorithm must (eventually) find a path to an exit in
order to get closer to the goal (as far as the heuristic function is informed about what is
closer to the goal and what is not). How difficult it is to find an exit can be assessed by a
variety of different parameters. The size (number of states) or diameter (maximum distance
between any two states) of the local minimum/the bench, and the number of nearby exit
states, to name some important ones. In the benchmarks considered, as mentioned in the
introduction, we empirically found that there are no (or very few) interesting observations
to be made about these parameters (Hoffmann, 2001b, 2003b).

8. One can, of course, introduce backtracking mechanisms into a search space, such as always giving the
planner the possibility to retract the last step. But that does not affect the relevant topological differences
between search spaces – instead of domains with/without dead ends, one gets domains where backtracking
is necessary/not necessary.

9. The difference to the undirected case is that we require the states on the plateau to be strongly connected
– with undirected state transitions this is trivially fulfilled by any set of connected states.

10. The differences to the undirected case lie in that there can be plateaus of level ∞, and that we allow exits
to not lie on the plateaus themselves. The latter is just a minor technical device to obtain a compact
terminology.

696

Where “Ignoring Delete Lists” Works

What one can frequently observe are interesting properties of the distance to the nearest
exit state. The distance dist(s, s′) between any two states s, s′ ∈ S is the usual graph
distance, i.e., the length of a shortest path from s to s′ in (S, T), or ∞ if there is no such
path. The exit distance ed(s) of a search state s is the distance to the nearest exit, i.e.:

ed(s) = min{d | d is the length of a path in (S, T) from s to a state s′ s.t. h(s′) = h(s),
and there exists a state s′′ s.t. (s′, s′′) ∈ T , and h(s′′) < h(s′) },

where, as before, the minimum over an empty set is ∞. Note that we do not require the
path in the definition to be flat, i.e., it may be that, in order to reach s′, we temporarily
have to increase the h+ value. This is because we want the definition to capture possible
“escape” routes from any state in the state space, including states that lie on local minima.

The maximal local minimum exit distance, mlmed(S, T), of a state space (S, T) is the
maximum over the exit distances of all states on local minima, or 0 if there are no such
states. The maximal bench exit distance, mbed(S, T), of a state space (S, T) is the maximum
over the exit distances of all states on benches, or 0 if there are no such states. We will find
that, in many of the considered domains, there are constant upper bounds on mlmed(S, T)
and/or mbed(S, T) under h+, i.e., bounds that are valid irrespectively of the (size of the)
instance chosen.

The following is an implication that is relevant for the subsequent investigation.

Proposition 1 Given a solvable task (A, I,G), with state space (S, T) and a completeness-
preserving heuristic h, where h(s) = 0 ⇒ gd(s) = 0 for s ∈ S. If there exists an unrecognized
dead end s ∈ S, then mlmed(S, T) = ∞.

Proof: Let s be an unrecognized dead end, and let s′ be a state reachable from s so that
the h value of s′ is minimal. Then s′ is an unrecognized dead end, too (in particular, s is
considered reachable from itself), and since h(s′) = 0 ⇒ gd(s′) = 0 we have h(s′) > 0. We
further have, since the h value of s′ is minimal among the states reachable from s, that
h(s′′) ≥ h(s′) for all states s′′ reachable from s′. Thus the plateau on which s′ lies is a local
minimum – no exits are reachable, in particular not on flat paths. This also shows that s′

has infinite exit distance. 2

Proposition 1 says that, in every region of unrecognized dead ends, there is a local
minimum, given h(s) = 0 ⇒ gd(s) = 0.11 With the above definitions, that unrecognized
dead end state yields an infinite local minimum exit distance. It makes sense to define
things this way because an (arbitrarily deep) unrecognized dead end is worse than any local
minimum: it can not be escaped from at all.

11. Remember that the latter can be untrue for h+ only if the domain features derived predicates that
appear negated in the negation normal form of the goal condition. And even then, by the argument in
the proposition, every region of unrecognized dead ends would contain a global minimum consisting of
non-solution states. We could have defined such “fake”-global minima to be local minima, but decided
against it in order to not overly complicate the topological definitions, and since that detail does not
seem very important. As said before, in all but one of our 30 domains we have h+(s) = 0 ⇔ gd(s) = 0
anyway.

697

Hoffmann

3. Some Core Lemmas

In many of the investigated domains, intuitively similar patterns of problem structure cause
the characteristic qualities of h+. Some of this common structure can be generalized and
captured in concise definitions and lemmas. The lemmas formulate sufficient criteria im-
plying that (the state space of) a planning task has certain topological properties. Proofs
for domains proceed, where possible, by applying the lemmas to arbitrary instances. In
several domains where the lemmas can not be applied immediately (due to syntactic details
of the domain definitions), similar proof arguments suffice to show the desired topological
properties.

We restrict ourselves to STRIPS tasks in the lemmas. Appropriate extensions to ADL
and/or to derived predicates are probably possible at least in certain cases, but we have not
investigated this in detail – such extensions are likely to be rather complicated notationally,
and the simpler STRIPS case suffices to transport the ideas.

initial state:
at(V,L1), at(O1, L1), at(O2, L2)

goal:
at(O1, L2), at(O2, L1)

actions:
name precondition add list delete list

move(l, l′) at(V, l) at(V, l′) at(V, l)

load(o, l) at(V, l), at(o, l) in(o, V) at(o, l)

unload(o, l) at(V, l), in(o, V) at(o, l) in(o, V)

Figure 2: A simple STRIPS transportation task.

Throughout the section, we assume we are given a STRIPS task (A, I,G). As an illus-
trative example for the definitions and lemmas, we will use the simple transportation task
defined in Figure 2. In what follows, there are three separate sections, concerned with dead
ends, local minima, and benches, respectively.

The definitions and lemmas in the following are not syntactical, in the sense that they
make use of informations that can not be computed efficiently (for example, inconsistencies
between facts). We do not discuss this, and focus exclusively on the role of the definitions
and lemmas as tools for proving h+ topology. The role of the definitions and lemmas as
tools for automatically detecting h+ topology will be discussed in Section 6.

3.1 Dead Ends

We first focus on criteria sufficient for the non-existence of dead ends. Our starting point is
a reformulated version of a simple result mentioned by, for example, Koehler and Hoffmann
(2000). We need the notion of inconsistency. Two facts are inconsistent if there is no
reachable state that contains both of them. A set of facts F is inconsistent with another set

698

Where “Ignoring Delete Lists” Works

of facts F ′ if each fact in F is inconsistent with at least one fact in F ′.12 An action a ∈ A

is invertible if:

(1) add(a) is inconsistent with pre(a);

(2) del(a) ⊆ pre(a);

(3) there is an action a ∈ A such that

(a) pre(a) ⊆ (pre(a) ∪ add(a)) \ del(a),

(b) add(a) = del(a), and

(c) del(a) = add(a).

The intentions behind these requirements are the following. (1) and (2) ensure that
a’s effects all occur, (3a) ensures that a is applicable, and (3b) and (3c) ensure that a

undoes a’s effects. As an example, all actions in the illustrative task from Figure 2 are
invertible. For example, an a = move(l, l′) action is inverted by a = move(l′, l). To see that,
simply insert the definitions: add(a) = {at(V, l′)} is inconsistent with pre(a) = {at(V, l)};
del(a) = {at(V, l)} = pre(a); pre(a) = {at(V, l′)} = add(a); add(a) = {at(V, l)} = del(a);
del(a) = {at(V, l′)} = add(a). Similarly easily, one sees that load(o, l) and unload(o, l)
invert each other. Examples of benchmark domains with invertible actions are Blocksworld
(in both variants), Logistics, and Gripper.

Lemma 1 [Koehler & Hoffmann, 2000] Given a STRIPS planning task (A, I,G). If all
actions a ∈ A are invertible, then the state space of the task is undirected.

Proof: For any state s and applicable action a, a is applicable in Result(s, 〈a〉) due to
condition (3a) of invertibility. Conditions (1) and (2) make sure that a’s effects do in fact
appear (condition (1) requires that each fact in the add list is inconsistent with at least one
fact in the precondition), and conditions (3b) and (3c) make sure that a undoes exactly
those effects. 2

We remark that, in contrast to what one may think at first sight, a task can have an
undirected state space even if some actions are not invertible in the above sense. Imagine,
for example, an action a where del(a) = {p} and pre(a) = {p′}, and, due to the domain
semantics, if p′ is true then p is also true. This means that a’s delete effect always appears;
however, this can not be detected with the simple syntax check, del(a) ⊆ pre(a), used in
the definition above.

We next provide a new criterion that is weaker – more broadly applicable – than
Lemma 1, and that only implies the non-existence of dead ends. The criterion is based
on a weaker version of invertibility, and on two alternative properties whose combination
can make an action “safe”.

To make an action a not lead into a dead end, it is already sufficient if the inverse action
re-achieves at least what has been deleted, and does not delete any facts that have been true

12. It may seem more natural to define inconsistency between fact sets in a symmetrical fashion, demanding
that every fact in F be inconsistent with every fact in F ′. In our context here, that definition would be
stronger than what we need.

699

Hoffmann

before. That is, given a state s in which a is applicable, applying a in Result(s, 〈a〉) leads
us back to a state s′ that satisfies s′ ⊇ s. Formally, an action a ∈ A is at least invertible if
there is an action a ∈ A such that:

(1) pre(a) ⊆ (pre(a) ∪ add(a)) \ del(a),

(2) add(a) ⊇ del(a), and

(3) del(a) is inconsistent with pre(a).

Condition (1) here ensures, as before, that a is applicable in Result(s, 〈a〉). Condition
(2) ensures that a re-achieves every fact that was deleted by a. Condition (3) ensures
that the facts deleted by a were not true in s anyway. Note that any invertible action is
also at least invertible. Conditions (1) and (2) are obviously given. As for condition (3),
if del(a) = add(a) (condition (3c) of invertibility), and add(a) is inconsistent with pre(a)
(condition (1) of invertibility), then del(a) is inconsistent with pre(a). So “invertible” is
stronger than “at least invertible”; we chose the name “at least” for the latter to illustrate
that, with this definition of invertibility, a potentially “re-”achieves more facts than we had
in the original state s.

As an example, consider what happens if we modify the move(l, l′) action in Figure 2 to
include a visited(l′) fact in its add list. The resulting action is no longer invertible because
move(l′, l) does not delete visited(l′). If we apply, in state s, move(l, l′) and move(l′, l)
in sequence, then now that gets us to a state s′ that is identical to s except that it also
includes visited(l) and visited(l′), which may not have been true before. Move actions of
this kind form the Simple-Tsp domain. They are at least invertible in the above sense:
pre(move(l′, l)) = {at(V, l′)} = add(move(l, l′)); add(move(l′, l)) = {at(V, l), visited(l)} ⊇
{at(V, l)} = del(move(l, l′)); del(move(l, l′)) = {at(V, l′)} is inconsistent with {at(V, l)} =
pre(move(l, l′)).

Another property implying that an action can not lead into dead ends is this. If the
action must be applied at most once (because its add effects will remain true), and it deletes
nothing but its own preconditions, then that action needs not be inverted. Formally, an
action a ∈ A has static add effects if:

add(a) ∩
⋃

a′∈A

del(a′) = ∅.

An action a ∈ A has relevant delete effects, if:

del(a) ∩ (G ∪
⋃

a6=a′∈A

pre(a′)) 6= ∅.

If del(a)∩(G∪
⋃

a6=a′∈A pre(a′)) = ∅, then we say that a has no relevant delete effects, which
is the property we will actually be interested in. In the illustrative task from Figure 2,
imagine we disallow unloading an object at its initial location, and loading an object at
its goal location. Then the remaining unload actions (unload(O1, L2) and unload(O2, L1))
have static add effects – no action can delete the goal position of an object – and no relevant
delete effects – the only action that needs an object to be in the vehicle is the respective
unload at the goal location. Actions that have such characteristics are, for example, the

700

Where “Ignoring Delete Lists” Works

actions that make passengers get out of the lift in Miconic-STRIPS (a passenger can get
into the lift only at his/her origin floor, and get out of the lift only at his/her destination
floor). Another example is contained in the Tireworld domain, where there is an action
that inflates a flat wheel: there is no “de-flating” action and so the add effects are static;
no action nor the goal needs a wheel to be flat so there are no relevant delete effects.

Lemma 2 Given a solvable STRIPS planning task (A, I,G). If it holds for all actions
a ∈ A that either

1. a is at least invertible, or

2. a has static add effects and no relevant delete effects,

then the state space of the task is harmless.

Proof: In short, to any reachable state s = Result(I, 〈a1, . . . , an〉) a plan can be constructed
by inverting 〈a1, . . . , an〉 (applying the respective inverse actions in the inverse order), and
executing an arbitrary plan for (A, I,G) thereafter. In these processes, actions that are not
(at least) invertible can be skipped because by prerequisite they have static add effects and
no relevant delete effects.

In more detail, the proof argument proceeds as follows. To any reachable state s =
Result(I, 〈a1, . . . , an〉) ∈ S, we identify a solution P for (A, s,G). Let 〈p1, . . . , pm〉 ∈ A∗ be
a solution for (A, I,G) (which exists as (A, I,G) is solvable by prerequisite). We construct
P with the algorithm shown in Figure 3.

M := ∅
for i := n . . . 1 do

if ai is at least invertible by ai then

if ai 6∈ M apply ai endif

else M := M ∪ {ai}
endif

endfor

for i := 1 . . . m do

if pi 6∈ M then apply pi endif

endfor

Figure 3: Constructing plans in tasks where all actions are either at least invertible, or have
static add effects and no relevant delete effects.

In the algorithm, M serves as a kind of memory set for the actions that could not be
inverted. We need to prove that the preconditions of all applied actions are fulfilled in the
state where they are applied, and that the goals are true upon termination. Let us start
with the first loop. We denote by si := result(I, 〈a1, . . . , ai〉) the state after executing the

701

Hoffmann

ith action on the path to s, and by s′i the state before the first loop starts with value i. We
prove:

s′i ⊇ (si ∩ (G ∪
⋃

a∈A\Mi

pre(a))) ∪
⋃

a∈Mi

add(a)

Mi here denotes the current state of the set. We proceed by backward induction over i.
If i = n, we got s′i = si and Mi = ∅, so the equation is trivially true. Now assume the
equation is true for i ≥ 1. We prove that the equation holds for i − 1. If ai is not at least
invertible, then no action is applied, s′i−1 = s′i, and Mi−1 = Mi ∪ {ai}. Concerning the
left hand side of the expression on the right hand side of the equation, we observe that ai

does by prerequisite not delete any fact from G ∪
⋃

a∈A\Mi−1
pre(a) (Mi−1 contains ai), so

all relevant facts from si−1 have already been true in s′i. Concerning the right hand side
of the expression on the right, we observe that the facts in add(ai) are never deleted by
prerequisite, so

⋃
a∈Mi−1

add(a) is contained in s′
i
. Now assume that ai is at least invertible

by ai. We got Mi−1 = Mi. Assume ai is applied, i.e., ai 6∈ Mi. It is applicable because its
preconditions are contained in si, and it is not an element of Mi. For the resulting state
s′i−1, all facts that ai has deleted from si−1 are added, and only facts are deleted that have
not been true in si−1 anyway; also, none of the add effects of actions in Mi is deleted, so the
equation is fulfilled. Finally, if ai is not applied, ai ∈ Mi, then ai has static add effects and
was applied before, so its add effects are contained in s′i, and ai’s delete effects are empty.

Inserting i = 0 in the equation we have just proved, we get

s0 ⊇ (I ∩ (G ∪
⋃

a∈A\M0

pre(a))) ∪
⋃

a∈M0

add(a)

The second loop starts from s0. So we start a solution plan, excluding the actions in a
set M0, from a state including all initial facts that are contained in the goal or in the
precondition of any action not in M0. As the state additionally contains all add effects of
all actions in M0, and those add effects are not deleted by any action, it is clear that we
can simply skip the actions in M0 and achieve the goal. 2

As an example to illustrate the proof, consider a reachable state in the Tireworld domain.
Every action is invertible, except the action that inflates a wheel. Say, as in the proof, we
are in a state s reached by the action sequence 〈a1, . . . , an〉. What the algorithm in Figure 3
will do is, undo everything we have done, by applying the respective ai actions, except for
the inflating actions ai. The latter will be stored in the set M . This gets us to a state
that is identical to the initial state, except that we have already inflated some of the flat
wheels (those corresponding to the actions in M). From that state, the algorithm executes
an arbitrary solution, skipping the previously applied inflating actions (in M).

3.2 Local Minima

We define an important kind of relationship between the role of an action in the real task
and its role in the relaxed task. Combining this definition with the notions of at least
invertible actions, and (no) relevant delete effects, yields a criterion that is sufficient for the
non-existence of local minima under h+ (or, equivalently, for 0 being an upper bound on
the maximal local minimum exit distance). The criterion can be directly applied in 7 of the

702

Where “Ignoring Delete Lists” Works

30 investigated domains, and can be applied with slight modifications in 2 more domains.
Many of the more individual proofs make use of similar, albeit somewhat more complicated,
proof arguments.

The key property behind the lack of local minima under h+ is, most of the time, that
every action that is good for solving the real task is also good for solving the relaxed task.
Formally, an action a ∈ A is respected by the relaxation if:

for any reachable state s ∈ S such that a starts an optimal plan for (A, s,G), there is an
optimal relaxed plan for (A, s,G) that contains a.

Note that one can assume the relaxed plan to start with a, since in the relaxation it can
only be better to apply an action earlier.

All actions in the illustrative task from Figure 2 are respected by the relaxation. Con-
sider the move(l, l′) actions, for example. If, in a state s, an optimal plan starts with
move(l, l′), then there must be a good reason for this. Either a) at l′ there is an object that
has yet to be transported, or b) an object is in the truck that must be transported to l′. In
both cases, any relaxed plan must also transport the object, and there is no chance of doing
so without moving to l′ at some point. Similarly, if an optimal plan starts with a load(o, l)
action, then this means that o must be transported somewhere else, and the relaxed plan
does not get around loading it. Finally, if an optimal plan starts with an unload(o, l) action,
then this means that l is the goal location of o, and any relaxed plan will have to include
that action.

Similar arguments as the above can be applied in many transportation domains. The
argument regarding move actions becomes a little more complicated if there are non-trivial
road maps, unlike in the illustrative example where there are only two locations that are
reachable in a single step from each other. Say the road map is a (any) directed graph,
and we modify the move action from Figure 2 only in that we add a precondition fact
demanding the existence of an edge from l to l′. Then all move actions are still respected by
the relaxation, because ignoring delete lists does not affect the shape of the road map. Any
optimal real path from a location l to a location l′ coincides with an optimal relaxed path
of movements from l to l′ (even though the result of executing the path will be different).
From there, the claim follows with the same argument as above, namely, that an optimal
plans moves from l to l′ only if some object provides a reason for doing so.

If a transportation domain features additional constraints on, or side effects of, the move
actions, then they may not be respected by the relaxation. We give an example below, after
formulating our main lemma regarding local minima under h+.

Note that there can exist local minima even if all actions are respected by the relaxation.
Consider the following transportation task, featuring single-directional edges in the road
map graph. As argued above, all actions are respected by the relaxation. A vehicle and
two objects o1, o2 are initially at l; o1 must go to l1 and o2 must go to l2; the edge from l

to l1 is single-directed and the edge from l to l2 is single-directed; between l1 and l2, there
is a path of n bi-directional (undirected) edges. The optimal relaxed plan for the state s

where, from the initial state, o1 and o2 were loaded, has length 4: move from l to l1 and l2,
and unload o1 and o2 at l1 and l2, respectively. However, once one moved, in s, to either l1
or l2, the optimal relaxed plan length goes up to n + 2, since the entire path between l1 an

703

Hoffmann

l2 must be traversed. So s lies on a local minimum, given that n > 2; note that, by setting
n to arbitrarily high values, we get a local minimum with arbitrarily large exit distance.

It turns out that preventing the above example, precisely, making use of the notions of
invertibility and of relevant delete effects, as introduced above, suffices to get rid of local
minima under h+.

Lemma 3 Given a solvable STRIPS task (A, I,G), such that the state space (S, T) does
not contain unrecognized dead ends. If each action a ∈ A

1. is respected by the relaxation, and

2. is at least invertible or has no relevant delete effects,

then there are no local minima in (S, T) under evaluation with h+.

Proof: The states with gd(s) = ∞ are not on local minima by prerequisite, with h+(s) = ∞.
We will prove that, in every reachable state s with 0 < gd(s) 6= ∞, if an action a starts
an optimal plan for (A, s,G), then h+(Result(s, 〈a〉)) ≤ h+(s). This proves the lemma:
iterating the argument, we obtain a path from s to a goal state s′, where the value of h+

does not increase on the path. This means that from s an exit is reachable on a flat path –
h(s′) = 0 < h(s) so at some point on the path the h+ value becomes lower than h(s), thus
s can not lie on a local minimum.

Let s be a reachable state with 0 < gd(s) 6= ∞. Let a be an action that starts an
optimal plan for (A, s,G). We denote s′ := Result(s, 〈a〉). The action is respected by the
relaxation, so there is an optimal relaxed plan P+(s) for (A, s,G) that starts with a.

Case (A), removing a from P+(s) yields a relaxed plan for (A, s′, G). Then h+(s′) <

h+(s) follows, and we are finished. This is the case, in particular, if a has no relevant delete
effects: the facts that a deletes are not needed by any other action nor by the goal, so P+(s)
without a achieves the goal starting from s′ (where a has already been applied).

