Friends or Foes? An Al Planning Perspective on Abstraction and Search

Jorg Hoffmann
Programming Logics Group
Max Planck Institute for CS

66123 Saarbriicken, Germany
hoffmann @mpi-sb.mpg.de

Abstract

There is increasing awareness that planning and model check-
ing are closely related fields. Abstraction means to perform
search in an over-approximation of the original problem in-
stance, with a potentially much smaller state space. This is
the most essential method in model checking. One would
expect that it can also be made successful in planning. We
show, however, that this is likely to not be the case. The main
reason is that, while in model checking one traditionally uses
blind search to exhaust the state space and prove the absence
of solutions, in planning informed search is used to find so-
lutions. We give an exhaustive theoretical and practical ac-
count of the use of abstraction in planning. For all abstraction
(over-approximation) methods known in planning, we prove
that they cannot improve the best-case behavior of informed
search. While this is easy to see for heuristic search, we were
quite surprised to find that it also holds, in most cases, for
the resolution-style proofs of unsolvability underlying SAT-
based optimal planners. This result is potentially relevant
also for model checking, where SAT-based techniques have
recently been combined with abstraction. Exploring the issue
in planning practice, we find that even hand-made abstrac-
tions do not tend to improve the performance of planners, un-
less the attacked task contains huge amounts of irrelevance.
We relate these findings to the kinds of application domains
that are typically addressed in model checking.

Introduction

Just like in planning, in model checking one wants to have
tools that automatically analyze the behavior of declaratively
specified transition systems. Particularly, both in planning
and in model checking of “safety properties” — checking
reachability of non-temporal formulas — problem instances
are given by the description of a transition system, by an
initial system state, and by a target condition. A solution
is a legal path of transitions mapping the initial state into a
state satisfying the target. In model checking, such a solu-
tion corresponds to an “error path” in the system, i.e., to an
unwanted system behavior. Trying to find such error paths
is useful for debugging purposes; proving their absence is
the ultimate goal of verification. The traditional focus of the
field is on the latter. The key technique to accomplish this
ambitious task, besides clever (symbolic) representations of
the state space, is abstraction: over-approximation of the
considered transition system. If the abstracted instance does

Ashish Sabharwal
Dept. of Computer Science
Cornell University
Ithaca, NY 14853-7501, U.S.A.
sabhar@cs.cornell.edu

Carmel Domshlak
Fac. of Industrial Engr. & Management
Technion - Israel Institute of Technology
Haifa 32000, Israel
dcarmel @ie.technion.ac.il

not contain a solution (an error), then neither does the real
system. The key to success is that, in many cases, one can
prove the absence of errors in rather coarse abstractions with
a relatively small state space. Techniques of this kind have
been explored in depth for a long time; just as an entry point,
see (Clarke, Grumberg, & Peled 1999).

In planning, traditionally the focus is on finding solutions
in instances that are assumed to be solvable. Our initial idea
in this research was to adapt the concept of abstraction from
model checking for use in step optimal planning. There, the
main bottleneck is always to prove the absence of solutions
(plans) of a certain length. Particularly, if the optimal plan
has n steps, then the hardest bit is typically to prove that
there is no plan of length n — 1. Our hope was to be able to
lead this proof within relatively coarse abstractions. To do
so, the abstraction must be solution length preserving: not
introduce any solutions shorter than the optimal one.! To
design such abstractions, we developed a new abstraction
technique for STRIPS, called variable domain abstraction,
inspired by work on “pattern databases” (Culberson & Scha-
effer 1998), in particular by Hernadvolgyi & Holte (1999):
abstract the transition system by not distinguishing between
certain values of the (multiple-valued) variables.?

Let us illustrate the approach and abstraction method with
the Logistics domain. There are packages, which must be
transported within cities using trucks, and between cities us-
ing airplanes. Actions are load/unload packages, or move
vehicles; there are no constraints on (either of) space, fuel,
and travel links. If a package p starts off in city A and has
its destination in city B, then all other cities C # A,B are
completely irrelevant to p. That is, one can choose an ar-
bitrary location x in such a city C, and replace all facts of
the form at(p,1), where [is a location outside A and B, with
at(p,x). Also, in(p,t), where 7 is a truck outside A and B,
can be replaced with at(p,x). One can completely abstract
away the positions of packages that have no destination, and
some other minor optimizations are possible. This way we

In practice, designing solution length preserving abstractions
— for finding optimal solutions — often seems harder than design-
ing “solution preserving” abstractions — for proving unsolvability;
we get back to this below. Still, as we will see, many planning
benchmarks do have solution length preserving abstractions that
dramatically decrease the size of the state space.

2Edelkamp’s (2001) abstraction is coarser than ours; see below.

lose many distinctions between different positions of objects
— without introducing a shorter solution! An optimal plan
will not rely on storing a package p in a city other than p’s
origin or destination. The state space reduction is dramatic:
by a factor of more than ((C —2) % S)P where C, S, and P
are the number of cities, the city size (number of locations
in each city), and the number of packages. We implemented
this Logistics-specific abstraction, and fed it into the state-
of-the-art step optimal planner SATPLAN’04.%> We expected
to see much improved runtime behavior within the abstrac-
tion. To our surprise, we didn’t. We also tried IPP (Koehler
et al. 1997), and obtained no discernible improvement.

After some more experimentation, we started suspecting
that the approach has some fundamental weakness. It turned
out that this is indeed the case. By informed search, herein
we mean heuristic search and DPLL-style search (the lat-
ter is known to be equivalent to restricted forms of resolu-
tion proofs, cf. Beame, Kautz, & Sabharwal 2004). Every
current state-of-the-art automatic planning system we are
aware of is based on a variant of either of these two kinds
of informed search. We were able to prove that abstraction
can not improve the best-case behavior of informed search.
This is quite clear for heuristic search (see later). The sur-
prise was to find that, at least in the planning context, it also
holds for DPLL-style search, in most cases. Considering
three CNF encoding methods and five abstraction methods,
we prove for all but two combinations of abstraction and en-
coding that the shortest resolution refutation of an encoding
never becomes shorter in the abstraction; for all combina-
tions, it can become exponentially longer. We remark that
SAT-based methods were also made quite successful in what
is called “bounded” model checking (Biere et al. 1999). Re-
cently, the combination of these techniques with abstraction
methods is being explored (e.g. Gupta & Strichman 2005).
Our result trivially holds also for the abstraction techniques
currently used in this context (more later). In this sense, our
theoretical observations are potentially relevant for model
checking as well.

We also analyze abstraction and search in planning from
a practical perspective. We investigate the three orthogo-
nal approaches of constraint-based search, heuristic search,
and symbolic blind search; we instantiate these with SAT-
PLAN’04, IPP and FF (Hoffmann & Nebel 2001), and
Mips.BDD (Edelkamp & Helmert 1999), respectively.*
Note that all these planners, except FF, are optimal, which
we consider to be the more promising case for abstraction,
since proving optimality is closely related to proving unsolv-
ability. We conducted experiments in, with few exceptions,
all STRIPS domains used in all international planning com-
petitions (IPC) so far. In many cases, we tailored the abstrac-
tion to the domain by hand. As one would expect, symbolic

3SATPLAN’04 is the newest version of Blackbox (Kautz & Sel-
man 1999); it won the track for optimal planners at the international
planning competition 2004.