Case (B), assume removing a from P+(s) does not yield a relaxed plan for s′. Then,
with what was said before, a does have relevant delete effects, and must thus be at least
invertible. That is, there is an action a ∈ A with pre(a) ⊆ (pre(a) ∪ add(a)) \ del(a) and
add(a) ⊇ del(a). The action a is guaranteed to be applicable in s′, and it re-achieves a’s
delete effects. Denote by P+(s′) the action sequence that results from replacing, in P+(s),
a with a. Then P+(s′) is a relaxed plan for (A, s′, G). This can be seen as follows. Observe
that, by definition, P+(s) without a is a relaxed plan for Result(s, 〈a+〉) (we abbreviate
the notation somewhat to improve readability). The desired property now follows because
Result(s′, 〈a+〉) is a superset of Result(s, 〈a+〉): we have Result(s, 〈a+〉) = s ∪ add(a),
s′ = (s ∪ add(a)) \ del(a), and add(a) ⊇ del(a). So P+(s′) is a relaxed plan for (A, s′, G),
yielding h+(s′) ≤ h+(s). 2

The proof to Lemma 3 demonstrates along which lines, typically, the proof arguments
in this investigation proceed. Given a state s, consider an action a that starts an optimal
plan for s, and consider an optimal relaxed plan P+ for s (that contains a, ideally). Then,
determine how P+ can be modified to obtain a relaxed plan for the state that results from
a’s execution. This technique forms the basis of literally all proofs except those concerned
with dead ends. Note that the second prerequisite of Lemma 3 is fulfilled by planning

704

Where “Ignoring Delete Lists” Works

tasks qualifying for the undirectedness or harmlessness criteria given by Lemmas 1 and 2.
Note also that, with what was said above, we have now proved that the state space of the
illustrative example in Figure 2 is undirected, and does not contain any local minima under
h+.

Domains where all actions are respected by the relaxation are, for example, the STRIPS
transportation domains Logistics, Gripper, Ferry, and Miconic-STRIPS. In all these cases,
the respective proof arguments are very similar to what we said above. It is instructive
to have a look at some examples where an action is not respected by the relaxation. In a
transportation domain, this can, for example, happen due to fuel usage as a “side effect”
of moving. Concretely, in the Mystery domain, applying a move action deletes a fuel unit
at the start location (the location in that the move starts). If fuel is running low at some
locations, a (real) plan may have to move along fuel-rich deviations in the road map. A
relaxed plan does not need to do that – it can always move along the shortest connections
on the map – because, there, the actions do not delete the fuel units.

Formulated somewhat more generally, relaxed plans can take “short-cuts” that don’t
work in reality. If these short-cuts are disjoint (in the starting actions) with the real solution
paths, then local minima may arise even if all actions are (at least) invertible. In the above
discussed transportation case, the short-cuts correspond in a very intuitive manner to what
one tends to think about as short-cuts (on a road map, namely). This is not the case in
general, i.e., in other kinds of domains. Consider the Blocksworld-arm state depicted in
Figure 4.

A

C

B C

B

Figure 4: A local minimum state in Blocksworld-arm. The goal is to have B on the table,
and C on B.

In the depicted state, denoted s, B is on A is on the table, and the arm holds C. The
goal is to have B on the table, and C on B.13 The only optimal plan for s is to put C down
on the table, then unstack B from A and put it down on the table, then pickup C and stack
it onto B. The only optimal relaxed plan for s, however, is to stack C onto B immediately,
then unstack B from A, then put B down to the table. The “short-cut” here is that the
relaxed plan does not have to put C down on the table, because stacking C onto B does
not delete the fact that declares B’s surface as unoccupied. As a result, s lies on a local

13. Usually, in Blocksworld there are no goals demanding a block to be on the table. In the example, this is
done only for the sake of simplicity: one could just introduce one more block D and demand that B be
on D for the goal.

705

Hoffmann

minimum under h+.14 The reason, intuitively, why h+ does not yield any local minima in
many domains, is that “vicious” short-cuts like in this example just don’t happen.

3.3 Benches

We could not find a nice general sufficient criterion implying upper bounds on the maximal
exit distance from local minima – except the special case above where there are no local
minima at all and thus 0 is an upper bound on the maximal local minimum exit distance.
We did, however, find a simple proof argument determining an upper bound on the maximal
exit distance from benches, in tasks that qualify for the application of Lemma 3. The proof
argument works, sometimes with slight modifications, in all the 7 domains where Lemma 3
can be directly applied – in all these domains, the maximal bench exit distance is bounded
by 1 (bounded by 0, in one case).

The proof argument is based on observing that, in many domains, some of the actions
have only delete effects that are irrelevant (for the relaxed plan, at least) once the action was
applied on an optimal solution path. Formally, an action a ∈ A has relaxed-plan relevant
delete effects if:

for any reachable state s ∈ S such that a starts an optimal plan for (A, s,G), there is no
optimal relaxed plan 〈a, a1, . . . , an〉 for (A, s,G) such that del(a) ∩ (G ∪

⋃
n
i=1 pre(ai)) = ∅.

If, for any reachable state s ∈ S such that a starts an optimal plan for (A, s,G), there is an
optimal relaxed plan 〈a, a1, . . . , an〉 for (A, s,G) such that del(a) ∩ (G ∪

⋃
n
i=1 pre(ai)) = ∅,

then we say that a has no relaxed-plan relevant delete effects, which is the property we will
actually be interested in. With this notation, if a has no relaxed-plan relevant delete effects,
and it starts an optimal plan for s, then a relaxed plan for Result(s, 〈a〉) can be constructed
as the sequence 〈a1, . . . , an〉, i.e., by skipping a from the relaxed plan for s. Thus the h+

value decreases from s to Result(s, 〈a〉). Note that n can be set to 0 if a results in a goal
state from s. Note also that, by definition, any action with no relaxed-plan relevant delete
effects is respected by the relaxation; if an action is not respected by the relaxation, then
we can not claim anything about h+ anyway. Note finally that, assuming an action a that
is respected by the relaxation, if a has no relevant delete effects, i.e., if a does not delete a
goal or any precondition of another action, then a also has no relaxed-plan relevant delete
effects in the sense of our definition.

Consider again our illustrative example from Figure 2. Say we have a state s in which
load(o, l) starts an optimal plan. This means that o has yet to be transported, to a location
l′ 6= l. In particular, it means that at(o, l) is not a goal, and it follows that the action
– whose only delete effect is at(o, l) – has no relevant delete effects (no other action has
at(o, l) in its precondition). Further, say unload(o, l) starts an optimal plan in s. This
means that l is the goal location of o. After applying the action, the goal for o will be
achieved, and no action will need to refer to o again, in particular no action will require o to
be inside the vehicle, which is the only delete effect of unload(o, l). So that action neither

14. We have h+(s) = 3. The h+ value after, in s, putting C down to the table is 4 (any relaxed plan has to
apply two actions for each of the two goals). The h+ value after stacking, in s, C onto B is still 3 (the
relaxed plan is unstack C B, unstack B A, put down B), but from there the only successor state is to
unstack C from B again, going back to s.

706

Where “Ignoring Delete Lists” Works

has relaxed-plan relevant delete effects. In contrast, consider the move(l, l′) action, that
deletes at(V, l). Say we are in the state s where O1 has been loaded into V from the initial
state of the task. Then move(L1, L2) starts an optimal plan for s, and any relaxed plan
for Result(s, 〈move(L1, L2)〉) has to include the action move(L2, L1), moving back from L2

to L1 in order to be able to transport O2. So the delete effect of move(L1, L2), namely
at(V,L1), is relaxed-plan relevant.

If, in a task satisfying the prerequisites of Lemma 3, an optimal starting action has no
relaxed-plan relevant delete effects, then one can apply case (A) in the proof of Lemma 3,
and obtain a smaller h+ value. To bound the maximal exit distance from benches, all we
need to do is to identify a maximum number of steps after which that will happen.

Lemma 4 Given a solvable STRIPS task (A, I,G) that satisfies the prerequisites of
Lemma 3. Let d be a constant so that, for every non dead-end state s ∈ S, there is an
optimal plan 〈a1, . . . , an〉 where the d-th action, ad, has no relaxed-plan relevant delete ef-
fects. Then mbed(S, T) ≤ d − 1.

Proof: Let s be a reachable state with 0 < gd(s) 6= ∞. Let 〈a1, . . . , an〉 be an optimal plan
for (A, s,G), where ad has no relaxed-plan relevant delete effects. Denote, for 0 ≤ i ≤ n,
si := Result(s, 〈a1, . . . , ai〉). With the argumentation in Lemma 3, we have h+(si) ≤ h+(s)
for all i. Consider the state sd−1. By prerequisite, there is an optimal relaxed plan for
(A, sd−1, G) that has the form 〈ad, a

′
1, . . . , a

′
m〉, where del(ad)∩ (G∪

⋃
m
i=1 pre(a′i)) = ∅. But

then, obviously, 〈a′1, . . . , a
′
m〉 is a relaxed plan for sd, and so h+(sd) ≤ h+(sd−1) − 1. The

distance from s to sd−1 is d − 1, and so the lemma follows. 2

Lemma 4 can be directly applied in 5 of the 7 domains that qualify for Lemma 3. Its
proof argument can, in a somewhat more general version, be applied in the 2 other domains
as well – namely, in Ferry and Gripper, where loading an object deletes space in the vehicle –
and in one more domain – namely, Miconic-SIMPLE, that uses some simple ADL constructs.
In the other domains where we proved an upper bound on the maximal exit distance from
benches (and/or an upper bound on the maximal exit distance from local minima), the
proof arguments are (a lot, sometimes) more complicated. Reconsidering the illustrative
example, as stated above the load and unload actions have no relaxed-plan relevant delete
effects, while the move actions do. Now, obviously, since the two locations are accessible
from each other with a single move, no optimal plan applies more than one move action
in a row, i.e., in any optimal plan the first or second action will be a load/unload. With
Lemma 4 this tells us that the maximal exit distance from benches is bounded by 1. A very
similar argument can be applied in all other transportation domains where every pair of
locations is connected via a single move (as in, for example, Logistics). More generally, in
(the standard encoding of) a transportation domain with no other constraints (regarding,
for example, fuel), and with an undirected road map graph, the exit distance is bounded
by the diameter of the road map graph, i.e., by the maximum distance of any two locations
(nodes) in the graph. The “worst” thing a solution plan might have to do is to traverse the
entire road map before loading/unloading an object.15

15. With directed road map graphs, as explained above, local minima can arise. More technically, Lemma 3
can not be applied, and so Lemma 4 can not be applied either.

707

Hoffmann

4. A Planning Domain Taxonomy

We now list our proved results, with brief explanations of how we obtained these results.
We then summarize the results in the form of a planning domain taxonomy.

We group the “positive” results – those which prove the non-existence of topological
phenomena that are problematic for heuristic search – together in single theorems. The
“negative” results are shown separately by sketching counter examples. We consider dead
ends, local minima, and benches in that order. Remember that, with respect to dead ends,
the only problematic case for heuristic search is when there are unrecognized dead ends, c.f.
Section 2.3.

Theorem 1 The state space of any solvable instance of

1. Blocksworld-arm, Blocksworld-no-arm, Briefcaseworld, Depots, Driverlog, Ferry,
Fridge, Gripper, Hanoi, or Logistics is undirected,

2. Grid, Miconic-SIMPLE, Miconic-STRIPS, Movie, Pipesworld, PSR, Satellite,
Simple-Tsp, Tireworld, or Zenotravel is harmless,

3. Dining-Philosophers, Optical-Telegraph, Rovers, or Schedule is recognized under eval-
uation with h+.

In Blocksworld-arm, Blocksworld-no-arm, Driverlog, Ferry, Gripper, Hanoi, and Logis-
tics, Lemma 1 can be directly applied. In Briefcaseworld, Depots, and Fridge, due to some
subtleties the actions are not invertible in the syntactical sense, but it is easy to show
that every action has an inverse counterpart. In Movie, Miconic-STRIPS, Simple-Tsp, and
Tireworld, Lemma 2 can be directly applied, in Grid and Miconic-SIMPLE similar proof
arguments as used in Lemma 2 suffice. In Pipesworld, PSR, Satellite, and Zenotravel, some
easy-to-see more individual domain properties prove the absence of dead ends. In the do-
mains where all dead ends are recognized by h+, the individual domain properties exploited
in the proofs are somewhat more involved. For example, in Rovers there is a plan to a state
if and only if, for all soil/rock samples and images that need to be taken, there is a rover
that can do the job, and that can communicate the gathered data to a lander. The only
chance to run into a dead end is to take a soil/rock sample with a rover that can not reach
a lander (the soil/rock sample is available only once). But then, there is no relaxed plan to
the state either.

In the 6 domains not mentioned in Theorem 1 (Airport, Assembly, Freecell, Miconic-
ADL, Mprime, Mystery), it is easy to construct arbitrarily deep unrecognized dead ends
(arbitrarily long paths of unrecognized dead ends). For example, in Mystery and Mprime
the relaxed plan can still achieve the goal in situations where too much fuel was consumed
already; in Airport, two planes that block each other’s paths may move “across” each other
in the relaxed plan.

The positive results regarding local minima are these.

Theorem 2 Under h+, the maximal local minimum exit distance in the state space of any
solvable instance of

708

Where “Ignoring Delete Lists” Works

1. Blocksworld-no-arm, Briefcaseworld, Ferry, Fridge, Grid, Gripper, Hanoi, Logistics,
Miconic-SIMPLE, Miconic-STRIPS, Movie, Simple-Tsp, or Tireworld is 0,

2. Zenotravel is at most 2, Satellite is at most 4, Schedule is at most 5, Dining-
Philosophers is at most 31.

In Ferry, Gripper, Logistics, Miconic-STRIPS, Movie, Simple-Tsp, and Tireworld,
Lemma 3 can be applied. In Fridge and Miconic-SIMPLE, the actions do not adhere syn-
tactically to the definitions of invertibility and (no) relevant delete effects, but have similar
semantics. So Lemma 3 can not be directly applied, but similar arguments suffice: it is easy
to see that all actions are respected by the relaxation, and the proof of Lemma 3 can be in-
dividually adapted to take into account the particular properties regarding invertibility and
relevant delete effects. (For example, if a passenger gets out of the lift in Miconic-SIMPLE,
then the delete effect is that the passenger is no longer inside the lift, which does not matter
since the passenger has reached her destination.) In Blocksworld-no-arm, Briefcaseworld,
and Grid, rather individual (and sometimes quite involved) arguments prove the absence
of local minima under h+. The proof method is, in all cases, to consider some state s and
identify a flat path from s to a state with better h+ value. For example, in Grid this is done
by moving along a path of locations contained in the relaxed plan for s, until a key can
be picked up/put down, or a lock can be opened (this is a very simplified description, the
actual procedure is quite complicated). In Hanoi, one can prove that the optimal relaxed
solution length for any state is equal to the number of discs that are not yet in their final
goal position. This suffices because no optimal plan moves a disc away from its final posi-
tion. Note that, thus, the Hanoi state spaces under h+ are a sequence of benches decreasing
exponentially in diameter and size.

In Zenotravel, Satellite, and Schedule, the proofs proceed by identifying a constant
number of steps that suffices to execute one action a in the optimal relaxed plan for a state
s, and, without deleting a’s relevant add effects, to re-achieve all relevant facts that were
deleted by a. In Dining-Philosophers (as well as Optical-Telegraph), due to the subtleties of
the PDDL encoding – which was, as said, obtained by an automatic compilation from the
automata-based “Promela” language (Edelkamp, 2003a) – h+ is only very loosely connected
to goal distance: in the relaxation, an automaton (for example, a philosopher) can always
“block itself” with at most 3 actions. The bound for Dining-Philosophers follows from
the rather constant and restrictive domain structure, where a constant number of process
transitions, namely 6, always suffices to block one more philosopher. The proved bound
is derived from this, by considering that 4 planning actions are needed for each process
transition, and that certain additional actions may be needed due to the subtleties of the
PDDL encoding (where a process can be “in between” two of its internal states). We remark
that the bound is valid even for the trivial heuristic function returning the number of yet
un-blocked philosophers. In fact, the proof for h+ can be viewed as a corollary of a proof for
this heuristic function; we get back to this at the end of this section. We finally remark that
the highest exit distance under h+ that we could actually construct in Dining-Philosophers
was 15. We conjecture that this is a (tight) upper bound.

In Satellite, Schedule, and Zenotravel, the proved upper bounds are tight. In all of
Dining-Philosophers, Satellite, Schedule, and Zenotravel, the bounds are valid for any non-
dead end state s. So, beside a bound on the local minimum exit distance, these results

709

Hoffmann

also provide a bound on the bench exit distance, and will be re-used for that below in this
section.

In Airport, Assembly, Freecell, Miconic-ADL, Mprime, and Mystery, as stated above
there can be unrecognized dead ends, so by Proposition 1 the local minimum exit distance
in these domains is unbounded. In all other domains not mentioned in Theorem 2, i.e., in
Blocksworld-arm, Depots, Driverlog, Optical-Telegraph, Pipesworld, PSR, and Rovers, one
can construct local minima with arbitrarily large exit distances. The most complicated
example is Optical-Telegraph, where, in difference to Dining-Philosophers, one can construct
situations where the number of process state transitions needed to block one more process is
arbitrarily high. Optical-Telegraph is basically a version of Dining-Philosophers with more
complicated philosophers, that have more freedom of what to do next. This freedom enables
situations where a whole row of philosophers at the table must perform two transitions each
in order to block one more philosopher. Details are in Appendix A.2. A simpler example is
Blocksworld-arm (as well as Depots, in which Blocksworld-arm situations can be embedded).
Consider the following situation. There are n blocks b1, . . . , bn that initially form a stack
where bi is on bi+1 and bn is on the table. The goal is to build the same stack on top of
another block bn+1, i.e., the goal is a stack b1, . . . , bn, bn+1. Reaching, from the initial state,
a state with better h+ value involves disassembling the entire stack b1, . . . , bn. During the
disassembling process, h+ increases. Note that this is basically an extended version of the
illustrative example from Figure 4.

As an interesting side remark, note that we have now proved a topological difference
between Blocksworld-arm and Blocksworld-no-arm: in the latter, there are no local minima
at all under h+, in the former, the exit distance from them can be arbitrarily large. While
this is intriguing, it is not quite clear if there is a general message to learn from it. One might
interpret it as telling us, in a formal way, that encoding details can have a significant impact
on topology, and with that on search performance. FF, for example, is much more efficient
in Blocksworld-no-arm than in Blocksworld-arm. It should be noted, however, that the two
domains differ also semantically, namely in that plans in Blocksworld-no-arm are half as
long as plans in Blocksworld-arm. From a practical point of view, it would be interesting
to explore if this Blocksworld observation can be generalized into encoding methods trying
to model a domain in a way making it best suited for h+. Some more on this is said in
Section 7.

The positive results regarding benches are these.

Theorem 3 Under h+, the maximal bench exit distance in the state space of any solvable
instance of Simple-Tsp is 0, Ferry is at most 1, Gripper is at most 1, Logistics is at most
1, Miconic-SIMPLE is at most 1, Miconic-STRIPS is at most 1, Movie is at most 1,
Zenotravel is at most 2, Satellite is at most 4, Schedule is at most 5, Tireworld is at most
6, and Dining-Philosophers is at most 31.

In Simple-Tsp, Ferry, Gripper, Logistics, Miconic-STRIPS, Movie, and Tireworld,
Lemma 4 can be directly applied. Determining what actions have (no) relaxed-plan rel-
evant delete effects is easy in all the domains; in Tireworld it is somewhat complicated to
see when, at the latest, such an action can be applied in an optimal plan. For Miconic-
SIMPLE, similar arguments as in Lemma 4 suffice. For Zenotravel, Satellite, Schedule, and
Dining-Philosophers, the respective bounds were shown above already.

710

Where “Ignoring Delete Lists” Works

Note that, in Simple-Tsp, we proved that there are no local minima and that the exit
distance is 0. This implies that h+ is, in fact, identical to the real goal distance: the entire
state space consists of contours and global minima.

Our topological distinctions divide planning domains into a taxonomy of classes which
differ in terms of the behavior of their state spaces with respect to h+. A visualization of
the taxonomy, with the results for the 30 investigated domains, is given in Figure 5.

undirected

Hanoi [0]
Blocksworld−no−arm [0]
Fridge [0]
Briefcaseworld [0]

Logistics [0,1]
Ferry [0,1]

m
lm

ed
 <

=
 c

m
be

d
<

=
 c

Gripper [0,1]

Driverlog
Depots
Blocksworld−arm

harmless recognized

Schedule [5,5]
Dining−Phil. [31,31]

unrecognized

Airport
Assembly
Freecell
Miconic−ADL
Mprime
Mystery

Optical−Telegraph
Rovers

Grid [0]

PSR
Pipesworld

Tireworld [0,6]
Satellite [4,4]
Zenotravel [2,2]
Miconic−SIMPLE [0,1]
Miconic−STRIPS [0,1]
Movie [0,1]
Simple−Tsp [0,0]

Figure 5: A planning domain taxonomy, overviewing our results.

The taxonomy, as shown in Figure 5, has two dimensions. The x-axis corresponds to the
four dead end classes. The y-axis corresponds to the existence or non-existence of constant
upper bounds on the local minimum exit distance, and on the bench exit distance. Note
that this visualization makes the simplifying assumption that the domains with bounded
bench exit distance are a subset of the ones with bounded local minimum exit distance. This
assumption is not justified in general, but holds true in our specific collection of domains.
Also, the question whether there is a bound on the difficulty of escaping benches does not
seem as relevant when, anyway, it can be arbitrarily difficult to escape local minima.16 The
specific bounds proved for the individual domains are given in parentheses, local minimum
exit distance bound preceding bench exit distance bound in the cases where there are both.
The bottom right corner of the taxonomy is crossed out because no domain can belong to
the respective classes.17

16. Similarly, when benches can be arbitrarily large it is not as relevant if or if not the local minima are
small or non-existent. In that sense the respective results for Briefcaseworld, Fridge, Grid, Blocksworld-
no-arm, and Hanoi are only moderately important. Still they constitute interesting properties of these
domains.

17. By Proposition 1, the existence of unrecognized dead ends implies the non-existence of constant upper
bounds on the local minimum exit distance, given there are no states with gd(s) 6= 0 but h+(s) = 0. Such
states can exist, but only if the domain features derived predicates that appear negated in the negation

711

Hoffmann

What Figure 5 suggests is that h+-approximating heuristic planners are fast because
many of the common benchmark domains lie in the “easy” regions of the taxonomy. More
concretely, as described in the introduction, when provided with the h+ function, FF’s
search algorithm enforced hill-climbing is polynomial in the domains located in the low-
ermost classes of the taxonomy (i.e., in domains with constant bounds on both maximal
exit distances). From a more empirical perspective, the distinction lines in the taxonomy
coincide quite well with the practical performance of FF. FF excels in 11 of the 12 domains
that belong to the lowermost classes of the taxonomy (the more difficult domain is Dining-
Philosophers, whose upper bound is exceptionally high). In the 5 “middle” domains (no
local minima but potentially large benches) FF performs well, but does not scale up as
comfortably as in the easier domains. As for the more complex domains: Blocksworld-arm,
Depots, Driverlog, Optical-Telegraph, Pipesworld, and PSR are amongst the most chal-
lenging domains for FF. In Mprime and Mystery, FF performs just as bad as most other
planners. In Freecell and Miconic-ADL, FF is among the top performing planners, but often
runs into unrecognized dead ends in the larger instances (for example, the larger Freecell
instances used at AIPS-2000). In Airport, Assembly and Rovers, FF performs pretty well in
the respective competition example suites; however, in these domains the competition suites
hardly explore the worst-cases of the domain topology (details on this are in Appendix A).

We do not discuss in detail the relation between the taxonomy and the empirical per-
formance of all the other heuristic planners that make use of an h+ approximation in one
or the other way. One observation that can definitely be made is that all these planners
have no trouble in solving instances from the domains with the most extreme h+ properties.
In Simple-Tsp, Ferry, Gripper, Logistics, Miconic-SIMPLE, Miconic-STRIPS, and Movie,
to some extent also Zenotravel, all such planners scale up very comfortably. In particular,
they scale up much more comfortably in these domains than they typically do in the other
domains, at least without additional (for example, goal ordering) techniques.

In the next section, we treat the connection between the taxonomy and FF’s performance
in a more analytical way, by relating the properties of h+ to properties of FF’s approximation
of h+, called hFF . Before we do so, some remarks on the relation of the taxonomy to
complexity theory are in order. The question is whether there is a provable relation, i.e., a
relation between the distinction lines in the taxonomy, and the complexity of deciding
plan existence in the respective domains. We were able to construct an NP-hard domain
(a domain where deciding plan existence is NP-hard) where h+ does not yield any local
minima; the maximal bench exit distance in that domain is, however, unbounded. We tried,
but we were not able to come up with an NP-hard domain that has constant bounds on
both maximal exit distances. It remains an open question whether such a domain exists
or not. If the answer is “yes”, then the lowermost classes of the taxonomy form a group
of domains that are worst-case hard, but typically very easy to solve (at least as far as

normal form of the goal condition. But even then, in the presence of unrecognized dead ends there
would be “fake”-global minima, i.e., global minima consisting of non-solution states, in fact consisting
of unrecognized dead ends.

712

Where “Ignoring Delete Lists” Works

reflected by the hitherto benchmarks). If the answer is “no”, then we have identified a very
large polynomial sub-class of planning.18

Talking about polynomial sub-classes, an intriguing observation can be made here about
the trivial heuristic function returning, for a state s, the number of goals that are not true
in s. Let’s call this function hG. With a little thinking, one realizes that, in fact, all the
12 domains where we proved constant bounds on both maximal exit distances under h+ also
have such constant bounds under hG. On the other hand, for the remaining 18 of the 30
domains (except Miconic-ADL) it is easy to see that there are no constant bounds for hG.
In Logistics, for example, clearly the maximum number of steps needed to achieve one
more goal is 12: 4 steps each (move, load, move, unload) within a package’s origin city,
between the origin city and the destination city, and within the destination city. In Dining-
Philosophers, for example, the upper bound for h+ was, as said, proved as a corollary of
an upper bound for hG. In Blocksworld, for example, clearly it can take arbitrarily many
steps to achieve one more goal, namely if a block that must be moved is buried beneath n

other blocks that do not need to be moved.
While the above observation appears rather significant at first sight, it is probably not

very important, neither in theory nor in practice. For one thing, it is a coincidence that,
here, the set of domains with both constant bounds under h+ is the same as the set of
domains with both constant bounds under hG. A simple counter example for the general
case is a “graph-search” domain, where the task is to find a path between two nodes in a
directed graph, using the obvious “at”-predicate and “connected”-predicate based encoding.
There, h+ is equal to the real goal distance (since one never needs to move back), while
hG can, clearly, be arbitrarily bad. For another thing, while domains like Logistics have
constant exit distance bounds under hG, these bounds are too large to be practically useful.
For example, with h+, FF needs to look at most 2 steps forward in each breadth-first
search iteration of enforced hill-climbing, in any Logistics instance. With hG, breadth-first
searches up to depth 12 would be needed. So, at most, the observation regarding hG is a
noteworthy statement about the current planning benchmarks. It remains an open question
whether the (coincidental) correspondence between the bounds for h+, and for hG, in the
investigated 30 domains, can be exploited for, e.g., detecting such bounds automatically.

5. Relating h
+ to h

FF

Our discussion relating h+ to hFF is structured in two separate sections. The first one
briefly discusses provable relations between h+ and hFF . The second section summarizes
the results of a large-scale empirical investigation aimed at identifying to what extent the
topological properties of h+, in the benchmarks, get preserved by hFF .

5.1 Provable Relations between h+ and hFF

One thing that is very easy to observe is that the behavior of h+ and hFF is provably the
same with respect to dead ends, i.e., both heuristics return ∞ in the same cases. This
is simply because both heuristics return ∞ in a state s iff there is no relaxed plan for s.

18. Presumably, to prove the latter, one would need to characterize that class in a purely syntactic manner
on the level of PDDL definitions, since h+ is derived directly from the PDDL syntax. The author’s wild
guess it that this is not going to work, and that the answer is “yes”.

713

Hoffmann

For h+ this follows by definition. For hFF it follows from the completeness, relative to the
relaxation, of the algorithm that computes relaxed plans (Hoffmann & Nebel, 2001a). That
algorithm is a relaxed version of Graphplan (Blum & Furst, 1995, 1997). In each state s,
FF runs Graphplan on the task where s is the initial state, and the delete lists of all actions
are empty. Without delete lists, Graphplan is guaranteed to terminate in polynomial time.
If Graphplan terminates unsuccessfully, then hFF (s) is set to ∞. Otherwise, the number of
actions in the returned plan is taken as the heuristic value hFF (s) of the state.19 Graphplan
is a complete algorithm – it terminates successfully if and only if there is a plan – and so
hFF is set to ∞ iff there is no relaxed plan for s. It follows that the dead end classes of the
benchmarks are the same under h+ and hFF .

The relaxed plans found by Graphplan have (just as in general STRIPS) the property
that they are optimal in terms of the number of parallel time steps, but not in terms of the
number of actions. So, in general, hFF is not the same as h+ (even if P is the same as NP).
FF uses the following heuristic techniques for action choice in relaxed Graphplan, aiming
at minimizing the number of selected actions (Hoffmann & Nebel, 2001a). First, if a fact
can be achieved by a NOOP (a dummy action propagating a fact from time step t to time
step t + 1 in Graphplan’s planning graph), then that NOOP is selected. This guarantees
that every non-NOOP action is selected at most once (of course, selected NOOP actions are
not counted into the relaxed plan). Second, if there is no NOOP available then an action
with minimal precondition weight is chosen, where “weight” is defined as the summed-
up indices of the first layers of appearance (in the planning graph) of the precondition
facts. Third, actions selected at the same parallel time step are assumed to be linearized
by order of selection; so an action a selected after a′ will be assumed to achieve a fact
p ∈ add(a) ∪ pre(a′) even if a and a′ are selected at the same parallel time step.

There are two very restrictive sub-classes of STRIPS in which hFF is provably the same
as h+. The first demands that every fact has at most one achiever.

Proposition 2 Let (A, I,G) be a STRIPS planning task so that, for all facts p, there is at
most one action a ∈ A with p ∈ add(a). Then, for all states s in the task, h+(s) = hFF (s).

Proof: The proposition follows from the observation that, when running relaxed Graph-
plan, the only choice points are those for action selection; these choice points will always
be empty or unary in our case. This implies that all actions selected by Graphplan are
contained in any relaxed plan. In more detail, the latter can be proved by an induction
over the regression steps in relaxed Graphplan. Let s be a state for which there is a relaxed
plan. At the top level of the regression, actions a are selected to support all goals that are
not contained in s. These goals need to be supported in any relaxed plan, and there are
no other actions for doing so. The same holds true for the preconditions of the selected
actions: if p ∈ pre(a) is not in s, then a supporter must be present in any relaxed plan,
and that supporter will be selected by relaxed Graphplan. Iterating the argument, we get
the desired property. The claim then follows because, as proved by Hoffmann and Nebel
(2001a), relaxed Graphplan selects every action at most once. 2

19. Note that this is an estimate of sequential relaxed plan length. The length of the planning graph built by
Graphplan corresponds to the optimal length of a parallel relaxed plan, an admissible heuristic estimate.
However, as indicated before, such heuristic functions have generally not been found to provide useful
search guidance in practice (see, for example, Haslum & Geffner, 2000; Bonet & Geffner, 2001b).

714

Where “Ignoring Delete Lists” Works

Our second sub-class of STRIPS demands that there is at most one goal, and at most
one precondition per action.

Proposition 3 Let (A, I,G) be a STRIPS planning task so that |G| ≤ 1 and, for all a ∈ A,
|pre(a)| ≤ 1. Then, for all states s in the task, h+(s) = hFF (s).

Proof: Under the given restrictions, relaxed planning comes down to finding paths in the
graph where the nodes are the facts, and an edge is between p and p′ iff there is an action
with pre(a) = p and add(a) = p′ (empty preconditions can be modelled by a special fact
node that is assumed to be always true). A state has a relaxed plan iff it makes a fact node
true from which there is a path to the goal node. Relaxed Graphplan identifies a shortest
such path. 2

The prerequisites of Propositions 2 and 3 are maximally generous, i.e., when relaxing one
of the requirements, one loses the h+(s) = hFF (s) property. To obtain sub-optimal relaxed
plans with Graphplan, i.e., to construct cases where h+(s) 6= hFF (s), it suffices to have one
fact with two achievers, and either two goal facts or one action with two preconditions. The
following is such an example. There are the facts g1, g2, p, and p′. The goal is {g1, g2}, the
current state is empty. The actions are shown in Figure 6.

name (pre, add, del)

opg1 = ({p}, {g1}, ∅)

opg2-p = ({p}, {g2}, ∅)

opg2-p
′ = ({p′}, {g2}, ∅)

opp = (∅, {p}, ∅)

opp′ = (∅, {p′}, ∅)

Figure 6: Actions in an example task where hFF 6= h+.

The optimal relaxed plan here is 〈opp, opg1, opg2-p〉. However, Graphplan might choose
to achieve g2 with opg2-p

′, ending up with the (parallel) relaxed plan 〈{opp, opp′}, {opg1,
opg2-p

′}〉. Note that each action has only a single precondition, only a single fact has more
than one achiever, and there are only two goals. A similar example can be constructed for
the case where there is only one goal but one action with two preconditions.

Obviously, the syntax allowed by either of Propositions 2 or 3 is far too restrictive to
be adequate for formulating practical domains.20 We did not investigate whether there are
any more interesting situations where h+ and hFF are the same; our intuition is that this
is not the case.

A different question is whether there are provable relations between h+ and hFF in (some
of) the 30 benchmark domains considered in the h+ investigation. We did not investigate
this question in detail – note that such an investigation would involve constructing detailed

20. We remark that the syntax identified by Proposition 3 is a sub-class of a tractable class of STRIPS
planning identified by Bylander (1994). In Bylander’s class, a constant number g of goal facts is allowed,
where g can be greater than 1; the preconditions may be positive or negative.

715

Hoffmann

arguments about all the individual domains, which is clearly beyond the scope of this paper.
None of the domains is captured by either of Propositions 2 or 3. A few results that are
easy to obtain are the following. In Simple-TSP, Movie, and Miconic-STRIPS, h+ and hFF

are the same. This follows from the extremely simple structure of these domains, where
finding step-optimal relaxed plans with Graphplan always results in relaxed plans with an
optimal number of actions. However, even in the only slightly more complicated domains
Ferry, Gripper, Logistics, Miconic-SIMPLE, and Zenotravel, one can easily construct states
where Graphplan’s relaxed plans may be unnecessarily long. In Miconic-STRIPS this does
not happen because there is only a single vehicle (the lift), with no capacity restrictions
(on the number of loaded objects, i.e., passengers). With several vehicles and transportable
objects, as can occur in Logistics and Zenotravel (as well as Driverlog, Depots, Mprime,
Mystery, and Rovers), the difference between h+ and hFF can become arbitrarily large.
Just imagine that n objects must be transported from l to l′, and n vehicles are available
at l. For parallel relaxed planning, it makes no difference if a single vehicle transports all
objects, or if one different vehicle is selected per individual object. In particular, even with
FF’s action choice heuristics in relaxed Graphplan, hFF may be 2n + 1 just as well as 3n.21

In Ferry and Gripper, where there is only a single vehicle (with capacity restrictions), it
may be that there is an upper bound on the difference between h+ and hFF ; we did not
check that in detail.

In spite of the above, the author’s personal experience from developing FF is that, at
least in relatively simply structured domains with not many different operators/different
ways to achieve facts, the relaxed plans found by relaxed Graphplan are typically pretty
close to optimal. There are, presumably, the following two reasons for this. First, the
employed action choice heuristics. For example, in the Grid domain, a relaxed plan may
choose to pick up a key k with the sole purpose of dropping it again when picking up
another key k′ with a pickup-and-lose action (c.f. Appendix B.12). This does not happen
when selecting actions with minimal precondition weight (the pickup-and-lose action has a
higher weight than the pickup action unless one already holds k in the considered state).
Second, many of the published benchmark instance suites are quite restricted. In Logistics,
for example, the situation outlined above, n objects and n vehicles waiting at a location l,
can not happen for trucks because there is only a single truck in each city. As for airplanes,
in the published benchmark instances there usually are only few of these, and so n will be
small.

5.2 Empirical Relations between h+ and hFF

In a large-scale empirical investigation (Hoffmann, 2003b), it turned out that hFF typically
preserves the quality of h+. The investigation was aimed at verifying, in those domains
where h+ has some “positive” topological property (for example, yielding no local minima),
to what extent that property is inherited by hFF . We considered 20 benchmark domains,
namely the same domains as in the paper at hand, except the 10 IPC-3 and IPC-4 domains.

21. One could circumvent this particular phenomenon by, when selecting an action in relaxed Graphplan,
employing a minimization of the summed up weight of the preconditions of all actions selected so far. It
is a topic for future work to explore if this has any effect on FF’s performance.

716

Where “Ignoring Delete Lists” Works

Note that, of the latter 10 domains, only three, namely Dining-Philosophers, Satellite, and
Zenotravel, have positive topological properties.

The experimental approach was to take samples from state spaces (a technique adapted
from work by Frank et al., 1997). More precisely, the method was the following. Of each
domain, a random generator was used to produce a large set of example instances. The
instances were grouped together according to the values of the domain parameters, i.e., the
input parameters to the generator (for example, number of floors and number of passengers
in Miconic-SIMPLE). Then, for each single instance, 100 states were sampled, i.e., 100
random sequences of actions were executed in the initial state, where the sequence length
was chosen randomly in the interval between 0 and 2 times FF’s plan length.22 Of each
resulting state s, the exit distance ed(s) was computed by a breadth-first search, and another
search determined whether s was located on a valley, i.e., whether there was no path from
s to a goal state on which the hFF value decreased monotonically.23 The maximal exit
distance of an instance was approximated as the maximum over the exit distances of the
sample states. For every group of instances, the mean number of states on valleys, and the
mean maximal exit distance, were computed. The results were visualized by plotting these
values over the scaling domain parameters. We give some examples for this directly below,
after summarizing the overall results.

The results of the experiment strongly suggested that hFF typically preserves the quality
of h+, in the considered benchmark domains. Of the 13 domains in which h+ provably yields
no local minima, almost no sample states were located on valleys except in 2 domains,
namely Grid and Hanoi. More precisely, in the 11 other domains the experiment considered
a total of 230 groups of random instances; in one of these groups, 5.0% of the sample states
lay on valleys, in another group it were 2.2%, in another eight groups it were below 1.0%,
and in the remaining 220 groups not a single valley state was found. As for the maximal
exit distance from benches, of all the tested instances of domains in which there is a bound
under h+, only a single sample state had an exit distance larger than that bound, namely
an exit distance of 2 instead of 1 in the Logistics domain.24

Blocksworld-no-arm 0.0 0.0 0.0 0.1 0.0
Gripper 0.0 0.0 0.0 0.0 0.0
Hanoi 0.0 0.0 96.0 100.0 100.0
Tireworld 0.0 0.0 0.0 0.0 0.0

Figure 7: Percentage of sample states on valleys. Mean values for a linear increase of the
respective domain parameter.

Figure 7 provides the results regarding sample states on valleys, in those considered
domains where there are no local minima (and thus no valleys) under h+, and where in-

22. We tried a few other sampling strategies and found that they did not make much difference in terms of
the obtained results.

23. Intuitively, each local minimum lies at the bottom of a valley. We used valleys in the experiment since
it may be hard to find a local minimum state by sampling.

24. The author’s guess is that the results of a similar empirical investigation in Dining-Philosophers, Satellite,
and Zenotravel would be similar, i.e., that the sampled maximal exit distances would hardly increase
above the upper bounds proved for h+.

717

Hoffmann

stances are characterized by a single domain parameter (Movie and Simple-Tsp are left out
since there hFF is provably the same as h+). In Blocksworld-no-arm, that parameter is
the number of blocks (plus randomization of initial and goal states); in Gripper it is the
number of balls to be transported; in Hanoi it is the number of discs; in Tireworld it is the
number of flat tires. In each domain, from left to right the table entries correspond to a
linear increase in the domain parameter (2 . . . 11 blocks, 1 . . . 100 balls, 3 . . . 10 discs, and
1 . . . 5 tires, respectively). Obviously, the only domain that does not “behave” is Hanoi –
where h+ isn’t a very useful heuristic anyway, yielding very large benches, c.f. Section 4.

Blocksworld-no-arm 0.3 1.8 2.8 3.8 3.7
Gripper 1.0 1.0 1.0 1.0 1.0
Hanoi 6.0 23.0 12.0 2.0 2.0
Tireworld 6.0 6.0 6.0 6.0 2.0

Figure 8: Sampled maximal exit distance. Mean values for a linear increase of the respective
domain parameter.

Figure 8 shows the results regarding the sampled maximal exit distance in domains
characterized by a single domain parameter. In Gripper and Tireworld, the sampled values
respect the bound that is valid for h+ (in the largest Tireworld example, sampling did not
find a maximum state in the rather large state space). By comparison, the sampled values
in Blocksworld-no-arm, where there is no bound for h+, show a clear increase. Again, the
behavior of Hanoi is odd.

Figure 9 shows (part of) the results for a domain that is characterized by more than one
domain parameter, namely Logistics. In domains with at least two domain parameters, the
experimental method was to run one experiment for each pair of them. In each experiment,
all parameters except the respective pair was set to some fixed value. The data could then
be visualized in 3-dimensional plots like the ones in Figure 9. In the figure, the parameters
scaled are the number of cities and the number of objects (“packages”) to be transported;
the parameter range is 1 . . . 9 in both cases. City size and number of airplanes are both
fixed to 3. Of each parameter value combination, 10 random instances were generated (and
100 states were sampled per instance). No valley states were found, except with 3 cities
and 9 objects, where 2 of the 1000 sample states were located on a valley. With 5 cities and
3 objects, in a single instance one sample state had exit distance 2, rather than the bound
1 valid for h+ – the single such bound violation found in the entire experiment.25

As indicated before, the Grid domain was, with Hanoi, the only domain for that the
experiment suggested a major difference between the topologies of h+ and hFF . Large
fractions of the sample states, up to 62.4%, were located on valleys. There was a clear
tendency of increase of the percentage, both with increasing grid size and with increasing
number of keys to be transported.

All in all, the experiment confirmed that, in all of the Blocksworld-no-arm, Briefcase-
world, Ferry, Fridge, Gripper, Logistics, Miconic-SIMPLE, and Tireworld domains, hFF

25. The decrease in the mean sampled maximal exit distance for very large parameter values suggests that
it becomes harder, for sampling, to find the maximum states in the rather large state spaces.

718

Where “Ignoring Delete Lists” Works

9
7

5
3

1

9

7

5

3

1

0

0.5

1

Z

X

Y

Z

9
7

5
3

1

9

7

5

3

1

0

1

2

Z

X

Y

Z

(a) (b)

Figure 9: Mean sampled valley percentage (a) and maximal exit distance (b) in Logistics,
when scaling cities (x-axis) against objects (y-axis).

largely preserves the quality of h+ (no local minima and/or a constant bound on the maxi-
mal exit distance from benches). Remember that Miconic-STRIPS, Movie, and Simple-Tsp
are three more domains where this, provably, applies.