4The latter does a BDD-based breadth first search, with the
main feature that a clever preprocessing is used to obtain a compact
state encoding. Graphplan/IPP is sometimes seen as a constraint-
based search as well; we take Haslum and Geffner’s (2000) view
which we believe to be more appropriate.

blind search is, most of the time, improved by abstraction.
For informed search, however, in the IPC benchmark suites
we almost never obtain improved behavior.

10000 T T T T T T T T T T T T 100
490
jel
1000 F . . N
o B S S
— . S S o
> X - e
Q
g 100 N
< 60
S
5
E 2
= 10 50 =
g =
)
= 40 &~
<
S 1 /
= e e 30
e ———— SATPLAN-abstralt "~ e- .. 4
————— %-—-- SATPLAN-real T2
0.1 F ------%----- [PP-abstract
’ @ [PP-real
Som ~~~#~-~- Mips.BDD-abstract 4 10
X ----6-—-- Mips.BDD-real
e ----- RelFrac
001 TS PR Y ! P 0

1 2 3 4 5 6 7 8 9 10 1 12 13 14
Number of cities

Figure 1: Runtime performance of SATPLAN’04, IPP, and
Mips.BDD, with (“abstract”) and without (“real”) our hand-made
variable domain abstraction, in Logistics instances explicitly scaled
to increase the amount of irrelevance, as shown by the percentage
RelFrac of relevant facts.

We constructed some benchmark suites ourselves to ex-
plore this issue further. Figure 1 gives a preview, which
is instructive at this point. The shown Logistics instances
constantly feature 2 airplanes, 2 locations in each city, and
6 packages; the number of cities scales from 1 to 14. To
account for the variance in the hardness of individual in-
stances, we took average values over 5 random instances
for each problem size. Time-out was set to 1800 seconds,
which was also used as the value for the average computa-
tion if a time-out occurred. We stopped a plot if it had 2
time-outs within the 5 instances of one size. The increasing
number of cities introduces an increasing amount of irrele-
vance, which we measure by the percentage RelFrac of facts
considered relevant (not abstracted away).> With a RelFrac
value above 48% (up to 5 cities), SATPLAN’04 is faster on
the real tasks; below RelFrac 42% (more than 6 cities), SAT-
PLAN’04 is faster on the abstract tasks. We will see later
(Table 1) that in the IPC 2000 Logistics benchmarks, Rel-
Frac is 42% on average — and SATPLAN’04 has a slight but
consistent advantage on the real tasks. For IPP, the abstract
and real curves in Figure 1 change positions a little earlier
than for SATPLAN’04, namely when stepping from RelFrac
57% (4 cities) to RelFrac 48% (5 cities). Mips.BDD is con-
sistently much faster on the abstract tasks. The degree to
which SATPLAN’04, IPP, and Mips.BDD are improved by
the abstraction clearly corresponds to the degree of quality
of their respective search information, as reflected by their
behavior on the non-abstracted tasks. Indeed, the intuition
behind our results is that the informedness of the abstraction
must compete with the informedness of the search.

The observations in our constructed benchmarks show in
particular that our abstraction techniques can, in practice,

5Note here that the additional cities are irrelevant only for some
of the individual packages — they can’t be removed completely
from the task as standard irrelevance detection mechanisms, e.g.
(Nebel, Dimopoulos, & Koehler 1997), would try to do.

speed up optimal planning — provided there is a huge amount
of irrelevance. The problem is that, at least as far as the IPC
benchmark suites suggest, the instances that planning people
are usually interested in do not contain enough irrelevance.
And herein lies another, more subtle, difference to model
checking: the kinds of application domains that are typically
addressed in model checking often do contain huge amounts
of irrelevance. The reason is, intuitively, the highly “modu-
lar” nature of control structures such as automata networks
and programs: often, only fragments of the control struc-
ture are relevant for the property to be checked. For exam-
ple, Clarke et al. (1999) describe “Bit Abstraction”, which
abstracts logical circuits by considering only the values of
some selected bits. If, as a simple example, the task is to
prove that the sum of two input numbers, computed by an
adding circuit, is odd iff exactly one of the inputs is odd,
then it suffices to consider the last bits of the two inputs,
and the fraction of the circuit dealing with them. Similarly,
Clarke et al. (1999) describe a “Parity” example where it
suffices to consider the last bit of a variable to ensure that
parity computation works correctly. Note that this is not an
oddity of the benchmarks used in model checking. Rather,
such “modularity” is an essential typical property of human-
created control structures — in difference to the more “phys-
ical” situations typically considered in planning.

Background

We use the STRIPS formalism, with fact set P, action set A
where a € A has pre(a), add(a), and del(a), initial state I,
and goal G, all with the standard syntax and semantics. Tu-
ples & = (P,A,I,G) are called planning tasks, or instances.

For a length bound b, the planning graph PG(<?) (Blum
& Furst 1997) associated with & is a layered graph de-
fined as follows. The vertex layers are the sets of nodes
F(0),A(0),F(1),A(1),...,F(b), where F(0) is the initial
fact set, and A(z) and F(t+ 1) for 1 <7 < b are the ac-
tion sets and fact sets, respectively, available at the corre-
sponding time step. The A(r) include the standard NOOP
actions, A(t) C A(r+1), F(t) CF(r+ 1), and the goal
facts G label appropriate vertices in F (b). PG(Z?) has four
kinds of edges: Ep.(t) CA(t) X F(t),Eqqq(t) CA(t) x F(t+
1), Eq—murex(t) CA(t) X A(t), and Ep_prex(t) C F (t) X F(2).
The mutex edges Eurer = Ea—mutex U E f—murex are computed
by an iterative calculation of interfering action and fact pairs.

Propositional Encodings and Resolution

We consider three standard propositional CNF encodings of
a planning task &. Our CNF encoding (A) is constructed
from PG(Z?) and uses the propositional “action” variables
{a(t) |0 <t < b,a € A(r)}. For each goal fact g there is
a goal clause of the form {a;(b—1),...,a;(b—1)}, where
ai,...a; are the actions in A(b — 1) that add g. Similarly,
for every a(t) and every p € pre(a) we have a precondition
clause {—a(t),a;(t — 1),...,a;(t — 1)}, where ay,...a; are
the actions in A(# — 1) that add p. Finally, we have a mutex
clause {—a(r),—d (1)} for every t and (a,d’) € Eq—mutex(t).
Our CNF encoding (B) is the “Graphplan-based” encoding
from Blackbox (Kautz & Selman 1999), which is similar to

(A) except that it uses variables (and appropriate clauses)
also for the facts. Our CNF encoding (C) is like (A) except
that it is based on a “relaxed” planning graph (without mu-
tex propagation), and mutex clauses are present only for ac-
tion pairs whose preconditions and effects interfere directly.
We used to believe that SATPLAN’04 uses encoding (A);
it recently came to our attention that, for implementational
reasons, actually the much more naive encoding (C) is used.

Our theoretical results are with respect to resolution,
which forms the basis of most of the complete SAT solvers
around today (cf. Beame, Kautz, & Sabharwal 2004). Our
proofs are for (un-restricted) resolution; since our construc-
tions do not affect the structure of the resolution refutations,
the results hold as stated for all known variants of resolution,
including tree-like (DPLL), regular, and ordered resolution.