6. Towards Automatically Detecting h
+ Phenomena

The lemmas presented in Section 3 provide a natural starting point for investigations into
domain analysis techniques trying to detect the topological phenomena automatically. Such
domain analysis techniques would be useful for configuring hybrid systems, i.e., for the
automatic selection of heuristic functions that are likely to be well-suited for solving a given
planning task. Further, such techniques would be useful for avoiding the need to re-do
the h+ investigation for every single new planning domain. Finally, on the basis of such
analysis techniques one may be able to compute good lower bounds on h+, and with that an
informative admissible heuristic function. Some more discussion of these points is contained
in Section 7.

The question to be addressed is if, to what extent, and how, the application of the
lemmas from Section 3 can be automated, i.e., if and how one can automatically check
whether their prerequisites are satisfied in a given STRIPS task. In the section at hand,
we present a preliminary attempt we made to do that. While the attempt was not very
successful, we believe that the investigation has value in showing up what one can achieve
with some simple analysis techniques, and what weak points would be needed to be improved
upon in order to obtain better results.

Invertible (or at least invertible) actions, and actions with irrelevant delete/static add
effects, are syntactically defined in Section 3 and thus easy to “detect”. The only difficulty
is to find inconsistencies between facts. While this is as hard as planning itself, there are
several approximation techniques in the literature (for example, Blum & Furst, 1995, 1997;
Fox & Long, 1998; Gerevini & Schubert, 2000, 2001; Rintanen, 2000), which tend to work
very well, at least in the current benchmarks. The challenge is to find more syntactical
characterizations of actions that are respected by the relaxation, and of actions that have

719

Hoffmann

no relaxed-plan relevant delete effects. Now, in many domains where these phenomena
occur, such as for example Ferry, Gripper, Logistics, Miconic-STRIPS, Movie, Simple-Tsp,
and Tireworld, intuitively when one looks at the domains the causes of the phenomena
seem similar. But when getting down to the actual syntax of these domain descriptions,
the individual details are very different and it becomes very difficult to get a hold on the
common ground. There does not seem to be a simple syntactical definition that captures
the behavior of the actions in all these domains; at least we did not find such a syntactical
definition. Instead, we tried to reason about the “additive structure” of the domains, and
its possible “interactions” with the delete effects. (The intuition being that, in the domains
with very simple h+ topology, the interactions aren’t very harmful.) We captured the
additive structure of a domain/of an instance in a data structure called fact generation
trees. The next subsection describes this data structure and its basic properties, then a
subsection gives our results in an extreme case of h+ topology, then a subsection outlines a
somewhat more advanced analysis technique we developed.

6.1 Fact Generation Trees

The fact generation tree, short FGT, to a planning instance is basically the AND/OR tree
that results from a regression search starting at the goals, when ignoring the delete effects of
the actions. Tree nodes are labelled with facts and actions alternatingly. Fact nodes are OR
nodes – they represent a choice of achieving actions – and action nodes are AND nodes –
their preconditions represent sets of facts that must be achieved together. We assume a goal
achievement action, as known from, for example, the description of UCPOP (Penberthy &
Weld, 1992). That action is the root (AND) node of the FGT, and the top level goals form
its sons. Obviously, the sons of a fact node are all the actions that achieve the fact, and
the sons of each action node are all the precondition facts of the action. (For the sake of
simplicity, we stayed in a pure STRIPS framework in this investigation.) Tree structures of
this kind were, for example, described and used by Nebel, Dimopoulos, and Koehler (1997)
in their work on automatically detecting irrelevant facts and operators. Note that the FGT
does not take account of the interactions that may arise when trying to achieve the facts
below an AND node together. As an effect of ignoring the delete lists, the FGT treats all
these facts completely separately.

We terminate the FGT by applying the following two rules.

1. Say we just inserted an action node N(a) labeled with action a. If there is a fact
p ∈ pre(a) so that a fact node labeled with p occurs on the path from the root node
to N(a), then N(a) is pruned.

2. Say we just inserted, as a son of an action node N(a), a fact node N(p) labeled with
fact p. If there is an action a′ with p ∈ pre(a′), so that an action node labeled with
a′ occurs on the path from the root node to N(a), then N(p) is pruned.

Intuitively, the rules disallow the generation of branches in the FGT that would be redun-
dant for a relaxed plan. Formally, we call a relaxed plan non-redundant if no strict sub-
sequence of it is still a relaxed plan (i.e., no action can be omitted). Every non-redundant
relaxed plan, for every (not necessarily reachable) state, can be embedded into a connected,
rooted, and non-redundant sub-tree of the FGT built in the way described above. We will

720

Where “Ignoring Delete Lists” Works

be more precise after introducing the illustrative example in Figure 10, that we will use
throughout this section.

at A

mv A B

at B at C

mv C D mv D C

at D

mv D E

at E

B C

D

E

1 EUR

mv B D

A

== 1 EUR

+= 1 EUR

Figure 10: Sketch and FGT of the illustrative example.

In the example, the task is to reach location E. The available actions are moves along
(bi-directional) graph edges in the obvious encoding using an “at” predicate, except the
move from D to E, which requires as an additional precondition that we be in possession
of 1 EUR. We can acquire the 1 EUR as an add effect of the action that moves from D to
C. The main part of Figure 10 shows the FGT to the example, the picture in the top left
corner illustrates the example by showing its road map graph and an indication of the role
of the 1 EUR constructs. The root node, i.e., the artificial goal-achievement action, is not
included in the figure, for simplicity. Due to termination rule 1, (for example) moving from
E to D is not included as a son of the fact node labeled “at D” (the precondition “at E” is
the root node). Due to termination rule 2, “at D” is not a son of the action node labeled
“mv D C” (“at D” already occurs as a precondition of “mv D E” above).

Every action in a non-redundant relaxed plan (to some arbitrary state) achieves some
unique “needed” fact that is not achieved by any preceding action, and that is needed for
the goal or for the precondition of a subsequent action.26 It is not overly difficult to prove
that one can thus embed such a relaxed plan into the FGT by processing the relaxed plan
from back to front, associating each action with the corresponding node below a needed
fact added by the action, starting at the goal facts. The resulting sub-tree is connected and
rooted in the sense that actions are only associated with consecutive AND nodes, starting at
the root node. The sub-tree is non-redundant in the sense that, of every OR node, at most

26. This observation was made by, for example, Hoffmann and Nebel (2001b), where it is used to detect
actions that do not participate in any non-redundant relaxed plan, and that thus do not need to be
considered in the heuristic computations done by planners such as FF or HSP.

721

Hoffmann

one son gets associated with an action. Termination rule 1 is valid since a fact that is needed
at the end of a relaxed plan can not also be needed at its start. Termination rule 2 is valid
since for every needed fact there is at least one representative node in the corresponding sub-
tree. For illustration, consider the different locations in the graph underlying the example
in Figure 10. If one is located, for example, at A and does not have the 1 EUR, then the
entire FGT except the “mv C D” node corresponds to the sub-tree for a non-redundant
relaxed plan. This sub-tree is obtained as follows. The relaxed plan is “mv A B”, “mv B
D”, “mv D C”, “mv D E”. The needed facts added by these actions are “at B”, “at D”, “1
EUR”, and “at E”, respectively. Starting from the goal fact “at E”, first “mv D E” gets
associated with the respective action node. Then the fact nodes “at D” and “1 EUR” –
the preconditions of the action just dealt with – become open, and “mv B D” as well as
“mv D C” get associated with the respective node below their respective needed fact. As a
consequence of the “mv B D” action, fact node “at B” becomes open, and “mv A B” gets
associated with the action node below it. Then the process stops. If, in the current state,
one is, for example, located at C with the 1 EUR, then the process selects the sub-tree that
consists of the “mv C D” and “mv D E” nodes only.

Every non-redundant relaxed plan in the instance, in particular every optimal relaxed
plan in the instance, corresponds to a sub-tree of the FGT. The FGT being a summary of all
possible relaxed plans in that sense, our idea is to examine the FGT for harmful interactions
– conflicts – with the potential to appear in a relaxed plan. The hope is to be able to draw
conclusions from the non-existence/restricted form of conflicts to topological properties of
h+. We next outline an extreme case analysis of this kind, namely one that postulates the
absence of any conflicts in the FGT. Note here that, in difference to the situation in the
illustrative example, in general the FGT can contain action/fact labels in multiple nodes.
The worst-case size of the FGT is exponential in the size of the instance description. So, to
design practically usable domain analysis techniques, one would need to approximate the
FGT, instead of building it completely. This aspect is not treated at all in what follows,
where our objective is (only) to find implications between FGT structure and h+ topology
in the first place.

6.2 Interaction-free Planning Tasks

Think of a conflict as a situation where one part of a (non-redundant) relaxed plan can
hinder the execution/success of another part of the relaxed plan. If there are no such
conflicts, then every (non-redundant) relaxed plan is executable in reality, implying that
h+ is equal to the real goal distance (which of course implies that there are no local minima
etc). In the investigated 30 benchmark domains, this is the case (only) in Simple-Tsp, which
we use as a motivating example.

We define three kinds of conflicts in the FGT. We call two action nodes, labeled by
actions a and a′, allied if they participate together in a non-redundant sub-tree, i.e., they
can occur together in the embedding of a relaxed plan, but are not descendants of each
other. (This is the case iff the paths from the root node to a and a′ separate in an AND
node.) Our first kind of conflicts is given by a pair of allied action nodes labeled a and a′,
where a deletes a precondition of a′. Second kind of conflicts, a pair of action nodes labeled
a and a′, where a is a descendant of a′, and a deletes a precondition of a′ that is not added

722

Where “Ignoring Delete Lists” Works

by any action on the path from a to a′. Third kind, an action node labeled a, where a

deletes a goal fact that is not added by any action on the path from a to the respective root
node.

If there are no conflicts in the FGT, then we call the task interaction-free. It is relatively
easy to see that, without conflicts, for every non-redundant relaxed plan (for every non-
redundant sub-tree of the FGT) there is an execution order that works in reality. So h+

equals goal distance in interaction-free tasks.
In the illustrative example from Figure 10, the only conflict in the FGT is that between

the nodes “mv D C” and “mv D E” – these nodes are allied, and “mv D C” deletes the
precondition “at D” of “mv D E”. Note that this conflict does indeed capture the reason
why h+ is not equal to goal distance in the example. In order to be able to move from D to
E, one has to first move from D to C and get the 1 EUR. Doing the latter deletes the “at
D” precondition of the former. But in the relaxation, after the move from D to C, one is
located in both D and C at the same time, and so the relaxed plan needs one step less to
achieve the goal (from all states where the move to C has yet to be done).

An example of a domain with interaction-free tasks is the graph-search domain men-
tioned earlier, where the tasks demand to find a path between two nodes in a directed
graph, using the obvious “at”-predicate and “connected”-predicate based encoding. (Our
illustrative example above becomes an instance of this domain if one removes the “1 EUR”
constructs.) We can even come up with a purely syntactic criterion that captures this
example domain.

Proposition 4 Let (A, I,G) be a STRIPS planning task so that

1. |G| ≤ 1,

2. for all a ∈ A: |pre(a)| ≤ 1, and

3. for all a ∈ A: del(a) ⊆ pre(a).

Then (A, I,G) is interaction-free.

Proof: Due to prerequisites 1 and 2, the AND nodes in the FGT all have at most one son.
This implies that there are no allied action nodes. Together with prerequisite 3 and our
termination rule 1, it implies that no action node can delete the goal fact, or the precondition
fact of an ancestor node. 2

Instances of the graph-search domain fulfill the prerequisites of Proposition 4 if the
static “connected” facts are removed prior to planning. Note that the syntax identified by
Proposition 4 is a subset of the syntax identified by Proposition 3, and thus in such tasks
hFF is identical to h+, and, since h+ is identical to the real goal distance, plan existence
can be decided in polynomial time. Intuitively, this is because the captured syntax can not
express more than the graph-search domain: plans in a task qualifying for Proposition 4
correspond exactly to paths in the graph where the nodes are the facts, and the edges go
from preconditions to add effects. The same is true for relaxed plans.

The instances of the Simple-Tsp domain are not interaction-free. There are conflicts
in the FGT between pairs of actions achieving different “visited” goals. For example, say

723

Hoffmann

there are three locations to visit, l1, l2, and l3. The action nodes “mv l1 l2” and “mv l1
l3” are allied since they achieve the goals “visited l2” and “visited l3” that both participate
in the root AND node. But these actions mutually delete their precondition, “at l1”, so
they constitute a conflict in the FGT. If they appear together in a relaxed plan, then that
relaxed plan is not executable in reality (unless the relaxed plan happens to move back to
l1 in between). Observe, however, that after the execution of, for example, “mv l1 l2”, one
can replace “mv l1 l3” with “mv l2 l3” and so repair the conflict in the relaxed plan. All
conflicts in Simple-Tsp FGTs behave this way.

In general, we say that a conflict between allied action nodes a and a′ can be repaired if
there is an action a′′ such that pre(a′′) ⊆ (pre(a)∪add(a))\del(a) (thus a′′ can be executed
after a), and add(a′′) ⊇ add(a′) (thus a′′ achieves what a′ should have achieved). Similar
repairable cases can be identified for the two other kinds of conflicts. If all conflicts in the
FGT can be repaired, then to any non-redundant relaxed plan there is a relaxed plan of the
same length that is executable in reality, and so again h+ equals goal distance. This is the
case in the Simple-Tsp domain.

We made a preliminary implementation of the above FGT analysis techniques. The
implementation correctly detects that in Simple-Tsp instances (as well as in graph-search
instances), h+ equals goal distance. In Simple-Tsp, with less than 18 locations the analysis
takes only split seconds; with more than 18 locations, the runtime taken explodes fairly
quickly.

6.3 A More Advanced Analysis

While the above results are encouraging, the technique’s applicability – the h+ topology it
can detect – is clearly far too severely restricted. It turns out extremely difficult to find
less restrictive implications from FGT structure to h+ topology, i.e., sufficient criteria for
weaker topological properties. The best we could come up with is a criterion that implies
the non-existence of local minima under h+, and that holds true in the Movie domain and
in some extremely simple Logistics instances.

The idea behind the criterion is the following. To imply the non-existence of local
minima under h+, it suffices to know that, in every state s, there is a starting action a of
an optimal solution so that h+(Result(s, 〈a〉)) ≤ h+(s). Say we are considering a planning
task where all actions are (at least) invertible. Let s be a state and a be the starting action
of an optimal solution from s. If there is an optimal relaxed plan for s that contains a, then
we are done with the argument used in Lemma 3. Else, let P+ be an optimal relaxed plan
for s that does not contain a. P+ can be embedded in a sub-tree of the FGT. If a does not
delete any leaf nodes of that sub-tree – any facts that P+ assumes to be true in the state of
execution – then P+ is a relaxed plan for Result(s, 〈a〉) and we are done, too. The case left
open is when a does delete a leaf node of the sub-tree occupied by P+. Observe that this
does not matter if we have that there are no (or only repairable) conflicts in the sub-tree.
Then, P+ is executable in reality, so P+ is an optimal plan for s, so the starting action of
P+ falls into the first case above and we are done again. We get the following sufficient
criterion:

724

Where “Ignoring Delete Lists” Works

There are no local minima under h+ if for all actions a it holds that a is at least
invertible, and for all non-redundant sub-trees of the FGT that do not contain a, either a

does not delete a leaf of the sub-tree, or the sub-tree does not contain any conflicts.

To test this criterion, all one needs to do is to consider the (redundant) sub-tree of the FGT
where the only branches left out are those that start in nodes labeled with a. If this sub-tree
contains a conflict, and a deletes some fact occurring in the sub-tree, then the criterion does
not apply. Otherwise, if the test succeeds for all actions, it is proved that there are no local
minima under h+.

Reconsider the illustrative example from Figure 10, where as said above the only conflict
in the FGT is that between the nodes “mv D C” and “mv D E”. Any sub-tree that does not
contain one of these nodes is conflict-free. So “mv D C” and “mv D E” do not violate the
above criterion. Neither do “mv B D”, “mv C D”, and “mv A B” violate the criterion, since
none of these actions deletes a fact occurring anywhere else but in its own precondition.
However, for “mv B A” and “mv D B” the sub-tree looked at is the entire FGT including
the conflict, and both these actions delete a fact that occurs in the FGT. So the criterion
does not apply to our illustrative example. Note that “mv B A” and “mv D B” never start
an optimal plan so really they could be left out of the considerations; but it is unclear how
to detect this automatically, in a general way.

A remark on the side is in order here. If an action a does not appear in the FGT, then,
in difference to what one may think at first sight, this does not imply that a does not appear
in an optimal plan. Our FGT termination rules, while adequate for relaxed planning, are
too restrictive for real planning. The following is an example. There are the facts g1, g2,
and p. The goal is {g1, g2}, the current state is {g1}. The actions are shown in Figure 11.

name (pre, add, del)

opp = ({g1}, {p}, ∅)

opg2 = (∅, {g2}, {¬g1})

opg1 = ({p}, {g1}, ∅)

Figure 11: Actions in an example task where the FGT does not contain an action (opp,
namely) needed in reality.

The only optimal plan here is 〈opp, opg2, opg1〉: in order to be able to re-achieve g1

after applying opg2, we must achieve p first. However, opp does not appear in the FGT.
The only location in the FGT where a node N labeled with opp could be inserted is as a
son of the precondition node p of opg1, which is inserted as a son of g1. But N is pruned
by termination rule 1, because opp has g1 in its precondition, and g1 appears on the path
from the root node to N . Note that, indeed, opp is never part of a relaxed plan because
achieving p is only good for re-achieving g1 if that is deleted by other actions necessary to
reach the goals.

Our implementation of the criterion given above easily – within split seconds – proves
the non-existence of local minima in Movie instances, regardless of the size of the instance.

725

Hoffmann

The technique does not, however, work in any other domain we tried, except Logistics
instances where there is only a single city, with only two locations in it, only a single truck,
and only a single package to be transported. Note that this is even simpler than the small
illustrative example used in Section 3, where two objects need to be transported.

It is an open question how better results can be achieved, i.e., how more state spaces can
be recognized to not feature any local minima under h+. Our feeling is that the backward
chaining approach to domain analysis is promising. But, to be successful, the analysis
technique should probably invest much more effort into analyzing the way in which the
goals can be achieved, and with how many steps, rather than doing just the very crude
FGT approximation. With more information available about how goals can be achieved,
maybe it would be possible to discover non-trivial cases in which actions are respected by
the relaxation.27 As for detecting actions that have no relaxed-plan relevant delete effects,
it is yet completely unclear to us how this could be accomplished.

7. Discussion

We have derived a formal background to an understanding of what classes of domains re-
laxed plan-based heuristic methods, the most wide-spread methods in the modern planning
landscape at the time of writing, are well suited for. The formal approach taken is to
identify characteristics of the local search topology – the heuristic cost surface – under the
idealized heuristic function h+, in a forward searching framework. For 30 commonly used
benchmark domains including all competition examples, i.e., for basically all STRIPS and
ADL benchmark domains that are used in the field at the time of writing, we proved what
the relevant topological properties are. The results coincide well with the runtime behavior
of FF. Indeed, empirical results suggest that the quality of h+ is often preserved in FF’s
approximation of it.

The results are interesting in that they give a rare example of a successful theoretical
analysis of the connections between typical-case problem structure, and search performance.
From a more practical point of view, the results provide a clear picture of where the strengths
and weaknesses of h+ lie, and so form a good basis for embarking on improving the heuristic
in the weak cases. Approaches of this kind have already appeared in the literature (Fox &
Long, 2001; Gerevini et al., 2003). Most particularly, Fast-Downward’s heuristic function
(Helmert, 2004) is motivated by observations regarding unrecognized dead ends under h+

in the Mystery domain, and large benches in transportation domains with non-trivial road
maps.

Regarding the relevance of our topological results for forward search algorithms other
than enforced hill-climbing, note that things like the non-existence of unrecognized dead
ends or the non-existence of local minima are certainly useful for any heuristic search
algorithm, albeit not in the form of a provable polynomiality result.28 More generally,
the relevance of the topological results for the performance of planners using other search

27. We remark that it is not easy to find even trivial syntactical restrictions under which actions are, in
general, respected by the relaxation. For example, even when every fact is added by only a single action,
one can construct cases of non-respected actions. One such case is the example from Figure 11, where
opp is not respected by the relaxation.

28. Except in the case where the heuristic function identifies the precise goal distances, which is the case for
h+ in 1 of the 30 domains, namely, the Simple-Tsp domain.

726

Where “Ignoring Delete Lists” Works

paradigms, or enhanced heuristics, like LPG and Fast-Downward, is a matter needing fur-
ther investigation. One thing that is certainly clear is that, in the easiest classes of the
taxonomy, particularly in domains where in the state space there are no local minima un-
der h+, and benches can be escaped in a single step, any planner using an approximation of
h+ is likely to work quite well. Indeed that’s what one observes in practice. The intuition
of the author is that the topology of h+ plays a large role for the efficiency of these planners
more generally, i.e., also in other domains. Proving or disproving this is beyond the scope
of this paper. In any case, our investigation provides a nice theoretical background with
proved results in an idealized setting, and these results can be used as a starting point into
investigations tailored to individual systems other than FF.