For a CNF formula F, RES(F) will denote the resolution
complexity of F, i.e., the size of the smallest resolution proof
of it. Let x be a variable of F' and y be True, False, or another
(possibly negated) variable of F. The variable restriction
x < yon F is a transformation that symbolically replaces x
with y throughout F' and simplifies the resulting formula. We
state a relatively simple property whose proof may be found
in the TR (Hoffmann, Sabharwal, & Domshlak 2006).

Proposition 1. Let F,G be CNF formulas and T be a se-
quence of variable restrictions on G. If every clause of
G| contains as a subclause a clause of F, then RES(F) <
RES(G).

Abstraction in Planning

The idea behind abstraction as used in model checking is to
examine the state space of an over-approximation of the real
task — the abstract state space — in order to gain information
about the real task: prove the absence of solutions, or at least
the absence of solutions of a certain length. By contrast, the
over-approximation methods used in planning so far were
mostly designed with a focus on computing heuristic func-
tions, where they are called “relaxations”. Of course, the
kinds of over-approximations that are useful for either pur-
pose can differ a lot. To use abstraction as we do in this
paper, one has to define over-approximations that preserve,
to a very large extent, the real structure of the problem. In
particular, our ideal goal is to find abstractions that preserve
the length of an optimal solution — something one definitely
wouldn’t expect from the abstraction underlying a heuristic
function, since that has to be solved in every search state.

We briefly review the over-approximation methods that
have been used in planning so far; we then formally in-
troduce our new one, variable domain abstraction. We use
the Logistics domain as an illustrative example. One wide-
spread over-approximation method in planning is the “2-
subset” relaxation underlying the computation made in a
planning graph, which is generalized to an “m-subset” re-
laxation by Haslum & Geffner (2000). In a nutshell, one as-
sumes that achieving a set of facts is only as hard as achiev-
ing its hardest m-subset. It is known that, in most domains,
including Logistics, the length of a planning graph (its 2-
subset solution length) is typically lower than the length of
an optimal plan. For m > 2, on the other hand, computing
m-subset solution length is typically too costly.

A second wide-spread over-approximation method is “ig-
noring delete lists” (McDermott 1999; Bonet & Geffner
2001). One simply removes (some of) the negative effects
of the actions; if all are removed, then the problem becomes
solvable in time linear in the instance size. The latter is the
basis of the heuristic functions used in many modern plan-
ners (e.g. Bonet & Geffner 2001; Hoffmann & Nebel 2001).
Ignoring deletes is very likely to introduce shorter solutions.
E.g., in Towers-of-Hanoi it leads to plans of length n instead
of 2. In Logistics, if one ignores the deletes of moving ac-
tions then the plans may get shorter because vehicles never
have to “move back” in the abstraction. Interestingly, ignor-
ing the deletes of load/unload does not decrease plan length,
since these actions never have to be undone in an optimal
plan. We use this observation in some of our experiments.

A third relaxation was introduced by Edelkamp (2001) for
his “pattern database” heuristic. One removes some facts
completely. If enough facts are removed, the task becomes
sufficiently simple. Obviously, this will hardly be solution
length preserving. In Logistics, if we remove, for example,
a fact ar(packagel,airport2), then in particular packagel
can be loaded onto an airplane at airport2 without actu-
ally being there, since that precondition is removed. An
optimal plan can now just make the package “pop up” any-
where. A fourth relaxation, finally, involves removing some
preconditions (Sacerdoti 1973) and/or goal facts. As with
Edelkamp’s abstraction, this can’t be expected to be solu-
tion length preserving in interesting cases.

The above calls for a new abstraction method, which we
designed following Hernadvolgyi & Holte (1999). Consid-
ering STRIPS-like transition systems with multiple-valued
(instead of Boolean) variables, they propose to reduce vari-
able domains by not distinguishing between certain values.
Our observation is that, in many planning benchmarks, this
can be done without introducing shorter plans. In Logis-
tics it is unnecessary to distinguish the positions of pack-
ages in irrelevant cities. We can replace the domain of az(p),
{A1,A3,B1,B>,C},Cs,. ..}, where A and B are the initial and
goal cities of p and A;, B, ... are locations in cities A, B, ...,
with {A|,A,,B1,B2,C }. In STRIPS, this amounts to replac-
ing a set of facts at(p,!) with the single fact ar(p,C).

Let persistently mutex denote the standard notion that two
facts are mutex in the fixpoint layer of a planning graph:
typically, different values of a multiple-valued variable.

Definition 1 (Variable Domain Abstraction). Let & =
(PA,1,G) be a planning task. Let p,p’ € P be persis-
tently mutex, and Va € A : ({p, p'}Ndel(a)) C pre(a). Then
(E(P),{&(a) | a € A},E(1),E(G)) is called a variable do-
main abstraction of &, where & is defined as follows:

1. Forafactset F, E(F) =F if p’ € F; else, E(F) = (F \
{r'Hu{p}

2. For an action a = (pre,add,del), &(a) = (&(pre),
&(add), E(del)) if either p & & (add) or p & E(del); else,
§(a) = (&(pre),&(add) \{p}, 5 (del) \{p}).

In words, Definition 1 simply says that we replace p’ with
p- If, then, p appears both in the add list and in the delete
list of an action, we skip it from both (which we can do
safely because we know by prerequisite that p € & (pre)).

The latter will happen, e.g., if the action moves a package
from one irrelevant position to another irrelevant position.
After the operation, p is equivalent to p V p’: p is True af-
ter an abstracted action sequence iff p V p’ is True after the
corresponding real action sequence. Arbitrarily coarse vari-
able domain abstractions may be generated by iterating the
application of Definition 1. Note that this abstraction is a re-
finement of Edelkamp’s (2001) abstraction: instead of acting
as if the irrelevant positions could be totally ignored, we do
distinguish whether or not the package currently is at such a
position. This makes all the difference between preserving
optimal solution length or not. We developed a family of au-
tomatic processes to design variable domain abstractions; in
several domains, e.g. Logistics, we also hard-coded domain
specific abstractions. See the empirical section for details.

Theory
We start with a trivial observation.

Proposition 2. In solvable instances, abstraction cannot
improve the best-case behavior of heuristic search.

The reason is simply that the best-case for heuristic search
is a heuristic function that has oracle qualities and returns
the precise goal state distance. As a result, the “search”
explores nothing but the states on a shortest path to a goal
state. (Obviously, this is not true in unsolvable instances;
but there, heuristic search is useless anyway.) An abstrac-
tion may introduce invalid solutions. If we assume that the
“oracle” heuristic function cannot distinguish between real
and invalid solutions, then abstraction can be quite harmful,
by leading search through arbitrarily many invalid solutions
prior to finding a real one.

Since heuristic functions are not oracles in reality, Propo-
sition 2 does not mean that abstraction is necessarily useless
for heuristic search. What Proposition 2 says is only that
the informedness of the abstraction has to compete with the
informedness of the heuristic function. The better the heuris-
tic function is, the harder it is for the abstraction to yield an
advantage.6 This is in stark contrast to blind search, where,
clearly, an exponential reduction of the state space is bound
to yield an exponential reduction of the search space (for
BDDs, the picture may vary, but one would expect an ad-
vantage for smaller state spaces in the typical case).

Matters become a lot more subtle and interesting if one
considers resolution-based searches, like DPLL. In what fol-
lows, we assume that the plan length bound — the number of
time steps in the CNF encoding — is too small, i.e., the CNFs
are unsatisfiable. This is the most relevant situation since
proving unsatisfiability is the main bottleneck in practice.