Our investigation considers solvable planning tasks only, which is well justified by the
focus set in the international planning competitions. Turning the focus on unsolvable tasks,
one realizes that much of our techniques and results become useless. In a search space
with no solution, the only difference a heuristic function can make lies in the states with
infinite heuristic value, i.e., in the states recognized as dead ends. Which means that
the only interesting question remaining is for what kinds of dead end states there is no
relaxed plan. What do the results herein tell us about this? In those domains where we
identified unrecognized dead ends, the results tell us that relaxed plans are a too generous
approximation.29 In the other domains, things look more hopeful. Still, these results are
relative to solvable instances. Whether or not h+ will detect many of the dead end states
in unsolvable tasks will depend on what reasons there can be for such states. The dead
ends in unsolvable tasks may be caused by other reasons than those in solvable tasks,
since the assumptions making the tasks solvable are not given. Note that many of the
benchmarks (for example, Blocksworld and Logistics) do not have any unsolvable instances
in their standard definition. To some extent, this makes the existence or non-existence of
unrecognized dead ends a choice of the domain designer extending the domain definition.
Exploring these issues in detail is a topic for future work.

Talking about future work, the biggest drawback of this research in its current form is,
obviously, that it needs to be re-done for every single new planning domain. It would be very
desirable, but turns out to be very hard, to come up with more generic – ideally, automatic
– methods to determine the topological properties of a domain. We have outlined an
attempt we made to develop such automatic methods, based on analyzing properties of fact
generation trees. We presented some first promising results, but regarding the applicability
to domains of the complexity one would like to be able to handle, our methods are yet far
too weak. It is left for future research to answer the question if there are approaches to
the topic that work better in practice. As said, our intuition is that there are such better
approaches, based on more intelligent backchaining-style reasoning about how the goals can
be achieved in a domain. But, at the time of writing, this is pure speculation.

Beside easening the burden of doing all the proofs by hand, the benefits of automatic do-
main analysis techniques would be twofold. First, an ambitious long-term vision in domain-
independent planning is to have an arsenal of complementary heuristics, and combine these
into a hybrid system that can automatically be configured to best suit a given arbitrary
planning task. The contribution made towards this vision by the results at hand is a very

29. Unsurprisingly, seeing as deciding plan existence is NP-hard in, for example, Mystery, Mprime, Miconic-
ADL, and Freecell (Helmert, 2003).

727

Hoffmann

clear picture of where the strengths of h+ lie; to be able to automatically configure a hy-
brid system, one would need multiple heuristics with different strengths and weaknesses
(i.e., heuristics that are of high quality in different classes of domains), as well as the ability
to determine automatically what heuristic is likely to work best. (At least such an ap-
proach could be more cost-effective, beside being much more insightful, than just trying out
all possible combinations of techniques.)

Another benefit from enhanced domain analysis techniques might lie in the ability to
generate a high-quality admissible heuristic function for sequential planning. In many do-
mains, optimal relaxed plans mostly consist of actions of which it is easy – for a human
– to see that they (or one of a set of similar actions) must be contained in any optimal
relaxed plan (for example, all the loading and unloading actions that can’t be avoided in a
transportation task). So the number of such actions in a state could provide a good lower
bound on the value of h+. Note that this phenomenon – actions that must be contained in
every relaxed plan – is a stronger version of the notion of actions that are respected by the
relaxation. A promising approach seems to be to try to detect the former as a sufficient
approximation of the latter.

Since we observed that there are arbitrarily deep local minima under h+ in Blocksworld-
arm, but none in Blocksworld-no-arm, one might try to come up with encoding methods
trying to model a domain in a way making it best suited for h+. Since Blocksworld-no-arm
is basically a version of Blocksworld-arm where all possible pairs of consecutive actions
(pickup-stack, unstack-stack, unstack-putdown) were replaced with macro-actions, a good
(but somewhat obvious) heuristic for modeling is probably to choose the domain granularity
on as high a level of abstraction as possible. More insightful heuristics may be obtained
when considering the h+ topology in planning benchmarks enriched with automatically
detected macro actions (Botea, Müller, & Schaeffer, 2004, 2005).

Apart from the above, the most important future direction is the adaption of the formal
framework, and of the theoretical analysis methods, to the temporal and numeric settings
dealt with in modern planning benchmarks and in modern planning systems. The needed
adaptations are straightforward for the numeric framework used in Metric-FF (Hoffmann,
2003a). As for temporal planning, if the objective function estimated by the heuristic is the
number of actions needed to complete the partial plan, then the adaptation of the framework
is probably straightforward as well. If, however, makespan is estimated by the heuristic,
then most of what is said in this article does not apply. At most, in such a setting our
analysis techniques could be relevant if the search uses an estimation of remaining action
steps as a secondary heuristic.

Acknowledgments

I would like to thank Drew McDermott, Fahiem Bacchus, Maria Fox, and Derek Long
for their responses to various questions concerning the definitions of/intentions behind the
competition domains. I also thank the anonymous reviewers, whose comments helped to
improve the paper.

728

Where “Ignoring Delete Lists” Works

Appendix A. Proof Sketches

We list the proof sketches in sections concerning dead ends, local minima, and benches, in
that order.

A.1 Dead Ends

Theorem 1 The state space of any solvable instance of

1. Blocksworld-arm, Blocksworld-no-arm, Briefcaseworld, Depots, Driverlog, Ferry,
Fridge, Gripper, Hanoi, or Logistics is undirected,

2. Grid, Miconic-SIMPLE, Miconic-STRIPS, Movie, Pipesworld, PSR, Satellite,
Simple-Tsp, Tireworld, or Zenotravel is harmless,

3. Dining-Philosophers, Optical-Telegraph, Rovers, or Schedule is recognized under eval-
uation with h+.

Most of the proofs are simple applications of Lemma 1 or 2. As said, descriptions of the
domains can be looked up in Appendix B.

Proof Sketch: [Theorem 1]

All actions in Blocksworld-arm, Blocksworld-no-arm, Driverlog, Ferry, Gripper, Hanoi,
and Logistics instances are invertible, so we can apply Lemma 1 and are finished. The
inverse actions are the obvious ones in all cases, like stacking/unstacking a block onto/from
some other block, loading/unloading an object onto/from a vehicle, or moving from l to
l′/moving from l′ to l (in the case of Driverlog, the latter can always be done as the
underlying road map is bi-directional, c.f. Appendix B.8). In the Briefcaseworld, Depots,
and Fridge domains, while the actions do not strictly obey the definition of being invertible
(neither that of being at least invertible), they still invert each other in an obvious way,
i.e., for every state s and applicable action a there is an action a so that Result(s, 〈a, a〉) = s.

In Movie, actions getting snacks have irrelevant delete effects and static add effects, while
rewinding the movie and resetting the counter are at least invertible. A Simple-Tsp action
moving from l to l′ is at least invertible by moving back. In Tireworld, to all working steps
there is an inverse one, except to inflating a wheel. But that has irrelevant delete effects
and static add effects. In Miconic-STRIPS, moving a lift is invertible, boarding a passenger
is at least invertible, and departing a passenger has irrelevant delete effects and static add
effects. In all the four domains, Lemma 2 can thus be applied. In the Miconic-SIMPLE and
Grid domains, while the actions do not strictly adhere to the relevant definitions, similar
arguments like Lemma 2 prove the non-existence of dead ends. In Miconic-SIMPLE, moving
the lift is invertible. Letting passengers in or out of the lift can not be inverted, but those
actions need to be applied at most once (similar to static add effects), and they do not
interfere with anything else (similar to irrelevant deletes). In Grid, to all actions there is an
inverse action, except opening a lock. The latter action excludes only other actions opening
the same lock (similar to irrelevant deletes), and each lock needs to be opened at most once,
as locks can not be closed (static add effects). In Zenotravel and Satellite, all facts can be
re-achieved but sometimes one has to apply several actions to do so. In Zenotravel, after

729

Hoffmann

flying an airplane from l to l′, to get back to l′ one might have to refuel the airplane on
top of flying it back. In Satellite, after switching an instrument on, one might have to re-
calibrate it, which can always be done but can involve several actions (turning the satellite
into the right direction before applying the actual calibration action). In Pipesworld, any
push action is inverted by the respective pop action, and vice versa. The state space is not
undirected since the pushs/pops for non-unitary pipeline segments are split into two parts.
In PSR, there are no dead end states since one can always reach a goal state by waiting,
if necessary, then opening all breakers, then bringing the (non-breaker) devices into a goal
position, then closing the needed breakers.

In Dining-Philosophers, dead ends arise only when a process (a philosopher) has ini-
tiated an impossible reading or writing command (from/to an empty/a full queue) – the
queue contents can then not be updated, and no more actions are applicable. (The derived
predicate rules that determine if a process is blocked do not apply in this case, since they
require that no read/write command has been initiated yet.) Obviously, with no applicable
actions there is no relaxed plan either. In all other states, the goal can be reached by
traversing individual process state transitions until all philosophers have one fork, and try
to take up the other.

In Optical-Telegraph, dead ends arise in two kinds of situations. First, when a process
has initiated an impossible reading or writing command, similarly as in Dining-Philosophers,
there are no applicable actions and thus no relaxed plan. The second possibility is that the
two processes in a pair may take different decisions of where to go next in their commu-
nication sequence: one may decide to stop data exchange, while the other may decide to
send or receive more data. In such a situation, at least one of the processes is in a state
where it has two transitions available, has already activated one of these transitions, and
might have already initiated the respective write/read command. The write/read command
is impossible (since the other process took a different decision), and no more actions are
applicable for that process. The derived predicate “blocking” rules do not apply to the
process, because they never apply in process states with more than one available transition.
So neither a real nor a relaxed plan exist for the state. From all other reachable states,
the goal can be reached by traversing individual process state transitions until all pairs of
communicating processes occupy one control channel, and try to write into the other.

In Rovers, there is a plan to a state if and only if, for all soil/rock samples and images
that need to be taken, there is a rover that can do the job, and that can communicate the
gathered data to a lander. The only chance to run into a dead end is to take a soil/rock
sample with a rover that can not reach a lander (the soil/rock sample is available only once).
But then, there is no relaxed plan to the state either.

In Schedule, any state s with gd(s) < ∞ can be solved by applying, to each object o in
turn, a certain sequence of working steps. If the sequence can not be applied for some object
o then it follows that the preconditions of a needed action are not fulfilled, which must be
the case because o is not cold in s (a “do-roll” action has been applied to o previously,
making o hot). No operator can make o cold again, i.e., no operator adds the respective
fact. Thus there is no relaxed plan for s either. 2

Note that the worst cases in Theorem 1 can occur, i.e., in the domains whose instances
are harmless, there can be directed state transitions, and in the domains whose instances are

730

Where “Ignoring Delete Lists” Works

recognized, there can be dead ends. We remark that the dead ends in Dining-Philosophers
and Optical-Telegraph are due to what seem to be bugs in the encoding of the queues
(whose contents aren’t always updated correctly) and of the blocked situations (whose rules
for detection seem to be incomplete). Modifying the operators in a straightforward way to
fix these (apparent) bugs, one gets dead-end free (harmless) state spaces.

The domains not mentioned in Theorem 1 are Airport, Assembly, Freecell, Miconic-
ADL, Mprime, and Mystery. In all these domains, one can construct arbitrarily deep
unrecognized dead ends. In Airport, unrecognized dead ends arise when two planes move
towards each other on a line of segments, with no possibility of changing the direction.
Such deadlock situations aren’t recognized by relaxed planning since, in the relaxation, the
free space left between the two planes remains free, and can be used to navigate the planes
“across” each other. The dead end becomes arbitrarily deep when, independently of the
deadlock situation, other planes can still be moved. We remark that, in reality – and in
the IPC-4 example instances – deadlock situations like this rarely occur. Airplanes are only
movable along standard paths that serve to avoid such deadlocks on the main connecting
routes of the airport. The only places on the airport where deadlocks can occur, both in
reality and in the IPC-4 example instances, are near the parking areas, where space can
be dense, and airplanes need to move in both directions on the same airport segment. If
no deadlocks can occur at all, i.e., if all planes can move to their target positions one after
the other without hindering each other, then h+ delivers the exact goal distance. This is
presumably the reason why the heuristic planners performed very well in the IPC-4 Airport
test suites. The performance would probably become worse if one were to use (unrealistic)
instances with excessively many potential deadlock situations.

In Assembly, unrecognized dead ends can arise when several objects are “stuck” due to
complex ordering constraints, which imply that any solution plan would need to go through
a cyclic assembly pattern. The details are rather complicated, and the interested reader is
referred to the TR (Hoffmann, 2003c). It can be proved that, unless the ordering constraints
in an Assembly instance have the potential to yield a cyclic situation, there are no dead
ends at all. In all but one of the IPC-1 competition instances, the ordering constraints do
not have this potential. This helps to explain how FF can be so efficient in that test suite
(it solves even the largest task within half a second search time, finding a plan with 112
steps).

In Freecell, unrecognized dead ends can arise, for example, when one is not cautious
enough about moving cards into the free cells. A relaxed plan can still achieve the goal
with a single free cell, using that cell as an intermediate store for all cards. In reality,
however, moving a card into a free cell occupies space (by deleting the availability of the
free cell), and can thus exclude possibilities of reaching the goal. Thus moving a card into
a free cell can lead into an unrecognized dead end state. The unrecognized dead end can be
arbitrarily deep when other cards can still be moved around independently of the deadlock
situation.

In Miconic-ADL, unrecognized dead ends arise when a problem constraint is violated,
but this violation goes unrecognized by the relaxed plan. An example is when two passengers
p1 and p2 are in the lift, such that p1 can only be transported downwards, p2 has no access
to p1’s destination floor, and p2’s destination floor is below p1’s. The state is a dead end
because one can not let p1 get out first – p2 has no access to the respective floor – but

731

Hoffmann

neither can one let p2 get out first – afterwards, the lift would need to drive upwards,
which it can’t with p1 on board. In the relaxation, one can stop at both destination floors
“simultaneously” because the at-facts are not deleted. The unrecognized dead end becomes
arbitrarily deep when several other passengers can be moved around before reaching p1’s
destination floor.

In Mystery, unrecognized dead ends arise when fuel is scarce, and a vehicle makes sub-
optimal moves. The relaxed plan can achieve the goal as long as all relevant locations are
still accessible at least once. But that may not suffice in reality. The dead end becomes ar-
bitrarily deep when additional objects can be transported independently of the problematic
situation. Mprime behaves similarly. The only difference to the Mystery example is that, to
avoid the possibility of transferring fuel items to the problematic locations, one must make
sure that there is just enough fuel to enable the transportation of the additional objects.

A.2 Local Minima

Theorem 2 Under h+, the maximal local minimum exit distance in the state space of any
solvable instance of

1. Blocksworld-no-arm, Briefcaseworld, Ferry, Fridge, Grid, Gripper, Hanoi, Logistics,
Miconic-SIMPLE, Miconic-STRIPS, Movie, Simple-Tsp, or Tireworld is 0,

2. Zenotravel is at most 2, Satellite is at most 4, Schedule is at most 5, Dining-
Philosophers is at most 31.

We present the proof sketch to Theorem 2 in terms of three groups of domains with
similar proofs. Note that the domains where the maximal local minimum exit distance is 0
are domains where there are no local minima at all. We first focus on the domains where
Lemma 3, or slight extensions of it, can be applied.

Proof Sketch: [Theorem 2, Ferry, Fridge, Gripper, Logistics, Miconic-SIMPLE, Miconic-
STRIPS, Movie, Simple-Tsp, Tireworld]

With Theorem 1, none of the listed domains contains dead ends. As said in the proof
sketch to the theorem, all actions in the Ferry, Gripper, Logistics, Miconic-STRIPS, Movie,
Simple-Tsp, and Tireworld domains are either at least invertible, or have irrelevant delete
effects. With Lemma 3 it suffices to show that all actions are respected by the relaxation.
In all cases, except the driving/flying actions in Logistics, it is very easy to see that any
optimal starting action does something that can not be avoided in the relaxed plan. (For
example, the relaxed plan can not avoid to load/unload objects onto/from vehicles, and
it can not avoid missing working steps in Tireworld.) If an optimal starting action a in
Logistics drives a truck/flies an airplane to some location l, then some object must either
be loaded or unloaded at l, so a relaxed plan from s has no choice but to apply some action
that moves a transportation vehicle (of a’s kind) there. All vehicles are equally good, except
when there is a clever choice, i.e., a vehicle that already carries objects to be unloaded at
l. But then, a will move one of those vehicles just like an optimal relaxed plan will, and all
such vehicles are equally good in the relaxation. (In Ferry, Gripper, and Miconic-STRIPS,

732

Where “Ignoring Delete Lists” Works

there is only a single vehicle, which makes the moving actions in these domains easier to
reason about.)

In the Fridge and Miconic-SIMPLE domains, the actions do not adhere strictly to the
definitions of invertibility and irrelevant delete effects. But the proof to Theorem 1 has
shown that they have similar semantics, i.e., they can either be inverted, or delete only
facts that are no longer needed once they are applied. Furthermore, all actions in these
domains are respected by the relaxation. In Fridge, missing working steps must also be
done in the relaxed plan. In Miconic-SIMPLE, lift moves are trivially respected, and lift
stops are respected since clever choices in reality coincide with clever choices in the relaxed
plan. 2

In the next four domains, there are no local minima either, but the proofs are more
sophisticated and make use of rather individual properties of the respective domains. In all
cases it is proved that there is a path to the goal on which h+ does not increase.

Proof Sketch: [Theorem 2, Blocksworld-no-arm, Briefcaseworld, Grid, Hanoi]

With Theorem 1, none of these domains contains dead ends. In Blocksworld-no-arm,
if an optimal starting action a stacks a block into its goal position, then a also starts
an optimal relaxed plan (because there is no better thing to do than to achieve this goal
immediately); in that relaxed plan, a can be replaced with its inverse counterpart to form
a relaxed plan for the successor state. If there is no such action a in a state s, then one
optimal plan starts by putting some block b – that must be moved in order to access a block
below it – from some other block c onto the table, yielding the state s′. A relaxed plan
for s′ can be constructed from a relaxed plan P+ for s by, taking account of various case
distinctions, replacing the move actions regarding b in P+ with the same number of other
such move actions. The case distinctions are about what kind of action P+ uses to move b

away from c – one such action a′ must be contained in P+. If a′ moves b to the table then
we can replace a′ in P+ with the action that moves b back onto c, and are finished. Else, we
must distinguish between the cases where b is required to be on c for the goal, or on some
other block. In both cases, we can make successful use of the fact that b can be moved from
any position to any other position within a single action, enabling us to exchange actions
in P+ quite flexibly.

In Briefcaseworld, all actions can be inverted. Actions that put objects into the briefcase
are trivially respected by the relaxation. In a state s where an optimal plan starts with a
take-out action, an optimal relaxed plan for s can also be used for the successor state, since
taking out an object does not delete important facts. In a state s where an optimal plan
starts with a move action from l to l′, and P+ is a relaxed plan for s, a relaxed plan for
the successor state can be constructed by replacing moves from l to l′′, l′′ 6= l′, in P+, with
moves from l′ to l′′.

In Grid, a rather complex procedure can be applied to identify a flat path to a state
with better h+ value. In a state s, let P+ be an optimal relaxed plan for s, and let a be the
first unlock action in P+, or a putdown if there is no such unlock action. Identifying a flat
path to a state s′ where a can be applied suffices, because unlocking deletes only facts that
are irrelevant once the lock is open, and the deletes of putting down a key are irrelevant if
there are no more locks that must be opened. The selected action a uses some key k at a

733

Hoffmann

position p. P+ contains a sequence of actions moving to p. Moving along the path defined
by those actions does not increase h+ since those actions are contained in the relaxed plan,
and they can be inverted. If k is already held in s, then we can now apply a. If the hand is
empty in s, or some other key is held, then one can use P+ to identify a flat path to a state
where one does hold the appropriate key k. If the hand is empty, then P+ must contain a
sequence of actions moving to a location where k can be picked up. If some other key is
held, then P+ must contain sequences of actions moving between locations where a series
of keys are picked up and put down, where the key series ends with picking up k.

In Hanoi, it can be proved that the optimal relaxed solution length for any state is equal
to the number of discs that are not yet in their final goal position – proceeding from the
smallest to the largest disc, each respective goal can be achieved with a single action. No
optimal plan moves a disc away from its final position, so h+ does not increase on optimal
solution paths. 2

We finally consider those four domains where there are local minima, but one can always
escape them within a constant number of steps. In all cases, we prove an upper bound d on
the distance of any non-dead end state s to a state s′ with h+(s′) < h+(s). This immediately
implies that d − 1 is an upper bound on the maximal local minimum exit distance (it also
implies that d − 1 is an upper bound on the maximal bench exit distance; the results will
be re-used in Appendix A.3).

In Dining-Philosophers, h+ is only loosely connected to goal distance, and the bound,
which holds even for the trivial heuristic function returning the number of yet un-blocked
philosophers, follows from the rather constant and restrictive domain structure. In the other
three domains, the proofs proceed as follows. For a reachable state s, we identify a constant
number of steps that suffices to execute one action a in the optimal relaxed plan for s, and,
without deleting a’s relevant add effects, to re-achieve all relevant facts that were deleted
by a. Then, a state s′ with h+(s′) < h+(s) is reached.

Proof Sketch: [Theorem 2, Dining-Philosophers, Satellite, Schedule, Zenotravel]

By Theorem 1, the dead ends in Dining-Philosophers are all recognized. In any non
dead end state s, the shortest relaxed plan blocks all processes (philosophers) that are not
yet blocked. For each individual process, at most 3 steps are needed – in the relaxation,
to block a process it always suffices to activate a state transition, to initiate a read/write
command, and to do the queue update. After the update, the queue is both empty and full,
and the read/write is impossible in the sense that the “blocking” rules apply. (With this, a
process can block itself in the relaxation, and the h+ value is only fairly loosely correlated
with the true goal distance.) Thus, to reach a state with lower h+ value, obviously it always
suffices to block one more process. We prove our upper bound by determining a constant
bound on the number of steps needed to do that. Such a bound exists because, beside the
fact that the philosopher processes are constant and can interfere only with their respective
two neighbors at the table, the philosophers have a fixed order in which they try to pick up
the forks: they always first try to pick up the fork to their right, then the fork to their left.
This restricts the possible combinations of internal states of neighbored philosophers.

In more detail, a philosopher is blocked iff he tries to pick up a fork that is not on the
table. For a philosopher p, we refer by pL to p’s neighbor philosopher on the left side. A

734

Where “Ignoring Delete Lists” Works

description of the 5 different states of each philosopher process is in Appendix B.7. Let s

be a non dead end state. Let p be a philosopher that is not blocked in s (if no such p exists,
then s is a goal state and there is nothing to prove). We can prove the desired upper bound
by an exhaustive case distinction over the states of p and pL. For each state i ∈ {1, . . . , 5}
of p, we consider each state iL ∈ {1, . . . , 5} of pL. If the combination of i and iL is not
possible, then we do nothing. Else, we determine a number k of process state transitions
that leads to a state where either: p is blocked and pL is still blocked if it was blocked
in s; or pL is blocked and was not blocked in s. In a few cases, to do so we also have to
make distinctions over the internal state of pL’s left neighbor pLL. The worst case, k = 6,
occurs when i = 3, i.e., when p holds both adjacent forks. Then, pL has to be in either
state iL = 1 or iL = 4 (which means, pL can’t hold the fork between pL and p since that
is held by p). If iL = 4, then pL is not blocked in s; pL can put down its left fork, getting
to state 1 where pL is blocked since it waits to pick up its right fork, held by p. If iL = 1
then we have to distinguish two cases about the state of pLL. We have that i = 3 (p holds
both adjacent forks), and iL = 1 (pL waits to pick up the fork between p and pL); pL is
blocked. Case A, if the state of pLL is 0, 2, or 3, then pLL holds the fork between pLL and
pL. We go with p from 3 to 4, from 4 to 1, and from 1 to 2, and we go with pL from 1 to 2.
Then, both p and pL are blocked since they wait to pick up the fork to their left. Case B,
if the state of pLL is 1 or 4, then the fork between pLL and pL is on the table, and pLL is
not blocked. We go with pLL from 4 to 1 (if in 4), and from 1 to 2. After that, pLL holds
the fork between pLL and pL; we are in case A and can apply that sequence, getting us to
a state where pLL is possibly blocked, and both p and pL are definitely blocked.

We always need at most 6 process state transitions to block one more philosopher.
The process state transitions take 4 planning actions each, and so this makes 24 planning
steps. Some more planning steps are needed due to the subtleties of the PDDL encoding.
Subtlety A, a process may have already decided to go to a state, but not yet arrived there
– i.e., the respective transition is activated and the read/write command is initiated, so
that communication channel/queue is occupied but the transition is not yet complete. At
most 2 steps are needed to reach the next internal state (update the queue and wrap up
the transition). Subtlety B, to be blocked in a state a process must activate its outgoing
transition. In the worst case described above, each of p, pL, and pLL may require the 2
steps induced by subtlety A; both p and pL require the step induced by subtlety B. So all
in all we get to (at most) 32 planning actions. In effect of the last action, one more process
becomes blocked, so an upper bound on the exit distance is 31.

By Theorem 1, there are no dead ends in Satellite. Let s be a reachable state. To
determine an upper bound d on the distance from s to a state s′ with h+(s′) < h+(s),
one can look at an optimal relaxed plan P+ for s, and distinguish four cases regarding the
existence of applicable actions of different types in P+. For each action type, a constant
number of steps suffices to re-achieve the deleted facts after application of the action. The
worst case, d = 5, arises when a switch-on action is applied. Switching on an instrument
deletes the instrument’s calibration. To re-achieve this, one must turn the satellite and
calibrate it. After another turn and taking an image, a state with lower h+ value is reached.

By Theorem 1, the dead ends in Schedule are all recognized. Let s be a non-dead
end state. To determine an upper bound d on the distance from s to a state s′ with
h+(s′) < h+(s), one can look at an optimal relaxed plan P+ for s and distinguish seven

735

Hoffmann

cases regarding the kinds of applicable actions that P+ contains. The worst case, d = 6,
arises when only a do-roll action is available (and applicable) in P+. One then needs to
apply a time-step, a do-lathe action to achieve the desired effects of do-roll, another time
step, a do-polish or a do-grind action to re-achieve the previous surface condition, another
time step, and a do-immersion-paint action to re-achieve the previous color.

By Theorem 1, there are no dead ends in Zenotravel. In a reachable state s, to determine
the desired constant d, distinguishing two cases does the job. If the relaxed plan P+ for s

contains an applicable boarding, departing, or refueling action, then applying that action
leads into a state with lower h+ value. Else, P+ starts with a flying action, and a better
state can be reached by executing the flight, refueling once, and boarding or departing a
person. We get d = 3. 2

Note that the proved bound for Dining-Philosophers holds even if we take the heuristic
function to be the trivial one that returns the number of yet un-blocked philosophers. It is
extremely cumbersome to figure out what exactly the worst-case exit distance is in Dining-
Philosophers under h+ – to do so, one has to consider all combinations of possible states of
neighbored processes, and their possible developments over a lot of action steps, in a rather
un-intuitive PDDL encoding made by an automated translation machinery. The highest
exit distance we could actually construct in Dining-Philosophers was 15. We conjecture
that this is a (tight) upper bound.

In Satellite, Schedule, and Zenotravel, the proved upper bounds are tight. In all of
Dining-Philosophers, Satellite, Schedule, and Zenotravel, the bounds are valid for any non-
dead end state s. So, beside a bound on the local minimum exit distance, these results also
provide a bound on the bench exit distance; we will re-use them below in Appendix A.3.

In Blocksworld-arm, Depots, Driverlog, Optical-Telegraph, Pipesworld, PSR, and Rovers,
one can construct local minima with arbitrarily large exit distances. In Blocksworld-arm,
an example situation is that where n blocks b1, . . . , bn initially form a stack where bi is
on bi+1 and bn is on the table, and where the goal is to build the same stack on top of
another block bn+1, i.e., the goal is a stack b1, . . . , bn, bn+1. Reaching, from the initial state,
a state with better h+ value, involves disassembling the entire stack b1, . . . , bn. During the
disassembling process, h+ increases. The same example can be used in Depots.

In Driverlog, local minima can arise due to the different road maps for trucks and drivers,
for example, when it takes one step to drive from a location l to another location l′, but n

steps to walk. In the relaxed plan, the driver can drive the truck to its goal while himself
staying where he is, but in reality, the driver will have to walk all the way back.

As for Optical-Telegraph, this is treated most easily by reconsidering the Dining-
Philosophers domain, for which we proved a constant upper bound above. The reason is
that Optical-Telegraph is basically a more permissive version of Dining-Philosophers, where
the philosophers can choose which fork to pick up first, and, if they hold both forks, which
fork they want to put down again first. Consider the configuration depicted in Figure 12.
That configuration is not reachable given the automata underlying Dining-Philosophers,
but is reachable given the automata underlying Optical-Telegraph.

In Figure 12, Nietzsche holds both adjacent forks, while Kant holds none and tries to
get access to the fork to his right. In between Nietzsche and Kant, there are arbitrarily
many other philosophers that all hold one fork each, and are trying to access the other.

736

Where “Ignoring Delete Lists” Works

Kant

Nietzsche

Figure 12: An unreachable situation in Dining-Philosophers, in which an unbounded local
minimum under h+ would arise. Arrows indicate “pickup”-requests.

The only non-blocked philosopher is Nietzsche, who can put down the forks again. In the
PDDL encoding of this, in the world state where Nietzsche has just activated the transition
putting down the right (or left) fork, the h+ value is 2: in the relaxation, it suffices to
initiate the write command, and to update the queue contents. After the write command
was initiated, however, h+ goes up to 3 because the transition has become non-activated;
so the relaxed plan has to update the queue contents, wrap up the transition, then activate
the (same) transition again. Reaching a state where the h+ value is 1 involves propagating
forks through the entire sequence of philosophers between Nietzsche and Kant, either on the
right hand side, or on the left hand side. For example, say Nietzsche puts down both forks
and then picks up the right fork. Then the philosopher to the left of Nietzsche can pick up
his requested fork (or Nietzsche can pick it up which gets us back to where we started). In
the resulting state, we are in the same situation as before, except that now the philosopher
with the “Nietzsche-role” sits one more position to the left. After iterating the procedure
around the left side of the table, Kant can pick up the requested fork, and request to get the
other, giving us a goal state where all philosophers are blocked. The state with h+ value 1
is the one where Kant has not yet activated the transition to request the other fork.

The configuration in Figure 12 is not reachable in the Dining-Philosophers domain as
used in IPC-4, because, there, a philosopher can not pick up the fork on his left hand
side first – as is done in Figure 12 by all the philosophers between Nietzsche and Kant
on Nietzsche’s left hand side. As said, in Optical-Telegraph the “philosophers” do have
this freedom of choice, and so the situation is reachable. In more detail, as described in
Appendix B.22, in Optical-Telegraph there are n pairs of communicating processes. The
pairs are arranged in a cycle, where between each pair there is a control channel. Internally,
the two processes within each pair can go through a fairly long, heavily interactive, sequence
of operations, implementing the possibility to exchange data between the two stations.

737

Hoffmann

Before these operations can begin, each of the processes has to occupy (write into) one
control channel. That is, one of the processes occupies a channel, then it waits for a signal
from the other process, indicating that the second control channel was occupied as well.
After the data exchange was terminated, the control channels get released (read) in an
arbitrary order. The overall system is blocked iff all process pairs are in the state where
they have occupied one control channel, and are waiting to occupy the other. Thus, the
process pairs correspond exactly to philosophers that can choose which fork to pick up (put
down) first, and Figure 12 provides an example with arbitrarily high exit distance from a
local minimum state. Precisely, the local minimum state is the one where the “Nietzsche”
process pair has just occupied both channels, and the process that blocked the second
channel has just activated the transition sending the “occupied-the-other-one” signal: in
that state, h+ has value 2 (all processes except the active one are blocked).

In Pipesworld, consider the situation where several areas form a circle with unitary
connections. In the local minimum state s, a single goal batch g has to go into an area a;
g is currently in a segment s adjacent to a, a contains a batch b, all other areas are empty.
The shortest plan is to push b into the other segment (not s) adjacent to a, and propagate
the batches around in the circle until g can be pushed into a. The shortest relaxed plan for
s is, however, to push b into s and then push g into s from the other side – i.e., g is used
to push itself into the goal area. Reaching the nearest state with h+ value 1 requires n − 1
steps when there are n areas in the circle, and on the path the h+ value increases. Note that
this example uses neither tankage restrictions, nor interface restrictions, nor non-unitary
pipeline segments.

In PSR, a deep local minimum is given when n breakers each feed an individual goal line,
in a way so that no breaker can feed any other breaker’s goal line without that other breaker
being also closed, and the breakers are all connected to some faulty line. All but one of the
breakers are closed. The h+ value of such a state is 1 (close the single open breaker) since
the only unsatisfied goal condition (beside supplying the line fed by the open breaker) is the
one postulating that no breaker is affected; that condition is a negated derived predicate,
and thus ignored in the relaxation. The only applicable action in the state is to wait. After
that, all breakers are open, and the shortest relaxed plan is to close them all, yielding the
h+ value n. Obviously, the nearest state with h+ value 0 is at least n steps away.30

In Rovers, local minima can arise because taking an image deletes the calibration of
the camera. An example is this. There are n waypoints w1, . . . , wn connected in a line
(i.e., wi−1 is connected to wi), a lander at w1, one rover has a camera c that must be used
to take two images at w1, and c can be calibrated (only) at wn. When the rover is at w1,
and c is calibrated, the relaxed plan is to take the two images and communicate the two
data pieces. But after taking one image, one has to navigate all the way to wn, calibrate
c, and get back. Note that this example makes use of a road map with arbitrarily large
diameter, where the diameter of a Rovers instance is the longest way any rover must travel
in order to get from one waypoint to another. In general, the distance to a state with better
h+ value is bounded by 3d + 2 where d is the diameter of the instance (see the details in
the TR). The road map diameter in the IPC-3 Rovers instances varies around 1 to 6.

30. We remark that this counter-example remains valid in the IPC-4 SIMPLE-ADL and STRIPS formulations
of PSR, which use a different encoding of the derived predicates, not using a negation to formulate the
goal that no breaker is affected.

738

Where “Ignoring Delete Lists” Works

As for the Airport, Assembly, Freecell, Miconic-ADL, Mprime, and Mystery domains, we
have seen in Appendix A.1 that these contain unrecognized dead ends, so, by Proposition 1,
the local minimum exit distance in these domains is unbounded. For Assembly, as the
TR describes in detail, the initial state of an instance has a path to the goal on which
h+ decreases monotonically, unless there are complex interactions between the ordering
constraints present in the instance. None of the IPC-1 instances features such complex
interactions. Assuming that FF’s search algorithm sticks to the monotonically decreasing
paths, this gives another indication as to how the system can be so efficient in that example
suite.

A.3 Benches

Theorem 3 Under h+, the maximal bench exit distance in the state space of any solvable
instance of Simple-Tsp is 0, Ferry is at most 1, Gripper is at most 1, Logistics is at most
1, Miconic-SIMPLE is at most 1, Miconic-STRIPS is at most 1, Movie is at most 1,
Zenotravel is at most 2, Satellite is at most 4, Schedule is at most 5, Tireworld is at most
6, and Dining-Philosophers is at most 31.

As before, we subdivide the proof sketch to Theorem 3 into groups of domains with
similar proofs. We first consider the transportation-type domains. In all of them, Lemma 4,
or very similar proof arguments, can be applied.

Proof Sketch: [Theorem 3, Ferry, Gripper, Logistics, Miconic-SIMPLE, Miconic-STRIPS]

The proofs to Theorems 1 and 2 have shown that, in all these domains, the actions
are respected by the relaxation, and, in all these domains except in Miconic-SIMPLE, the
actions are either invertible, or have no relevant delete effects. To determine an upper bound
d on the exit distance from benches, we can thus apply Lemma 4. This requires us to show
that, for any state s, there is an optimal plan in that the d + 1th action has no relaxed-
plan relevant delete effects. In Miconic-SIMPLE, we have seen that the actions, while not
adhering to the syntactic conditions of invertibility and (no) relevant delete effects, have
similar semantics; so the same proof technique can be applied there.

In all the (transportation-type) domains under consideration, the argument is, roughly,
that load-type and unload-type actions have no relaxed-plan relevant delete effects, while
move-type actions need not be applied more than once in a row because all locations are
immediately accessible from each other. This implies an upper bound of 1 on the maximal
exit distance. Concretely, say s is a reachable state in a Logistics instance, a starts an
optimal plan from s, P+ is an optimal relaxed plan for s that starts with a, and applying
a to s yields the state s′. If a is a loading (unloading) action, its only delete is the at-

(in-) fact of the transported object; as the object is loaded from the respective location
(unloaded from the respective vehicle) only once in the optimal relaxed plan P+, a has no
relaxed-plan relevant delete effects, so s is an exit. Otherwise, if a drives or flies some vehicle
v from l to l′, then s′ is an exit because an optimal plan for s′ starts by loading (unloading)
some package to (from) v. For Miconic-STRIPS and Miconic-SIMPLE, the same arguments
apply. In Ferry, the arguments also remain valid except that, if the optimal start action
a in the state s boards a car, then this action also deletes the available free space on the

739

Hoffmann

ferry. But then, the relaxed plan P+ for s also contains actions that move the ferry to a
location l, and that debark the car at l (otherwise there would be no point in boarding the
car). Placing these actions up front in P+, and removing a, yields a relaxed plan for the
state that results from applying a in s. A similar argument can be applied to prove the
claim for Gripper, where gripper hands can hold only one ball at a time. (Note that the
argument for Ferry and Gripper uses a somewhat weaker notion than relaxed-plan relevant
delete effects, where there are such effects, but they are undone by actions contained in the
relaxed plan.) 2

Next come some non-transportation domains where also Lemma 4 can be applied.

Proof Sketch: [Theorem 3, Movie, Simple-Tsp, Tireworld]

The proofs to Theorems 1 and 2 have shown that in these domains all actions are
respected by the relaxation, and either at least invertible, or have irrelevant delete effects.
We apply Lemma 4 in all cases.

In Movie, all actions have no, and therefore no relaxed-plan relevant, delete effects,
with the single exception of rewinding the movie (which deletes the counter being at zero).
Obviously, no optimal plan rewinds the movie twice in a row. Thus, d = 1 is the desired
upper bound.

In Simple-Tsp, d = 0 suffices. Say we are in a reachable state s where one is at location
l. An optimal plan starts with an action a visiting a yet unvisited location l′. An optimal
relaxed plan for s is to start with a, then visit each remaining unvisited location l′′ by a
move from l′ to l′′. The latter actions do not require preconditions deleted by a, and so a

– every action – has no relaxed-plan relevant delete effects.

In Tireworld, the lowest constant upper bound is d = 6. Some non-final working steps
(like jacking up a hub with a flat wheel on) need to be undone later on, i.e., they have
relaxed-plan relevant delete effects. Other final working steps (like jacking down the hub)
need not be undone, i.e., they have no relaxed-plan relevant delete effects. The longest
sequence of non-final working steps that any optimal plan does in a row is the following
6-step one: open the boot (it must be closed again), fetch the wrench and the jack (they
must be put away again), loose the nuts on a hub that’s got a flat wheel on (the nuts must
be tightened again), jack up the respective hub (it must be jacked down again), and undo
the nuts (they must be done up again). In the resulting state, one can remove the flat
wheel, which needs not be undone. 2

For the remaining domains where Theorem 3 claims a constant upper bound on the
maximal bench exit distance, we have seen in Appendix A.2 that there are upper bounds
on the distance from any reachable state s to a state s′ with h+(s′) < h+(s). These upper
bounds trivially also imply upper bounds on the maximal bench exit distance.

Proof Sketch: [Theorem 3, Dining-Philosophers, Satellite, Schedule, Zenotravel]

Follows directly from the proof to Theorem 2. 2

For all of the above domains, except the last four, one can easily construct examples
where the bench exit distance is equal to the proved upper bound. For Satellite, Schedule,

740

Where “Ignoring Delete Lists” Works

and Zenotravel, it is an open question whether there are tighter bounds on the bench exit
distance than on the local minimum exit distance; this does not seem particularly relevant,
though. (For Dining-Philosophers, as said above it may be that not even the bound on the
local minimum exit distance is tight.)

For the Blocksworld-no-arm, Briefcaseworld, Fridge, Grid, and Hanoi domains, Theo-
rem 2 proves that there are no local minima. So there it is important to know whether it can
be arbitrarily difficult to escape benches. The answer is “yes” in all cases. In Blocksworld-
no-arm, the example is the same one that we already used in Blocksworld-arm and Depots
(to show that there are no bounds on the local minimum exit distances). There are n blocks
b1, . . . , bn that initially form a stack where bi is on bi+1 and bn is on the table, and the goal is
to build the same stack on top of another block bn+1, i.e., the goal is a stack b1, . . . , bn, bn+1.
The shortest relaxed plan for the initial state is n steps long (remove the stack on top of
bn, then move bn onto bn+1). The nearest state with h+ value n− 1 is the one where bn has
already been stacked onto bn+1. That state is n steps away from the initial state.

In Briefcaseworld, the bench exit distance becomes large when many objects must be
taken out of the briefcase – in the relaxation, there is no point in taking objects out, since
moving the briefcase does not delete any at-facts. Consider the state s where n objects
o1, . . . , on are inside the briefcase at a location l, and the goal is to have o1, . . . , on at l and
the briefcase at another location l′. We have h+(s) = 1: moving the briefcase to l′ suffices
in the relaxation. But the nearest goal state, h+ = 0, is n + 1 steps away: one must take
all the objects out before moving to l′.

In Fridge, if in a single fridge the compressor is held by n screws, then the exit distance
of the initial state is n + 1. To reach a better state, one must: stop the fridge (which must
be turned back on in the relaxed plan); unfasten the n screws (which must be fastened
again in the relaxed plan); and remove the broken compressor (which needs not be undone
as it only deletes the fact that the broken compressor is attached to the fridge).31

In Grid, consider the instances where the robot is located on a n×1 grid (a line) without
locked locations, the robot starts at the leftmost location, and shall transport a key from
the rightmost location to the left end. The initial value of h+ is n + 2 (walk over to the
key, pick it up, and put it down – the at-facts are not deleted), and the value does not get
better until the robot has actually picked up the key.

In Hanoi, we have seen that h+ is always equal to the number of discs that are not yet
in their goal position. Thus the maximal bench exit distance grows exponentially with the
number of discs. From the initial state in an instance with n discs, it takes 2n−1 steps to
move the first (i.e., the largest) disc into its goal position.

For the 9 domains where the local minimum exit distance can be arbitrarily large, it
is not as relevant whether the bench exit distance is bounded or not. Escaping a bench
might do the planner no better than ending up in a huge local minimum. We remark that,
for example, in Driverlog, Rovers, Mprime, and Mystery, one can easily construct examples
with large bench exit distances, by defining road maps with large diameters – i.e., by using
basically the same example as used above in the Grid domain.

31. In fact, one can easily prove that n + 1 is also an upper bound on the bench exit distance, in Fridge
instances where compressors are held by n screws (details are in the TR).