Let o be an (over-)abstraction of a planning task & =
(P,A,I,G). We will denote the abstracted planning task as
o(Z7). A reasonable requirement on o is the following: if
action sequence d is applicable in £, then ¢ (a) is applicable
in 6(2); if a achieves G then o(a) achieves 6(G). For our
theoretical analysis herein, we use variants of the follow-
ing stronger, structural property based on PG(4?). Define

OThis is especially relevant in planning, since some known
heuristic functions, e.g. the one used in FF, are pretty close to ora-
cles in relevant classes of planning domains (Hoffmann 2005).

PG°(£?) to be the subgraph of PG(c(Z?)) induced by the
vertices of PG(Z2?). (Typically, PG(c(£?)) will have many
more vertices than PG(2).)

Definition 2 (Planning Graph Abstraction). Let H =
PG(Z?) and H* = PG°(£?) for succinctness. o abstracts
the planning graph of & if: (1) Eyqq(H*) 2 Eggq(H), (2)
Epre (H*) g Epre (H)’ (3) Emutex(H*) g Emutex(H), and (4)
o(G) CG.

Note that this is a strictly stronger requirement on ¢ — it
may not abstract the planning graph while still obeying the
above general conditions for an abstraction.

Can the Resolution Best-Case Get Better?

We first consider encoding (A) only, and get back to (B)
and (C) below. We prove the following main result as an
immediate consequence of Lemmas 1 to 5.

Theorem 1. With encoding (A), any combination of the fol-
lowing abstractions cannot improve the best-case behavior
of resolution-based search:

(a) ignoring preconditions, goals, or deletes,
(b) removing a fact completely, and
(c) variable domain abstraction.

For lack of space, we omit the proofs to Lemmas 2, 3,
and 4; they are available in the TR.

Lemma 1. With encoding (A), any abstraction that ab-
stracts the planning graph cannot improve the best-case be-
havior of resolution-based search.

Proof. Let & be a planning task to which an abstraction &
that abstracts PG(Z?) is applied. Let F,F* denote the CNF
encodings (A) of & and (&), respectively. Let U denote
the set of variables in F* that are not variables of F. Finally,
let T be the variable restriction that sets every variable in U
to False. F*|; is the CNF encoding (A) of the planning graph
PG° (). In particular, all clauses of F* corresponding to
actions and facts not in PG(&?) are trivially satisfied by ©
(they all contain the negation of a variable in U). Call the
remaining clauses in F*|; the surviving clauses.

By conditions (2) and (4) of Definition 2, every surviving
precondition and goal clause of F*|; is also present in F' it-
self. Further, by condition (1), each of these clauses contains
as a subclause a precondition or goal clause in F'. Finally, the
surviving mutex clauses in F*|¢, by condition (3), are a sub-
set of the mutex clauses in F. It follows that every clause of
F*|; contains as a subclause a clause of F. By Proposition 1,
RES(F) < REF (F*), finishing the proof.

Lemma 2. Any abstraction that respects the following be-
havior abstracts the planning graph:

(a) it does not shrink the list of initial facts,

(b) it does not grow the set of goal facts,

(c) it preserves the add lists unchanged, and

(d) it does not grow the pre and del lists.

Lemmas 1 and 2 together imply that any combination of

ignoring goals, ignoring preconditions, and ignoring deletes

(as well as adding new initial facts) cannot improve the best-
case behavior of resolution-based search.

Lemma 3. With encoding (A), if a fact p does not appear
in the goal or in any of the pre or del lists, then removing
p from the initial facts and the add lists cannot improve the
best-case behavior of resolution-based search.

A fact can be removed completely by first removing it
from the goal facts and from all pre and del lists, and then
removing it from the initial facts and all add lists as well.
By Lemmas 2 and 3, neither of these steps can improve the
best-case behavior of resolution-based search.

Consider now an additive variant of variable domain ab-
straction where, for an action a = (pre,add,del), &(a) =
(£(pre). & (add), & (del) \ {p}) when p € &(add) N de).
The only change from Definition 1 is that when action & (a)
is taken in the abstracted task, there is no need to also take
the mutually consistent action NOOP(p) to achieve p. In-
deed, the following lemma shows that it suffices to consider
this additive variant for our arguments.

Lemma 4. With encoding (A), if p € pre(a) Nadd(a) and
p & del(a), then removing p from add(a) cannot improve
the best-case behavior of resolution-based search.

Lemma 5. With encoding (A), the additive variant of vari-
able domain abstraction cannot improve the best-case be-
havior of resolution-based search.

Proof. Let &7 be a planning task to which o, an additive
variant of variable domain abstraction, is applied. o com-
bines two persistently mutex facts p and p’ into a single fact
p- Let H=PG(Z?) as before, and define H' to be the graph
obtained by unifying any p and p’ fact vertices in each layer
of H into a single vertex p in that layer. Finally, let H* de-
note the subgraph of PG(c(£?)) induced by the vertices of
H'. We will show that H* is an abstracted planning graph in
a sense very similar to Definition 2.

We begin by arguing that if the action pair (a,a’) is not
mutex in &2, then it is also not mutex in 6(&?). To see
this, observe that the only way for the mutex status of
(a,a’) to be affected by o requires, w.l.o.g., that in 22,
p € del(a) C pre(a) and p’ € pre(a’) Uadd(a’). Suppose
for the sake of contradiction that (a,a’) is not already mutex
in 2. In particular, this means that p ¢ del(a’) and p is not
mutex with any fact in pre(a’). This, however, implies that
(NOOP(p),d’) is not mutex in & so that the fact pair (p, p’)
is not mutex in the next layer of PG(4?), a contradiction be-
cause p and p’ are persistently mutex. It follows that edges
E,_,uer in H* are a subset of those in H.

Since H' and o () have the same initial facts, the above
argument implies that all actions and facts available at any
layer of H' are also available at that layer of PG(o(2?)).
In particular, H*, by construction, has exactly the same set
of vertices as H'. Further, since o is an additive variant of
variable domain abstraction, edges E,qq and E, in H' and
H* are exactly the same.

Define F,F*,U, and 7 as in the proof of Lemma 1. F*|;
is the CNF encoding (A) of the planning graph H*, and all
clauses of F* corresponding to actions and facts not in H*
are trivially satisfied by 7. Call the remaining clauses in F*|;
the surviving clauses as before.

By our observation about edges E,_yex in H* and H,
the surviving mutex clauses of F*|; are also mutex clauses

of F. The surviving precondition and goal clauses not in-
volving p appear unchanged in F. Since we are considering
the additive variant of variable domain abstraction, the ac-
tions achieving p in H* are precisely the actions achieving
either of p and p’ in H. Hence, the surviving precondition
and goal clauses of F*|; involving p contain as a subclause
a precondition or goal clause of F' itself. It follows from
Proposition 1 that RES(F) < RES(F*). O

All the proofs are easy to modify for encodings (B) and
(C), except the one of Lemma 5. It is an open question
whether Lemma 5 holds for encoding (B); it does not hold
for encoding (C). The reason is that, in its definition, vari-
able domain abstraction makes use of knowledge about (per-
sistently) mutex facts. This knowledge about reachability is
not available in the naive encoding (C), and so the “abstrac-
tion” can actually, in cases particularly constructed in a way
so that this happens, serve to usefully restrict the set of satis-
fying assignments. Generalizing these observations, we get:

Hypothesis 1. Abstraction cannot improve the best-case be-
havior of resolution-based search, unless it exploits reacha-
bility information not exploited in the encoding method.