741

Hoffmann

Appendix B. Domain Descriptions

The following is a list of brief descriptions of the 30 investigated domains. We explain the
overall idea behind each domain, the available operators, and what the initial states and
goals are. In most cases the set of instances is obvious; restrictions, if any, are explained.
We remark that, at some points, the domain semantics seem a bit odd (for example, in
Zenotravel, the only difference between flying and zooming a plane is that zooming consumes
more fuel). The odd points are, presumably, domain bugs that have been overlooked by the
respective domain designers. We have not corrected these bugs as, after all, the investigation
is meant to determine the properties of the benchmarks as they are used by the community.
The domains are listed in alphabetical order.

B.1 Airport

In the Airport domain, the planner has to safely navigate the ingoing and outgoing traffic,
at a given point in time, across an airport. The main problem constraint is that planes
must not endanger each other, which they do if they come too close to each other’s running
engines. The constraint is modeled by letting each plane “block” the segments that its
engines currently endanger. Planes can not enter blocked areas. There are five operators.
A plane can be moved from one airport segment to another, if the plane is facing the right
direction, and no planes get endangered by the action. Similarly, a plane can be pushed
back if that does not cause trouble. One can start up the engines of a plane, let the plane
take off, or let the plane settle at a parking position. The initial state specifies the current
positions and orientations of the planes, the goal specifies which planes are outbound (have
to take off), and which are inbound and to what parking positions.

B.2 Assembly

In the Assembly domain, a complex object must be constructed by assembling its parts
together, obeying certain ordering constraints. The parts themselves might need to be
assembled in the same way beforehand. Some parts are “transient”, which means that they
must be integrated only temporarily. There is a collection of machines, “resources”, which
might be needed by the working steps. There are four operators. An available resource can
be committed to an object, deleting the resource’s availability. Releasing a resource from
an object is the inverse action. An available object x can be assembled into an object y,
if x is either a part or a transient part of y, if all resources that y requires are committed
to y, and if all objects that have an assemble order before x are already incorporated into
y. In effect, x is incorporated into y but no longer available, and y becomes available if all
parts of y except x are already incorporated, and no transient part of y is incorporated. An
incorporated object x can be removed from y, if all resources that y requires are committed
to y, and, given x is a transient part of y (a part of y), if all objects with a remove order
(an assemble order) before x are incorporated (not incorporated). In effect, x is available
but no longer incorporated, and y becomes available if all parts of y are incorporated, and
all transient parts of y except x are not incorporated. In the instances, the part-of relation
forms a tree where the goal is to make the root object of the tree available. Also, the

742

Where “Ignoring Delete Lists” Works

assemble and remove order constraints are consistent (cycle-free). These restrictions hold
true in the AIPS-1998 competition examples.

B.3 Briefcaseworld

In Briefcaseworld, a number of portables must be transported, where the transportation is
done via conditional effects of the move actions. There are three operators. Putting in a
portable at a location can be done if the portable and the briefcase are at the respective
location, and the portable is not yet inside. Taking a portable out can be done if it is inside.
A move can be applied between two locations, and achieves, beside the is-at-fact for the
briefcase, the respective at-facts for all portables that are inside (i.e., the portables inside
are moved along by conditional effects). The goal is to have the briefcase, and a subset of
the portables, at their goal locations.

B.4 Blocksworld-no-arm

Blocksworld-no-arm is a variant of the widely known Blocksworld domain. There are three
operators. One can move a block from the table onto another block. One can move a block
from another block to the table. One can move a block from another block onto a third
block. The initial state of an instance specifies the initial positions of the blocks, the goal
state specifies a (consistent, i.e., cycle-free) set of on facts.

B.5 Blocksworld-arm

The instances of Blocksworld-arm are the same as those of Blocksworld-no-arm. The dif-
ference is that blocks are moved via a single robot arm that can hold one block at a time.
There are four operators. One can pickup a block that is on the table. One can put a block,
that the arm is holding, down onto the table. One can unstack a block from some other
block. Finally, one can stack a block, that the arm is holding, onto some other block.

B.6 Depots

The Depots domain is a kind of mixture between Logistics and Blocksworld-arm. There is
a set of locations, a set of trucks, a set of pallets, a set of hoists, and a set of crates. The
trucks can transport crates between locations, the hoists can be used to stack crates onto
other crates, or onto pallets. There are six operators, to move a truck between (different)
locations, to load a crate that is held by a hoist onto a truck at a location, to unload a
crate with a hoist from a truck at a location, to lift a crate with a hoist from a surface (a
pallet or a crate) at a location, and to drop a crate that is held by a hoist onto a surface at
a location. A hoist can hold only one crate at a time. The crates are initially arranged in
arbitrary stacks, where the bottom crate in each stack is standing on a pallet. The goal is
to arrange the crates in some other arbitrary stacks on (possibly) other pallets, which can
involve transporting crates to other locations (as pallets can not be moved).

743

Hoffmann

B.7 Dining-Philosophers

Dining-Philosophers is an encoding of the well-known Dining-Philosophers problem, where
the task for the planner is to find the deadlock situation that arises when every philosopher
has taken up a single fork. The PDDL domain was created by an automatic translation
from the automata-based Promela language. The automata are also referred to as processes.
In Promela, each philosopher is a finite automaton/process that works as follows. From the
start state, state 0, a transition puts the right fork onto the table (this is just an initialization
step), getting him to state 1. Then there is a loop of four states. From state 1 to state
2, the philosopher takes up the right fork. From 2 to 3, he takes up the left fork, 3 to 4
he puts down the right fork, in state 4 he puts down the left fork and gets back to state
1. Each such process communicates with each of its neighbors through a communication
channel, a queue, that either contains a fork, or is empty (if one of the adjacent philosophers
is currently holding that fork).

In the PDDL encoding, each process state transition is broken down into four actions.
The first action activates the chosen transition. The second action initiates a write or read
command to the needed queue, deleting the activation of the transition and setting flags for
queue update. The third action updates, if possible, the queue contents. An update is not
possible if a write command shall be done to a full queue (a queue that already contains a
fork), or if a read command shall be done to an empty queue. The fourth action wraps the
process state transition up, re-setting all flags.

Derived predicates are used to model the conditions under which a process is blocked.
The rules require that all outgoing transitions of the current state of the process are blocked.
A transition is blocked if it is activated, and would need to perform an impossible queue
write/read operation – in the sense that this impossible write/read operation has not yet
been initiated.32 After applying the planning action initiating the impossible write/read
command, the blocking rules don’t apply anymore and so the resulting state is a dead end
in the planning task’s state space (but not a blocking situation in the process network,
according to the derived predicate rules modeling the blocking).

We remark that, in IPC-4, there was also a version of Dining-Philosophers that modeled
process blocking via additional planning operators, not derived predicates. We chose to
consider the other, above, domain version since it constitutes the more natural and concise
formulation, and since planners at IPC-4 scaled further up in it than in the version without
derived predicates.

B.8 Driverlog

Driverlog is a variation of Logistics, where drivers are needed for the trucks, and where
drivers and trucks can move along arbitrary (bi-directional) road maps. The road maps for
drivers and trucks can be different. There are operators to load/unload an object onto/from
a truck at a location, to board/disembark a driver onto/from a truck at a location, to walk

32. Only one outgoing transition can be activated at any time, so a process can never become blocked in a
state with more than one outgoing state transition. This appears to be a bug in the translation from
Promela to PDDL – the more intuitive requirement would be that only the activated transition needs
to be blocked, or that an outgoing transition does not need to be activated in order to be blocked. Note
that, in Dining-Philosophers, every automaton state has just one outgoing transition.

744

Where “Ignoring Delete Lists” Works

a driver from a location to another one, and to drive a truck with a driver from a location
to another one. The preconditions and effects of loading/unloading objects are the obvious
ones. A driver can board a truck only if the truck is empty; in effect, the truck is no longer
empty (as well as driven by the driver). Disembarking a driver is the inverse action. In
order to walk a driver from l to l′, there must be a path between l and l′. In order to drive
a truck from l to l′, there has to be a link from l to l′ (and there must be a driver on the
truck). Paths and links form arbitrary (in particular, potentially different) graphs over the
locations, the only restriction being that they are undirected, i.e., if a truck or driver can
move from l to l′ then it can also move back. This restriction is imposed on the Driverlog
instances as can be generated with the IPC-3 generator.

B.9 Ferry

In Ferry, a single ferry is used to transport cars between locations, one at a time. There are
three operators. One can sail the ferry between two locations. One can board a car onto
the ferry at a location, which deletes an empty-ferry fact (plus adding that the car is on
the ferry and deleting that the car is at the location). One can debark a car from the ferry
at a location, which achieves empty-ferry (plus adding that the car is at the location and
deleting that the car is on the ferry). The goal is to have a subset of the cars at their goal
locations.

B.10 Freecell

The Freecell domain is a STRIPS formulation of the widely known solitaire card game
that comes with Microsoft Windows. A number of cards from different suits are initially
arranged in random stacks on a number of columns. The cards must be put home. For each
suit of cards, there is a separate home column, on which the cards from that suit must be
stacked in increasing order of card value. There is a number of free cells. The cards can be
moved around according to certain rules. A card is clear if it has no other card on top of
it. Any clear card can be put into a free cell (if it’s not already there), each free cell holds
only one card at a time. Any clear card can be moved onto an empty column. A clear card
c can be put home if the last card put home in the same suit was the one preceding c. If c

and c′ are clear cards from differently colored suits, then one can stack c on top of c′ if c′ is
not in a free cell, and c’s card value is one less than the card value of c′ (so stacks can only
be built on columns, in decreasing order of card value, and in alternating colors). The goal
is reached when the topmost cards of all suits have been put home.

B.11 Fridge

In Fridge, one must replace the broken compressor in a fridge. To do this, one must remove
the compressor; this involves unfastening the screws that hold the compressor, which in
turn involves first switching the fridge off. The goal is to have the new compressor attached
to the fridge, all screws fastened, and the fridge switched back on. The origin of this domain
is a STRIPS formulation. We consider an adaptation that allows for an arbitrary number of
fridges and screws, where each compressor is fastened by the same (arbitrary, at least one)
number of screws. The adaptation involves an ADL precondition: a compressor can only be

745

Hoffmann

removed if all screws are unfastened. There are six operators. One can stop/start a fridge.
One can unfasten/fasten a screw from/to a compressor attached to a fridge; to do so, the
fridge needs to be turned off, the compressor needs to be attached, and the screw must fit
the compressor. Finally, one can remove/attach a compressor from/to a fridge. Removing
a compressor requires that the fridge is turned off, and that none of the screws that fit the
compressor are fastened. In effect, the compressor is no longer attached to the fridge, and
both the fridge and the compressor are free. Attaching a compressor requires that the fridge
is turned off, and that the compressor fits the fridge. In effect, the compressor is attached,
and the compressor and fridge are no longer free.

B.12 Grid

In Grid, a robot must move along positions that are arranged in a grid-like reachability
relation. The positions can be locked, and there are keys of different shapes to open them.
The goal is to have some keys at their goal positions. There are five operators. One can
move from position p to position p′, which requires (apart from the obvious preconditions)
that p and p′ are connected, and that p′ is open (not locked). One can pick up a key at a
position, which requires that the arm is empty (one can only hold one key at a time), and
has as effects that one holds the key, that the arm is no longer empty, and that the key
is no longer at the position. Putting a key down at a position is the inverse action. One
can abbreviate the two previous actions by doing a pickup-and-lose of keys k and k′ at a
position; to do this, one must hold k, which is directly exchanged for k′, i.e., the effects are
that one holds k and that k′ is at the position. Finally, one can unlock a position p′ if one is
at a position p that is connected to p′, and holds a key that has the same shape as the locked
position p′; the add effect is that p′ is open, the delete effect is that the position is no longer
locked. The instances specify the initial locations of all keys, of all locked positions, and
of the robot, as well as the shapes of the keys and the locked positions. The goal specifies
positions for a subset of the keys. The robot always starts at an open position. This does
make a significant difference: if the robot is allowed to start at a locked position, there can
be local minima under h+.33 Otherwise there are none, c.f. Theorem 2. Intuitively, it makes
more sense to let the robot be located in open positions only; the restriction also holds true
in the published benchmark examples.

B.13 Gripper

In Gripper, the task is to transport a number of balls from one location to another. There
are three operators. One can move between locations. One can pick up a ball at a location
with a hand; apart from the obvious preconditions this requires that the hand is empty; the
effects are the obvious ones (the ball is in the hand and no longer in the room) plus that
the hand is no longer empty. One can drop a ball at a location from a hand, which inverts
the effects of the picking action. There are always exactly two locations, and two gripper
hands. Instances thus differ only in terms of the number of balls. These severe restrictions
hold true in the AIPS-1998 instances. We remark that adding more locations and/or hands

33. Moving away from a locked initial position can lead to the need of applying several steps to re-open that
position. The relaxed plan to the initial state does not realize this, since it ignores the delete on the
initial at-fact.

746

Where “Ignoring Delete Lists” Works

does not affect the topological properties under h+, in fact the proof arguments given in
Theorems 1, 2, and 3 remain valid in this case.

B.14 Hanoi

The Hanoi domain is a STRIPS encoding of the classical Towers of Hanoi problem. There
are n discs d1, . . . , dn, and three pegs p1, p2, and p3. There is a single operator that moves
an object x from an object y onto an object z (the operator parameters can be grounded
with discs as well as pegs). The preconditions of the move are that x is on y, x is clear, z

is clear, and x is smaller than z. The effects are that x is on z and y is clear, while x is no
longer on y and z is no longer clear. The semantics of Towers of Hanoi are encoded via the
smaller relation. This relation holds in the obvious way between the discs, and all discs are
smaller than the pegs (the pegs are not smaller than anything so they can not be moved).
The instances differ in terms of the number n of discs that must be transferred from p1 to
p3.

B.15 Logistics

Logistics is the classical transportation domain, where objects must be transported within
cities using trucks, and between different cities using airplanes. There are six operators, to
drive a truck between two locations within a city, to fly an airplane between two airports,
to load (unload) an object onto (from) a truck at a location, and to load (unload) an object
onto (from) an airplane at an airport. The operators all have the obvious preconditions
and effects (the most “complicated” operator is that moving a truck, whose precondition
requires that both locations are within the city). There is always at least one city, and each
city has a non-zero number of locations one of which is an airport. There is an arbitrary
number of objects, and of airplanes (which are located at airports). The goal is to have a
subset of the objects at their goal locations.

B.16 Miconic-ADL

Miconic-ADL is an ADL formulation of a complex elevator control problem occurring in a
real-world application of planning (Koehler & Schuster, 2000). A number of passengers are
waiting at a number of floors to be transported with a lift, obeying a variety of constraints.
There is always at least one floor, and an arbitrary number of passengers, each of which is
given an origin and a destination floor. There are three operators. The lift can move up
from floor f to floor f’ if f’ is (transitively) above f, and vice versa for moving downwards.
The lift can also stop at a floor. When it does so at floor f, by conditional effects of the
stopping action all passengers waiting at f are boarded, and all passengers wanting to get
out at f depart. The goal is to serve all passengers, i.e., to bring them to their destination
floor. The constraints that must be obeyed are the following.

• In some cases, a passenger p has no access to a floor f; the lift can then not stop at f

while p is boarded.

• Some passengers are VIPs; as long as these are not all served, the lift can only stop
at floors where a VIP is getting on or off.

747

Hoffmann

• Some passengers must be transported non-stop, i.e., if they are boarded, the lift can
make no intermediate stops before stopping at their destination floor.

• Some passengers can not travel alone, others can attend them; if one of the former
kind is boarded, then so must be at least one of the latter kind.

• There are groups A and B of passengers such that it is not allowed to have people
from both groups boarded simultaneously.

• Some passengers can only be transported in the direction of their own travel, i.e., if
they need to go up (down), then, while they are boarded, the lift can not move
downwards (upwards).

All of these constraints are formulated by means of complex first order preconditions of
the operators.

B.17 Miconic-SIMPLE

The Miconic-SIMPLE domain is the same as Miconic-ADL described above, except that
there are no constraints at all.

B.18 Miconic-STRIPS

The Miconic-STRIPS domain is almost the same as the Miconic-SIMPLE domain, see above.
The only difference is that boarding and departing passengers is not done by conditional
effects of a stopping operator, but explicitly by separate STRIPS operators. One can board
a passenger at a floor. The precondition is that the (current) floor is the passenger’s origin,
and the only effect is that the passenger is boarded. One can let a passenger depart at a
floor. The preconditions are that the (current) floor is the passenger’s destination and that
the passenger is boarded, and the effects are that the passenger is served but no longer
boarded.

B.19 Movie

In Movie, the task is to prepare for watching a movie. There are seven different operators.
One can rewind the tape, which adds that the tape is rewound, and deletes that the counter
is at zero. One can reset the counter, the only effect being that the counter is at zero. One
can get five different kinds of snacks, the only (add) effect being that one has the respective
snack. Instances differ only in terms of the number of items that there are of each sort of
snacks. The goal is always to have one snack of each sort, to have the tape rewound, and
to have the counter at zero.

B.20 Mprime

Mprime is a transportation kind of domain, where objects must be transported between
locations by means of vehicles, and vehicles use non-replenishable fuel. In an instance,
there are a set L of locations, a set O of objects, and a set V of vehicles. There also are
sets F and S of fuel numbers and space numbers. Each location initially has a certain fuel

748

Where “Ignoring Delete Lists” Works

number – the number of fuel items available at the location – and each vehicle has a certain
space number – the number of objects the vehicle can carry at a time. There are operators
to move vehicles between locations, to load (unload) objects onto (from) vehicles, and to
transfer fuel units between locations. A move from location l to location l′ can only be
made if l and l′ are connected (where the connection relation is an arbitrary graph), and if
there is at least one fuel unit available at l (l has a fuel number that has a lower neighbor).
In effect of the move, the respective vehicle is located at l′, and the amount of fuel at l is
decreased by one unit, i.e., l is assigned the next lower fuel number. In a similar fashion, an
object can only be loaded onto a vehicle if there is space for that, and in effect the available
space decreases. Unloading the object frees the space again. The transfer operator can
transfer one fuel unit from location l to location l′, if l and l′ are connected, and l has at
least two fuel units left. As the result of applying the operator, l’s fuel number decreases by
one, while l′’s fuel number increases by one. Note that there is no way to re-gain fuel items
(one can transfer them around but one can not obtain new ones). The goal is to transport
a subset of the objects to their goal locations.

B.21 Mystery

Mystery is exactly the same as the Mprime domain described above, except that there is
no operator to transfer fuel items.

B.22 Optical-Telegraph

Like the Dining-Philosophers domain described above in Appendix B.7, Optical-Telegraph
is a PDDL compilation of a problem originally formulated in the automata-based Promela
language. The mechanics of the PDDL compilation are the same as in Dining-Philosophers,
using derived predicates to detect blocked situations. The problem involves n pairs of com-
municating processes, each pair featuring an “up” and a “down” process. Such a pair can go
through a fairly long, heavily interactive, sequence of operations, implementing the possibil-
ity to exchange data between the two stations. Before data is exchanged, various initializing
steps must be taken, to ensure the processes are working synchronously. Most importantly,
each of the process writes a token into a “control channel” (queue) at the beginning of
the sequence, and reads the token out again at the end. This causes a deadlock situation
because there are only n control channels, each of which is accessed by two processes. More
precisely, the process pairs are arranged in a cycle, where between each pair there is a con-
trol channel. The overall system is blocked iff all process pairs are in a state where they
have occupied (written into) one control channel, and are waiting to occupy the other. In
that sense, Optical-Telegraph can be viewed as a version of Dining-Philosophers where the
internal states of the philosophers are more complicated. In particular, the “philosophers”
(process pairs) here can choose in which order to “pick up the forks” (occupy the control
channels). As it turns out, see Appendix A.2, the latter has an important impact on the
topology under h+.

We remark that, in IPC-4, there was also a version of Optical-Telegraph that modeled
process blocking via additional planning operators, not derived predicates. We chose to
consider the other, above, domain version since it constitutes the more natural and concise

749

Hoffmann

formulation, and since planners at IPC-4 scaled further up in it than in the version without
derived predicates.

B.23 Pipesworld

In Pipesworld, units of oil derivatives, called “batches”, must be propagated through a
pipeline network. The network consists of areas connected with pipe segments of different
length. The pipes are completely filled with batches at all times, and if one pushes a batch
in at the one end of a pipe, the last batch currently in that pipe comes out at the other end.
There can be interface restrictions concerning the types of oil derivatives that are allowed
to be adjacent to each other inside a pipe, and there can be tankage restrictions concerning
the number of batches (of each derivative type) that can be stored at any point in time in
the individual areas.

The only available planning operator is to push a batch into a pipe. In the IPC-
4 encoding of the domain, which we look at here, for non-unitary pipe segments (pipes
containing more than one batch) this operator is split into two parts, a start and a finish
action (in order to reduce the number of operator parameters needed to correctly update the
pipe contents). Also, pipe segments are encoded in a directed fashion, making it necessary
to distinguish between (symmetrical) push and pop actions. The initial state specifies the
current batch positions etc., the goal specifies what batches have to be brought to what
areas.

B.24 PSR

In the PSR domain, as used in IPC-4, the task is to re-supply a given set of lines in a faulty
electricity network. The nodes of the network are “breakers”, which feed electricity into
the network, and “devices”, which are just switches that can be used to change the network
configuration. The edges in the network are the lines, each connecting two or three nodes.
The breakers and devices can be open or closed. If they are open, then they disconnect the
lines adjacent to them. If breakers are closed, then they feed electricity into the adjacent
lines. Some of the lines are faulty. The goal is to ensure that none of the breakers is
“affected”, i.e., feeds electricity into a faulty line, through the transitive connections in the
network. Also, the goal requires that each of the given set of lines is (transitively) fed with
electricity from some breaker.