We refer here to all possible combinations of transition
system formalism, abstraction technique, and CNF encoding
method. Note that any reachability information exploited
during abstraction could just as well be exploited in the en-
coding itself — in our case, the propagated mutex relations
are not used in encoding (C), but are used in (the typically
much more efficient) encoding (A).

Hypothesis 1 is not a formal statement. Indeed, at the
current stage of our research, it is mere speculation. Formal-
izing and proving/disproving the statement, in relevant situ-
ations, is an exciting topic for future work. We remark that
Hypothesis 1 does hold for the abstractions currently used
in the bounded model checking context (Gupta & Strich-
man 2005), where abstraction is done by ignoring some of
the clauses encoding the original bounded transition system.
To our surprise, this obvious observation is, to the best of
our knowledge, not mentioned in a clear way in the model
checking literature.

Can the Resolution Best-Case Get Worse?

All that is to be said in this matter is said in the following
theorem, which holds also for encodings (B) and (C):

Theorem 2. With encoding (A), any of the following ab-
stractions can exponentially deteriorate the best-case be-
havior of resolution-based search:

(a) ignoring preconditions, goals, or deletes,
(b) removing a fact completely, and
(c) variable domain abstraction.

Proof Sketch. We construct STRIPS tasks whose encod-
ing (A) is very similar to the “pigeon hole problem” for-
mula PHP(n), resolution proofs for which must be of
size exponential in n (Haken 1985). We have facts of
the form assigned(x) for n+ 1 pigeons x, and free(y)
for n holes y. The actions have the form put(x,y) =

({free(y)},{assigned(x)},{free(y)}). The goal is to as-
sign all pigeons, the plan length bound is 1. Restricting,

in the encoding, all NOOP variables to 0, one gets exactly
PHP(n). The claim now follows with a construction that has
two disconnected pigeon hole problems, one parameterized
by n and the other with constantly only 2 holes. The overall
CNF encoding can be proved unsatisfiable by proving unsat-
isfiability of either of the two pigeon hole problems. If the
abstraction makes the mistake to ease the small pigeon hole
problem, making it solvable, we end up with an exponen-
tially longer best-case resolution proof. For all of the listed
abstractions, this can happen. O

The full proof is in the TR. One can construct similar sit-
uations in, e.g., Logistics-type domains, with two discon-
nected parts, one of which is complex while the other one is
easy to prove unsolvable in the given number of steps.

Practice

Our most extensive experiments are with variable domain
abstraction, which, as discussed in the background section,
is clearly the most promising for obtaining solution length
preserving abstractions. The first sub-section explains the
variable domain abstractions we used, the second one ex-
plains the experimental setting and how we chose to present
the (huge) data set. We then in turn describe our experiments
with variable domain abstraction in the IPC benchmarks,
and in artificial situations where the amount of irrelevance
can be scaled. In a final sub-section, we discuss the behav-
ior of the other abstraction methods known in planning.

Variable Domain Abstractions

We designed three different methods to automatically gen-
erate variable domain abstractions. The methods are based
on increasingly accurate approximations of relevance. As
is common in relevance approximations (e.g. Nebel, Di-
mopoulos, & Koehler 1997), the algorithmic basis is, in all
cases, a simplified backchaining from the goals. Our first
approximation, /Support, starts in the first layer of a plan-
ning graph that contains the goals (with mutexes, maybe);
for each goal, it selects one achiever in the preceding action
layer and marks the preconditions as new sub-goals; then
the process is iterated for the created sub-goals. Our second
approximation, AllSuppports, does the same except that it
selects all achievers for each (sub-)goal. Our third approx-
imation, AllSupportsNonMutex, is like AllSupports except
that it starts the backchaining at the first plan graph layer that
contains the goals without mutexes. In all cases, the set of
“relevant” facts is turned into a variable domain abstraction
by, first, computing a partition of the fact set into subsets of
pairwise persistently mutex facts. We then take these sub-
sets to correspond to the underlying multiple-valued vari-
ables (e.g. the position of a package). Within each subset,
we arbitrarily choose one irrelevant fact and replace all other
irrelevant facts with it. As an example, in Logistics, 1Sup-
port will abstract away all in(p,v) facts for a package p ex-
cept for those vehicles v that were selected as a support — in
particular, a single airplane. AllSupports, by contrast, will

mark in(p,v) as relevant for all airplanes v unless some spe-
cial case applies (e.g., p must be transported within its ori-
gin city only). AllSupportsNonMutex, finally, is even more
conservative and covers some of the special cases in which
AllSupports abstracts an in(p,v) fact away. Note that iden-
tifying positions inside airplanes with positions outside air-
planes may well affect the length of an optimal plan.

For six IPC domains, we designed solution length pre-
serving, domain specific, variable domain abstractions by
hand. For Logistics, this was explained in the introduction;
for Zenotravel, we use a similar abstraction exploiting irrel-
evant object positions. In Blocksworld, on(A,B) is consid-
ered irrelevant if B is neither the initial nor the goal position
of A, and B is initially clear.” For Depots, which is a com-
bination of Logistics and Blocksworld, our abstraction is a
combination of the two individual abstractions. For Satellite,
our abstraction performs a simple analysis of goal relevance
to detect directions that are irrelevant for a satellite to turn
into. A direction is relevant only if it is the satellite’s initial
direction, its goal direction, or a potential goal or camera cal-
ibration target. Similarly, in Rovers, a waypoint (location) is
considered relevant for a rover only if it is the initial posi-
tion, relevant for a needed rock sample/soil sample/image,
or necessarily lies on a path the rover must traverse to some
other relevant location.

Experiment Setup and Presentation

The presented data are generated on a set of work stations
running Linux, each with a Pentium 4 processor running
at 3GHz with 1G RAM. We used a time cutoff of 30 min.
We experimented with the optimal planners SATPLAN’04,8
IPP, and Mips-BDD; to exemplify the effect of abstraction
on sub-optimal planning, we also ran FF. As test examples,
we took, with few exceptions, all STRIPS domains used
in all international planning competitions so far. Precisely,
we ran Grid, Mprime, and Mystery from IPC 1998 (Grip-
per and Movie are trivial, Logistics is part of our IPC 2000
set); Blocksworld and Logistics from IPC 2000 (Miconic-
STRIPS is just a very simple version of Logistics, Free-
cell is part of our IPC 2002 set); Depots, Driverlog, Free-
cell, Rovers, Satellite, and Zenotravel from IPC 2002; Air-
port, Dining Philosophers, Optical Telegraph, Pipesworld
NoTankage, Pipesworld Tankage, and PSR from IPC 2004.

Our measurements are aimed at highlighting the potential
that abstraction in principle has of speeding up the compu-
tation of information about a task. Concretely, given a plan-
ning task 7', we create an abstract version 7* of T, and run
a planner X on it. There are three possible outcomes:

1. X finds a plan for T*, an abstract plan, and that is also a
real plan (a plan for 7). We record the time taken to find
the plan, and the time taken by X to find a plan given 7.

TThe last of these conditions is necessary to avoid the possibil-
ity of “clearing” a block C by moving A away from C although A
is actually placed on some third block.

8Through using the naive encoding (C), the resolution best-case
of SATPLAN’04 can be improved by variable domain abstraction
— making the “bad” empirical results below even more significant.

2. X finds a plan for T* that is not a real plan. If X is an
optimal planner, the information gained is the length of
the abstract plan: a lower bound on the real plan length.
We record the time taken to compute that bound (e.g., for
SATPLAN’04, the time taken up to the last unsatisfiable
iteration), and the time taken by X to compute the same
lower bound given T'. If X is not optimal, no information
is gained, and we skip the task.

3. X runs out of time or memory. In this case, if X is optimal,
one could record the time taken up to the last lower bound
proved successfully. For the sake of readability, we omit
this here and consider only cases 1 and 2 above.

Note that we do not include the time taken to create the ab-
stract task 7*. For presentation, for each individual instance
we select the “best” performing abstraction, of the possible
three or four, as follows. We skip abstract tasks that were
either not solved, or that are not “abstract” since all facts are
considered relevant. If no abstract task remains, we skip the
instance. Else, we select the abstract task providing the best
information about the instance: the best case is that the ab-
stract plan is real, else we select the highest lower bound.® If
there are several abstractions providing the same best infor-
mation, we choose the one with lowest (abstract) runtime.
We show data tables for the optimal planners only. In ad-
dition to the explained runtimes, the tables specify whether
the found abstract plan was real or not. They specify the
lower bound proved by a planning graph, the lower bound
proved by X in the abstract task, and the optimal plan length.
They finally specify RelFrac, the percentage of facts con-
sidered relevant. We consider SATPLAN’04 in more detail
than the other optimal planners, since it is the most relevant
solver: it is state of the art in step-optimal planning; in par-
ticular it is known to be much faster in most IPC benchmarks
than either Graphplan-based or BDD-based approaches.

IPC Benchmarks

Data for SATPLAN’04 on 4 of our 17 IPC domains is given
in Table 1. Depots and Satellite are selected into the table
because they are the only 2 of our 17 domains where the
abstraction brings a somewhat significant advantage. Logis-
tics is selected because it is our illustrative example. PSR
is an interesting case since there, unusually, the current op-
timal planners do just as well (or bad) as the current sub-
optimal (satisficing) planners. In each domain, we selected
the 13 most challenging instances, where “challenging” is
measured as the runtime taken in the original task.
Consider the data for Depots in Table 1. The best-case
data shown is half due to the hand-made abstraction; the
other instances are distributed more or less evenly over All-
Supports and AllSupportsNonMutex, which are, sometimes
successfully, more aggressive. Instance nr. 8 has its best-
case with the very aggressive 1Support strategy. Most of the
time the runtime is better on the original task. But there are
a few cases where the abstraction brings a quite significant

9Note here that the quality of the information is essential. If the
abstraction only tells us that the plan must have at least n — 1 steps,
and the real plan length is n, then we must still prove the bound 7,
which typically takes more time than all other bounds together.

Depots
Index 1 2 3 4 7 8 10 13 14 16 17 19 21
tq 0.2 0.5 733 429.7 10.44 82.5 47.8 13.8 248.9 24.9 22.7 460.7 3422
1y 0.2 0.6 458 472.0 12.25 3.6 33.1 20.7 194.5 8.6 22.0 — 55.7
IsReal? Y Y Y Y Y N Y Y N Y Y Y N
lo,la,lr 555 78,8 11,12,12 12,14,14 7,10,10 9,12,14 8,10,10 9,99 9,10,10 8,8,8 6,7,7 8,10,10 7,11
RelFrac 75% 88% 88% 88% 77% 27% 87% 85% 73% 81% 58% 92% 51%

Logistics
Index 11 12 13 14 15 16 17 18 19 20 21 22 23
1y 1.0 0.5 207.5 53.6 146.3 253.2 296.3 728.3 684.2 820.6 615.0 781.8 965.5
1 1.5 1.0 171.5 70.9 160.4 168.8 246.4 639.5 672.2 721.7 430.9 720.9 769.4
IsReal? Y Y Y Y N N N N N N N N N
lo,la,lr 10,13,13 10,12,12 9,13,13 9,12,12 9,13,13 9,13,13 9,13,13 9,15,15 9,15,15 9,15,15 9,14,14 9,15,15 9,15,15
RelFrac 49% 43% 48% 49% 45% 37% 36% 47% 30% 34% 48% 39% 43%

PSR

Index 22 24 27 29 31 33 35 37 38 40 42 44 48
tq 64.3 0.2 0.6 11.1 1.5 1.4 0.6 2.4 0.3 1.2 1.1 0.7 125.5
1 71.9 0.2 0.6 12.5 10.3 2.1 0.8 2.3 0.3 7.5 1.3 0.7 131.9
IsReal? Y Y Y Y N N N Y Y N N Y Y
Lo, lg,lr 725,25 399 4,16,16 7,18,18 5,16,16 5,16,16 5,13,16 7,19,19 6,12,12 5,14,15 5,16,16 7,15,15 7,26,26
RelFrac 75% 38% 51% 79% 49% 48% 47% 60% 56% 48% 53% 93% 80%

Satellite
Index 5 6 7 8 9 10 11 12 13 14 15 17 18
ta 53.1 223 16.4 310.8 34.4 168.0 84.5 874.8 931.2 256.2 282.8 65.8 112.5
1, 51.5 28.2 27.7 250.1 40.7 176.5 160.0 — — 425.4 429.8 1524 217.8
IsReal? Y Y Y Y Y Y Y Y Y Y Y Y Y
lo,la,lr 4,7 6,8,8 4,6,6 48,8 4,6,6 48,8 48,8 6,14,14 4,13,13 48,8 48,8 4,6,6 48,8
RelFrac 95% 81% 88% 90% 85% 86% 75% 76% 76% 79% 75% 67% 74%

Table 1: Full results, in some selected domains, for SATPLAN’04 and variable domain abstraction (best-of, see text). Notations: “Index”:
index (nr.) of instance in respective IPC suite; 7, runtime (secs) needed in abstracted task; 7, runtime (secs) needed in real task; “IsReal”: is
the abstract plan real (Y) or not (N); [, lower bound on plan length proved by planning graph, [, lower bound proved in abstract task, [, real
optimal plan length; “RelFrac”: fraction of facts considered relevant; dashes: time-out.

advantage. Most notably, in instance nr. 19 SATPLAN’04
runs out of time on the original task, but solves the abstract
task, finding a real plan, within a few minutes.

In Logistics, all best-case data is due to the hand-made
abstraction. The abstract runtime is worse in all but two
cases (nrs. 14 and 15). In PSR, the best-cases are half due
to AllSupports, and half due to AllSupportsNonMutex. The
runtimes are mostly inconclusive, with a slight advantage
for abstraction. Satellite is the only one of our 17 domains
where abstraction brings a consistent runtime advantage.
The best-cases are due to our hand-made abstraction. All
abstract plans are real plans, found much faster than for the
original task in almost all cases. It is unclear to us why the
results are reasonably good in Satellite, but, e.g., not in Lo-
gistics, where the state space reduction is much larger.

We next provide an overview of the results in all 17 do-
mains, including also IPP and Mips-BDD. To make data pre-
sentation feasible, we select just one instance per domain
and planner: the “most challenging successful” instance.
By successful, we mean that at least one abstract task was
solved (abstract plan found), and indeed abstract (not all
facts relevant). By challenging, we mean maximum runtime
on the original task.!? The data are in Table 2.