The transitive network semantics, determining if a breaker feeds electricity into some
line, and if a breaker is affected, are modeled by means of various derived predicates (with
recursive rule antecedents to enable the computation of transitive closure). There are three
planning operators. One can open a device or breaker that is currently closed, and one
can do the inverse closing action. Both actions require as a precondition that no breaker
is currently affected. If the latter is untrue, i.e., if a breaker is currently affected, then the
only available action is to wait. Its effect is to open all breakers that are affected.

We remark that, in IPC-4, there was also a different version of PSR, formulated in
pure STRIPS without derived predicates. That version constitutes, however, a relatively
superficial pre-compiled form of the domain (Hoffmann & Edelkamp, 2005; Edelkamp et al.,
2005). It was included in IPC-4 only in order to provide the pure STRIPS planners with a

750

Where “Ignoring Delete Lists” Works

domain formulation they could tackle (the pre-compilation was necessary in order to enable
the formulation in pure STRIPS).

B.25 Rovers

In Rovers, a number of rovers must navigate through a road map of waypoints, take rock
and soil samples as well as images, and communicate the data to a number of landers. The
nine available operators are the following. One can navigate a rover from one waypoint
to another – to do this, the waypoints must be connected for the rover. One can sample
soil/rock with a rover at a waypoint using a store – to do so, the rover must have the
(empty) store and be equipped for soil/rock analysis, and there must be soil/rock to sample
at the waypoint; in effect one has the soil/rock analysis, the store is full, and the soil/rock
sample is no longer at the waypoint. One can empty a full store by dropping the store. One
can calibrate a camera at a waypoint using an objective, and one can take an image of an
objective in a mode with a camera at a waypoint. For both operators, the object must be
visible from the waypoint, and the camera must be on board a rover that is equipped for
imaging. To calibrate the camera, the object must be a calibration target for it; the only
effect of the operator is the calibration of the camera. To take an image, the camera must
be calibrated, and support the required mode. The effects are that one has the image data,
and that the camera is no longer calibrated. Finally, there are three operators with which
a rover can communicate soil/rock/image data to a lander. To do so, the lander’s waypoint
must be visible from that of the rover; the only effect is that the data is communicated.
The instances are restricted in that the visibility and connectivity between waypoints are
bi-directional – if waypoint w is visible from waypoint w′ then the same holds true vice
versa; if a rover can move from w to w′ then it can also move back. Another restriction is
that no camera is initially calibrated (this serves to make sure that, in a reachable state,
each calibrated camera has at least one calibration target). Both restrictions are imposed
on the Rovers instances as can be generated with the IPC-3 generator.

B.26 Satellite

In Satellite, satellites need to take images in different directions, in certain modes, using
appropriate instruments. There is a number of satellites, a number of directions, a number
of instruments, and a number of modes. There are the following five operators. One can
turn a satellite from a direction to another one; the preconditions and effects are the obvious
ones, the action can be applied between any pair of directions (no connectivity constraints).
One can switch on an instrument on board a satellite, if the satellite has power available; in
effect, the instrument has power but is no longer calibrated, and the satellite has no more
power available. One can switch off an instrument on board a satellite, if the instrument
has power; in effect, the satellite has power available, but the instrument not anymore.
One can calibrate an instrument on board a satellite in a direction, if the satellite points
into the direction, the instrument has power, and the direction is a calibration target for
the instrument. The only effect is the calibration of the camera. Finally, one can take an
image with an instrument on board a satellite in a direction and a mode. To do so, the
satellite must point into the direction, and the camera must support the mode, have power,
and be calibrated; the only effect is that one has an image of the direction in the mode.

751

Hoffmann

The goal is to have images of a number of direction/mode pairs; also, satellites can have a
goal requirement to point into a specified direction. The initial states are such that each
satellite (but no instrument) has power available, and no instrument is calibrated. The
former restriction makes sure that each satellite has the power to run one instrument at a
time; the latter restriction makes sure that, in a reachable state, each calibrated instrument
has at least one calibration target. Both restrictions are imposed on the Satellite instances
as can be generated with the IPC-3 generator.

B.27 Schedule

In Schedule, a collection of objects must be processed on a number of machines, applying
working steps that change an object’s shape, surface condition, or color; one can also drill
holes of varying widths in varying orientations. There are nine operators. Eight of these
describe working steps for an object o on a machine. Amongst other things, these operators’
preconditions require that o is not scheduled elsewhere and that the machine is not busy,
and these operators’ effect is that o is scheduled, and that the machine is busy. The ninth
operator does a time step, whose effect is that no object is scheduled, and no machine is
busy, any longer. One can apply a do-roll action to an object o, which makes o cylindrical
and hot (no longer cold, see also below), while deleting any surface conditions, colors, and
holes that o might have. One can apply a do-lathe to o, making it cylindrical with a rough
surface, and deleting any colors that o might have been painted in before. One can apply
a do-polish to o if it is cold, giving it a polished surface. One can apply a do-grind to o,
giving it a smooth surface with no colors. One can apply a do-punch to o, with width w in
orientation o, if o is cold, resulting in o having a hole in w and o, and a rough surface. One
can also apply a do-drill-press to o, if o is cold, making a hole of width w and orientation
o into o (changing none of o’s properties except making the hole). If o is cold, then one
can also apply a do-spray-paint in color c, deleting all surface conditions that o might have.
Finally, one can apply a do-immersion-paint to o, changing none of o’s properties except
the color. Note that there is no operator that can change o’s temperature, except do-roll
which makes o hot; after that, o can not be made cold again (this is the reason why dead
ends can arise, c.f. Theorem 1). Initially, all objects are cold, and have a shape and a
surface condition specified. Some of the objects are also painted initially, and an object
can have none or several holes. In the goal condition, some of the objects can be required
to have cylindrical shape (the only shape that can be produced by the machines), some
need a surface condition, some must be painted, and each object can be required to have
an arbitrary number of holes.

B.28 Simple-Tsp

Simple-Tsp is a trivial version of the TSP problem. There is a single operator to move
between locations. This can be applied between any two (different) locations, and the effect
(besides the obvious ones) is that the destination location is visited. The instances specify
a number of locations that must all be visited, starting in one of them.

752

Where “Ignoring Delete Lists” Works

B.29 Tireworld

In Tireworld, one must replace a number of flat tires. This involves a collection of objects
that must be used in the appropriate working steps. Briefly summarized, the situation is as
follows. There are thirteen operators. There is a boot that can be either opened or closed;
it is initially closed and shall be so in the end. There are a pump, a wrench, and a jack
which can be fetched or put away (from/into the boot); they are initially in the boot and
shall be put back in the end. The spare wheels are initially not inflated, and can be inflated
using the pump (the add effect is that the wheel is inflated, the delete effect is that it is no
longer not-inflated). Each hub is fastened with nuts; these can be loosened or tightened,
using the wrench, while the respective hub is on ground. The jack can be used to either
jack up or jack down a hub. Once a hub is jacked up, one can undo the (loose) nuts, or do
them up; if the nuts are undone, one can remove the respective wheel, or put on one. An
optimal solution plan is this: open the boot; fetch the tools; inflate all spare wheels; loosen
all nuts; in turn jack up each hub, undo the nuts, remove the flat wheel, put on the spare
wheel, do up the nuts, and jack the hub down again; tighten all nuts; put away the tools;
and close the boot.

B.30 Zenotravel

Zenotravel is a transportation domain variant where the vehicles (called aircrafts) use fuel
units that can be replenished using a refueling operator. There are a number of cities, a
number of aircrafts, a number of persons, and a number of different possible fuel levels.
The fuel levels encode natural numbers by a next predicate – next(f,f′) is true iff f′ is the
next higher fuel level than f. The task is to transport a subset of the persons from their
initial locations to their goal locations. There are the following five operators. One can
board/debark a person onto/from an aircraft at a city; this has just the obvious precon-
ditions and effects. One can fly an aircraft from a city to a different city, decreasing the
aircraft’s fuel level from f to f′; f must be the aircraft’s current fuel level, and f′ must be the
next lower level. One can also zoom the aircraft; this is exactly the same as flying it, except
that zooming uses more fuel – the aircraft’s fuel level is decreased by two units. Finally,
one can refuel an aircraft at a city from fuel level f to fuel level f′. The conditions are that
f is the aircraft’s current fuel level, and that f′ is the next higher level. Thus aircrafts can
be refueled at any city, and in steps of one unit.

References

Bacchus, F. (2001). The AIPS’00 planning competition. The AI Magazine, 22 (3), 47–56.

Biundo, S., & Fox, M. (Eds.). (1999). Recent Advances in AI Planning. 5th European
Conference on Planning (ECP’99), Lecture Notes in Artificial Intelligence, Durham,
UK. Springer-Verlag.

Blum, A. L., & Furst, M. L. (1995). Fast planning through planning graph analysis. In
Mellish, S. (Ed.), Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI-95), pp. 1636–1642, Montreal, Canada. Morgan Kaufmann.

753

Hoffmann

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90 (1-2), 279–298.

Bonet, B., & Geffner, H. (1999). Planning as heuristic search: New results.. In Biundo, &
Fox (Biundo & Fox, 1999), pp. 60–72.

Bonet, B., & Geffner, H. (2001a). Heuristic search planner 2.0. The AI Magazine, 22 (3),
77–80.

Bonet, B., & Geffner, H. (2001b). Planning as heuristic search. Artificial Intelligence,
129 (1–2), 5–33.

Bonet, B., Loerincs, G., & Geffner, H. (1997). A robust and fast action selection mechanism
for planning. In Kuipers, B. J., & Webber, B. (Eds.), Proceedings of the 14th National
Conference of the American Association for Artificial Intelligence (AAAI-97), pp.
714–719, Portland, OR. MIT Press.

Botea, A., Müller, M., & Schaeffer, J. (2004). Using component abstraction for automatic
generation of macro-actions.. In Koenig et al. (Koenig, Zilberstein, & Koehler, 2004),
pp. 181–190.

Botea, A., Müller, M., & Schaeffer, J. (2005). Learning partial-order macros from solutions.
In Biundo, S., Myers, K., & Rajan, K. (Eds.), Proceedings of the 15th International
Conference on Automated Planning and Scheduling (ICAPS-05), pp. 231–240, Mon-
terey, CA, USA. Morgan Kaufmann.

Brazdil, P., & Jorge, A. (Eds.)., EPIA-01 (2001). Proceedings of the 10th Portuguese Con-
ference on Artificial Intelligence (EPIA-01), Porto, Portugal. Springer-Verlag.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69 (1–2), 165–204.

Cesta, A., & Borrajo, D. (Eds.). (2001). Recent Advances in AI Planning. 6th European
Conference on Planning (ECP’01), Lecture Notes in Artificial Intelligence, Toledo,
Spain. Springer-Verlag.

Chen, Y., Hsu, C., & Wah, B. (2004). SGPlan: Subgoal partitioning and resolution in
planning.. In Edelkamp et al. (Edelkamp, Hoffmann, Littman, & Younes, 2004).

Chen, Y., & Wah, B. (2003). Automated planning and scheduling using calculus of variations
in discrete space.. In Giunchiglia et al. (Giunchiglia, Muscettola, & Nau, 2003), pp.
2–11.

Chien, S., Kambhampati, R., & Knoblock, C. (Eds.)., AIPS-00 (2000). Proceedings of the
5th International Conference on Artificial Intelligence Planning Systems (AIPS-00),
Breckenridge, CO. AAAI Press, Menlo Park.

Do, M. B., & Kambhampati, S. (2001). Sapa: A domain-independent heuristic metric
temporal planner.. In Cesta, & Borrajo (Cesta & Borrajo, 2001), pp. 109–120.

Edelkamp, S. (2003a). Promela planning. In Ball, T., & Rajamani, S. (Eds.), Proceedings
of the 10th International SPIN Workshop on Model Checking of Software (SPIN-03),
pp. 197–212, Portland, OR. Springer-Verlag.

Edelkamp, S. (2003b). Taming numbers and durations in the model checking integrated
planning system. Journal of Artificial Intelligence Research, 20, 195–238.

754

Where “Ignoring Delete Lists” Works

Edelkamp, S., & Helmert, M. (2001). MIPS: The model checking integrated planning system.
AI Magazine, 22 (3), 67–71.

Edelkamp, S., Hoffmann, J., Englert, R., Liporace, F., Thiebaux, S., & Trüg, S. (2005).
Engineering benchmarks for planning: the domains used in the deterministic part of
IPC-4. Journal of Artificial Intelligence Research. Submitted.

Edelkamp, S., Hoffmann, J., Littman, M., & Younes, H. (Eds.)., IPC-04 (2004). Proceedings
of the 4th International Planning Competition, Whistler, BC, Canada. JPL.

Fox, M., & Long, D. (1998). The automatic inference of state invariants in TIM. Journal
of Artificial Intelligence Research, 9, 367–421.

Fox, M., & Long, D. (2001). STAN4: A hybrid planning strategy based on subproblem
abstraction. The AI Magazine, 22 (3), 81–84.

Frank, J., Cheeseman, P., & Stutz, J. (1997). When gravity fails: Local search topology.
Journal of Artificial Intelligence Research, 7, 249–281.

Gazen, B. C., & Knoblock, C. (1997). Combining the expressiveness of UCPOP with the
efficiency of Graphplan.. In Steel, & Alami (Steel & Alami, 1997), pp. 221–233.

Gerevini, A., & Schubert, L. (2000). Inferring state constraints in DISCOPLAN: Some new
results.. In Kautz, & Porter (Kautz & Porter, 2000), pp. 761–767.

Gerevini, A., & Schubert, L. (2001). DISCOPLAN: an efficient on-line system for computing
planning domain invariants.. In Cesta, & Borrajo (Cesta & Borrajo, 2001), pp. 433–
436.

Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and
temporal action graphs. Journal of Artificial Intelligence Research, 20, 239–290.

Gerevini, A., & Serina, I. (2002). LPG: A planner based on local search for planning graphs
with action costs.. In Ghallab et al. (Ghallab, Hertzberg, & Traverso, 2002), pp.
13–22.

Gerevini, A., Serina, I., Saetti, A., & Spinoni, S. (2003). Local search techniques for temporal
planning in LPG.. In Giunchiglia et al. (Giunchiglia et al., 2003). Accepted for
publication.

Ghallab, M., Hertzberg, J., & Traverso, P. (Eds.)., AIPS-02 (2002). Proceedings of the 6th
International Conference on Artificial Intelligence Planning and Scheduling (AIPS-
02), Toulouse, France. Morgan Kaufmann.

Giunchiglia, E., Muscettola, N., & Nau, D. (Eds.)., ICAPS-03 (2003). Proceedings of the
13th International Conference on Automated Planning and Scheduling (ICAPS-03),
Trento, Italy. Morgan Kaufmann.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning.. In Chien
et al. (Chien, Kambhampati, & Knoblock, 2000), pp. 140–149.

Helmert, M. (2003). Complexity results for standard benchmark domains in planning.
Artificial Intelligence, 143, 219–262.

Helmert, M. (2004). A planning heuristic based on causal graph analysis.. In Koenig et al.
(Koenig et al., 2004), pp. 161–170.

755

Hoffmann

Helmert, M., & Richter, S. (2004). Fast downward – making use of causal dependencies in
the problem representation.. In Edelkamp et al. (Edelkamp et al., 2004).

Hoffmann, J. (2000). A heuristic for domain independent planning and its use in an enforced
hill-climbing algorithm. In Ras, Z. W., & Ohsuga, S. (Eds.), Proceedings of the 12th
International Symposium on Methodologies for Intelligent Systems (ISMIS-00), pp.
216–227, Charlotte, NC. Springer-Verlag.

Hoffmann, J. (2001a). FF: The fast-forward planning system. The AI Magazine, 22 (3),
57–62.

Hoffmann, J. (2001b). Local search topology in planning benchmarks: An empirical analy-
sis.. In Nebel (Nebel, 2001), pp. 453–458.

Hoffmann, J. (2002). Extending FF to numerical state variables. In Harmelen, F. V. (Ed.),
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI-02), pp.
571–575, Lyon, France. Wiley.

Hoffmann, J. (2003a). The Metric-FF planning system: Translating “ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research, 20, 291–341.

Hoffmann, J. (2003b). Utilizing Problem Structure in Planning: A Local Search Approach,
Vol. 2854 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

Hoffmann, J. (2003c). Where ignoring delete lists works: Local search topol-
ogy in planning benchmarks. Tech. rep. 185, Albert-Ludwigs-Universität,
Institut für Informatik, Freiburg, Germany. Available at http://www.mpi-
inf.mpg.de/∼hoffmann/papers/jair05report.ps.gz.

Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: An overview. Journal
of Artificial Intelligence Research. To appear.

Hoffmann, J., & Nebel, B. (2001a). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Hoffmann, J., & Nebel, B. (2001b). RIFO revisited: Detecting relaxed irrelevance.. In Cesta,
& Borrajo (Cesta & Borrajo, 2001), pp. 325–336.

Kautz, H. A., & Porter, B. (Eds.)., AAAI-00 (2000). Proceedings of the 17th National
Conference of the American Association for Artificial Intelligence (AAAI-00), Austin,
TX. MIT Press.

Koehler, J., & Hoffmann, J. (2000). On reasonable and forced goal orderings and their use
in an agenda-driven planning algorithm. Journal of Artificial Intelligence Research,
12, 338–386.

Koehler, J., & Schuster, K. (2000). Elevator control as a planning problem.. In Chien et al.
(Chien et al., 2000), pp. 331–338.

Koenig, S., Zilberstein, S., & Koehler, J. (Eds.)., ICAPS-04 (2004). Proceedings of the
14th International Conference on Automated Planning and Scheduling (ICAPS-04),
Whistler, Canada. Morgan Kaufmann.

Long, D., & Fox, M. (2000). Automatic synthesis and use of generic types in planning.. In
Chien et al. (Chien et al., 2000), pp. 196–205.

756

Where “Ignoring Delete Lists” Works

Long, D., & Fox, M. (2003). The 3rd international planning competition: Results and
analysis. Journal of Artificial Intelligence Research, 20, 1–59.

McDermott, D. (1996). A heuristic estimator for means-ends analysis in planning. In Drab-
ble, B. (Ed.), Proceedings of the 3rd International Conference on Artificial Intelligence
Planning Systems (AIPS-96), pp. 142–149. AAAI Press, Menlo Park.

McDermott, D. (2000). The 1998 AI planning systems competition. The AI Magazine,
21 (2), 35–55.

McDermott, D. V. (1999). Using regression-match graphs to control search in planning.
Artificial Intelligence, 109 (1-2), 111–159.

Nebel, B. (Ed.)., IJCAI-01 (2001). Proceedings of the 17th International Joint Conference
on Artificial Intelligence (IJCAI-01), Seattle, Washington, USA. Morgan Kaufmann.

Nebel, B., Dimopoulos, Y., & Koehler, J. (1997). Ignoring irrelevant facts and operators in
plan generation.. In Steel, & Alami (Steel & Alami, 1997), pp. 338–350.

Nguyen, X., & Kambhampati, S. (2000). Extracting effective and admissible heuristics from
the planning graph.. In Kautz, & Porter (Kautz & Porter, 2000), pp. 798–805.

Nguyen, X., & Kambhampati, S. (2001). Reviving partial order planning.. In Nebel (Nebel,
2001), pp. 459–464.

Onaindia, E., Sapena, O., Sebastia, L., & Marzal, E. (2001). Simplanner: an execution-
monitoring system for replanning in dynamic worlds.. In Brazdil, & Jorge (Brazdil &
Jorge, 2001), pp. 393–400.

Penberthy, J. S., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order planner
for ADL. In Nebel, B., Swartout, W., & Rich, C. (Eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the 3rd International Conference (KR-
92), pp. 103–114, Cambridge, MA. Morgan Kaufmann.

Refanidis, I., & Vlahavas, I. (1999). GRT: a domain independent heuristic for STRIPS
worlds based on greedy regression tables.. In Biundo, & Fox (Biundo & Fox, 1999),
pp. 47–59.

Refanidis, I., & Vlahavas, I. (2001). The GRT planning system: Backward heuristic con-
struction in forward state-space planning. Journal of Artificial Intelligence Research,
15, 115–161.

Rintanen, J. (2000). An iterative algorithm for synthesizing invariants.. In Kautz, & Porter
(Kautz & Porter, 2000), pp. 806–811.

Sebastia, L., Onaindia, E., & Marzal, E. (2001). Stella: An optimal sequential and parallel
planner.. In Brazdil, & Jorge (Brazdil & Jorge, 2001), pp. 409–416.

Srivastava, B., Nguyen, X., Kambhampati, S., Do, M. B., Nambiar, U., Nie, Z., Nigenda, R.,
& Zimmermann, T. (2001). Altalt: Combining graphplan and heuristic state search.
The AI Magazine, 22 (3), 88–90.

Steel, S., & Alami, R. (Eds.). (1997). Recent Advances in AI Planning. 4th European Con-
ference on Planning (ECP’97), Vol. 1348 of Lecture Notes in Artificial Intelligence,
Toulouse, France. Springer-Verlag.

757

Hoffmann

Thiebaux, S., Hoffmann, J., & Nebel, B. (2003). In defence of PDDL axioms. In Gottlob, G.
(Ed.), Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03), pp. 961–966, Acapulco, Mexico. Morgan Kaufmann.

Thiebaux, S., Hoffmann, J., & Nebel, B. (2005). In defence of PDDL axioms. Artificial
Intelligence. To appear.

Younes, H., & Simmons, R. (2002). On the role of ground actions in refinement planning..
In Ghallab et al. (Ghallab et al., 2002), pp. 54–61.

758