We discuss the 17 domains in groups with similar behav-
ior; we first discuss SATPLAN’04 in some detail, and then
briefly summarize the behavior of IPP and Mips.BDD. De-
pots, Logistics, PSR, and Satellite have already been dis-
cussed. In each of Airport, Dining Philosophers, Driverlog,
Mystery, Mprime, Optical Telegraph, Pipesworld NoTank-
age, Pipesworld Tankage, and Zenotravel, SATPLAN’04

10 Apother strategy would be to select the task that maximizes
t, —t,, the time advantage given by abstraction. However, in most
cases this strategy would select a trivial instance: namely, because
t, —1, is consistently negative, and maximal in the easiest tasks.

runtimes are consistently lower on the original tasks, with
few exceptions mostly among the easiest instances. The de-
gree of the advantage varies. It is relatively moderate in
Airport (up to 28% less runtime on original task), Dining
Philosophers (up to 7%), Mprime (up to 36%), Pipesworld
Tankage (up to 28%), and Optical Telegraph (up to 23%); it
is stronger in Driverlog (up to 89%), Mystery (up to 80%),
Pipesworld NoTankage (up to 92%), and Zenotravel (up to
75%). In Rovers, the runtime results are inconclusive, with
minor advantages for abstract or real depending on the in-
stance. In Blocksworld, SATPLAN’04 solves abstract tasks
with up to 7 blocks only, independently of the abstraction
used; we don’t know what causes this bad behavior. In
Freecell, most of the time AllSupports and AllSupportsNon-
Mutex don’t abstract anything; in the larger instances, and
in all abstractions generated with 1Support, SATPLAN’04
runs out of time, leaving instance nr. 1 as the only “success-
ful” case, shown in Table 2. In Grid, finally, the IPC 1998
test suite contains only 5 instances, which become huge very
quickly. SATPLAN’04 can solve (abstract or real) only in-
stance nr. 1, which is shown in Table 2.

The picture for IPP is, roughly, similar to that for SAT-
PLAN’04. The main difference is, in fact, that IPP is a
weaker solver than SATPLAN’04 in many domains, to the
effect that some more domains contain no interesting data:
in Driverlog, Mprime, Mystery, Pipesworld NoTankage, and
PSR, IPP either solves the instances in no time, or not at all.
Like for SATPLAN’04, we see an advantage for abstraction
in Depots and Satellite; the latter is (consistently) huge. We
also see a vague advantage for abstraction in Logistics. For
Mips.BDD, even more domains gave no meaningful data.
In the domains dashed out in Table 2, Mips.BDD runs out
of time on even the smallest instances. In the domains left
empty, we couldn’t get Mips.BDD to run, i.e., it stopped ab-

SATPLAN’04 PP Mips-BDD
Domain || ID | 1 | & |IR| Idal RE || D | o v IR ol RE || D | « | & |R| Ll RF
Air 20 | 737 | 535 [Y| 253232 [70% || 8 | 679 03 [Y] 252626 | 77% || - - -]- - -
Blocks 7 76 51 |N| 162020 | 77% || 7 0.0 00 |Y| 162020 | 77% || - - I - -
Depots 19 | 460.7 — |Y| 810,10 | 92% || 17 | 2544 | 2684 |Y| 677 8% || 2 1.1 106 |Y| 71515 | 81%
Dining 29 | 80 75 Y| 71011 | 71% || 5 | 1704 | 1380 |Y| 71011 | 71%
Driver 13 | 3420 | 113.7 [N| 911,12 | 61% 1.1 07 |N| 71010 | 84% || 9 | 3751 | 5309 |[N| 7.1920 | 84%
Free 1 0.7 07 |Y| 455 83% 1 0.2 01 |Y| 455 83% || - - - |- - -
Grid 1 2.1 1.0 |N| 14714 | 43% 1 0.1 02 [N| 14714 | 43% 1 1.8 49 |N| 14714 | 43%
Log 23 | 9655 | 7694 [N| 91515 | 43% || 12 | 3949 | 4166 |[N| 101111 | 52% || 12 | 72 — Y] 104242 | 43%
Mprime || S 75 64 |Y| 666 8% || 2 0.6 10 |N| 555 62% || - - - |- - -
Mys 20 | 180.7 | 1124 [Y| 777 7% || 2 0.4 07 |N| 555 60% || - - - |- - -
Optic 13 | 583 | 451 [N| 111313 | 53% || 2 | 157 52 N[11,1313 | 53%
PipeNT || 12 | 521.7 | 4555 |Y]| 814,14 | 86% || 8 0.2 01 |N| 555 74%
PipeT 7 | 938 | 673 [Y] 466 89% || 10 | 2789 | 2681 |[N| 677 98%
PSR 48 | 1255 | 1319 |Y]| 72626 | 80% || 10 | 0.0 00 |[N| 445 37% || 25 | 07 135 Y| 499 38%
Rovers 8 | 834 | 841 [N| 599 75% || 6 | 5925 | 3757 [N| 70212 | 90% || 7 | 1426 | 3406 [Y| 51818 | 86%
Sat 12 | 8748 — Y] 61414 | 76% || 7 | 1003 | 17057 [Y| 466 88%
Zeno 13 | 3384 | 2448 [N| 477 67% || 12 | 3443 | 3224 |Y| 466 67% || 11 | 271.0 — Y| 41414 | 67%

Table 2: Results for (best-case) variable domain abstraction on the respectively most challenging successful instance (see text), of each

domain, for each of SATPLAN’04, IPP, and Mips-BDD. Notations: “ID” Index, “IR” IsReal?, “RF” RelFrac; rest as in Table 1.

names abbreviated as obvious.

normally with a variety of error messages. In the remaining
data set of 7 domains, however, our abstractions bring a con-
sistent advantage for Mips.BDD. In particular, consider the
behavior in Logistics, Rovers, and Zenotravel: Mips.BDD
is vastly improved while SATPLAN’04 and IPP are more or
less inconclusive.

We also ran FF on all the domains, and with all the ab-
stractions. In PSR, none of the abstract plans works in re-
ality, meaning that no information about the tasks is gained.
In Airport and Dining Philosophers, FF is slowed down con-
siderably, up to a factor of 100, by the abstractions. In
Blocksworld, it is considerably improved, solving some ab-
stract tasks that FF can’t solve in their real representation. In
all other domains, the results are completely inconclusive.

Constructed Benchmarks

The above has shown that the use of abstraction — of vari-
able domain abstraction, at least — to speed up state of the
art planning systems is rather hopeless. We ran a number
of experiments to examine the more subtle reasons for the
phenomenon. We ran experiments on three IPC benchmarks
— Logistics, Rovers, and Zenotravel — where the results on
the IPC test suites are relatively bad, although we are in pos-
session of hand-made abstractions. We wanted to test what
happens when we scale the instances on irrelevance. The
respective experiment for Logistics, Figure 1, was discussed
in the introduction. For Rovers, we tried a large number of
instance size parameters, and even minor modifications of
the operators, but we could not find a setting that contained
a lot of irrelevance and was challenging for SATPLAN’04
and IPP. We conclude from this that the Rovers domain is
not amenable to abstraction techniques. For Zenotravel, we
obtained the picture shown in Figure 2.

The shown Zenotravel instances constantly feature 2 air-
planes and 5 persons. The number of cities scales from 2
to 13. Like in Logistics, we generated 5 random instances
per size, and show average values with a time-out of 1800

Domain
10000 T T T T T T T T T T 100
1 90
1000
s 1 80
o
3 4 70
51 100
Zz 1 60 33
g P
o= <
§ 10 J— 50 E
ey [3)
— 140
<
=
) 1
[1 30
. SATPLAN-abstract
- SATPLAN-real
o % IPP-abstract 120
1F e IPP-real
7 m Mips.BDD-abstract 410
= - Mips.BDD-real
- RelFrac
0.01 L L L L L L L h L 0
2 3 4 5 6 7 8 9 10 11 12 13

Number of cities
Figure 2: Runtime performance of SATPLAN’04, IPP, and
Mips.BDD, with (“abstract”) and without (“real”) our hand-made
variable domain abstraction, in Zenotravel instances explicitly
scaled to increase the amount of irrelevance, as shown by the plot
of RelFrac.

seconds, stopping plots when 2 time-outs occurred at an in-
stance size. All in all, the relative behavior of the abstract
and real curves for each planner is quite similar to what we
observed in Figure 1: for SATPLAN’04 and IPP, abstraction
has a slight disadvantage with high RelFrac, but becomes
efficient as RelFrac decreases; for Mips.BDD, decreasing
RelFrac consistently widens the gap between abstract and
real. The average value of RelFrac in the IPC 2000 Zeno-
travel benchmarks is 64%, lying in between 5 cities (67%)
and 6 cities (63%) in Figure 2, where there is not yet much
gained by the abstraction. Interestingly, in this domain, at
least in this distribution of it, Mips.BDD and IPP are much
more efficient than SATPLAN’04.

Some planning benchmarks (like Rovers) don’t have good
abstractions, and most others (like Logistics and Zeno-
travel) don’t have enough irrelevance in the IPC test suites.

As discussed earlier, the situation is typically quite differ-
ent in model checking benchmarks: unsolvable examples
with a highly modular structure. The IPC domains Din-
ing Philosophers and Optical Telegraph, which come from
model checking (Edelkamp 2003), are exceptional: Dining
Philosophers is an extremely basic benchmark that can’t be
abstracted much further. Optical Telegraph is essentially a
version of Dining Philosophers with a complex “inner life”
(exchanging data between the two “hands” of each philoso-
pher). This is a modular structure in the sense that the inner
life does not affect the existence of a solution (deadlock sit-
uation), which depends exclusively on the outer interfaces
of the “philosophers” — taking and releasing “forks”. How-
ever, the inner life does, of course, affect the length of a
solution, if one exists. We constructed an unsolvable ver-
sion of the domain (without deadlock situation) by giving
the “philosophers” more flexibility in releasing forks. As
one would expect, in this setting abstracting the inner life
away gives huge savings. This highlights an important as-
pect of the difference between solvable and unsolvable tasks:
it seems easier to abstract the latter without invalidating the
property of interest. One might thus suspect that abstraction
could be made successful for unsolvable examples also in
planning. Exploring this is a topic for future work. Note that
most planning (benchmark) domains don’t naturally contain
any unsolvable instances; the issue may become relevant in
over-subscription planning, however.

Other Abstractions

As discussed earlier, one cannot expect that removing pre-
conditions, goals, or entire facts preserves plan length in
interesting cases. There are certain cases where some
delete effects can safely be ignored: in Driverlog, Logis-
tics, Mprime, Mystery, and Zenotravel, one can ignore the
deletes of “load” and “unload” actions; in Rovers one can
ignore the deletes of actions taking rock or soil samples. We
ran each of our planners on the respective abstracted tasks.
For SATPLAN’04, the results are inconclusive except in Lo-
gistics, where there is a slight but consistent gain in the ab-
straction, and Driverlog, with a clear loss in the abstraction
(e.g. task nr. 15 is solved abstract vs. real in 693.0 vs. 352.3
sec). IPP behaves inconclusively except a vast gain in Lo-
gistics (e.g. 52.8 vs 5540.1 sec in nr. 12), and a vast loss in
Zenotravel (e.g. 318.5 vs 2.5 sec in nr. 12). FF behaves in-
conclusively in all domains except a vast loss in Driverlog
(e.g. time-out vs. 0.22 sec in nr. 14). Mips.BDD has a vast
loss in Driverlog, Logistics, and Zenotravel (e.g. 163.8 vs.
8.3 sec in Zenotravel nr. 8), and behaves inconclusively in
the other domains.

Conclusion

There are at least two important differences between model
checking and planning: the typical kinds of application do-
mains addressed, and a focus on unsolvable vs. solvable ex-
amples. Our empirical results strongly suggest that these
differences make the use of abstraction, which is extremely
successful in model checking, rather hopeless in (classical)
planning. Moreover, even from a theoretical perspective, the

use of abstraction with informed search does not seem very
promising: apparently, the only hope to improve the best-
case behavior is to exploit reachability knowledge in the ab-
straction — knowledge that could just as well be exploited
directly in the CNF encoding. Whether this hypothesis is
true in general or not is an exciting topic for future work.

References

Beame, P.; Kautz, H.; and Sabharwal, A. 2004. Towards un-
derstanding and harnessing the potential of clause learning. JAIR
22:319-351.

Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999. Symbolic
model checking without BDDs. In Proc. TACAS’99, 193-207.

Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. AIJ 90(1-2):279-298.

Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
AlJ 129(1-2):5-33.

Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model Checking.
MIT Press.

Culberson, J., and Schaeffer, J. 1998. Pattern databases. Compu-
tational Intelligence 14(3):318-334.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge in
planning problems to minimize state encoding length. In Proc.
ECP’99, 135-147.

Edelkamp, S. 2001. Planning with pattern databases. In Proc.
ECP’01, 13-24.

Edelkamp, S. 2003. Promela planning. In Proc. SPIN’03, 197-
212.

Gupta, A., and Strichman, O. 2005. Abstraction refinement for
bounded model checking. In Proc. CAV’05, 112-124.

Haken, A. 1985. The intractability of resolution. TCS 39:297-
308.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. In Proc. AIPS’00, 140-149.

Hernadvolgyi, I., and Holte, R. 1999. PSVN: A vector represen-
tation for production systems. Technical Report 1999-07, Univer-
sity of Ottawa.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253-302.
Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006.
Friends or foes? An Al planning perspective on abstraction
and search. Technical Report. Available at http://www.mpi-
sb.mpg.de/~hoffmann/tr-icaps0O6a.ps.gz.

Hoffmann, J. 2005. Where ignoring delete lists works: Local
search topology in planning benchmarks. JAIR. To appear.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and graph-
based planning. In Proc. IJCAI’99, 318-325.

Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y. 1997.
Extending planning graphs to an ADL subset. In Proc. ECP’97,
273-285.

McDermott, D. 1999. Using regression-match graphs to control
search in planning. A1J 109(1-2):111-159.

Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring ir-
relevant facts and operators in plan generation. In Proc. ECP’97,
338-350.

Sacerdoti, E. 1973. Planning in a hierarchy of abstraction spaces.
In Proc. IJCAI'73.

	Introduction
	Background
	Propositional Encodings and Resolution
	Abstraction in Planning

	Theory
	Can the Resolution Best-Case Get Better?
	Can the Resolution Best-Case Get Worse?

	Practice
	Variable Domain Abstractions
	Experiment Setup and Presentation
	IPC Benchmarks
	Constructed Benchmarks
	Other Abstractions

	Conclusion

