
Heuristics for Bounded-Cost Search

Patrik Haslum
Australian National University & NICTA Optimisation Research Group

firstname.lastname@anu.edu.au

Abstract

The problem of searching for a plan with cost at most equal
to a given absolute bound has attracted interest recently, and
several search algorithms tailored specifically to this prob-
lem have been proposed. We investigate instead how to adapt
planning heuristics to this setting. A few of the resulting
heuristics, used in a greedy bounded-cost search, perform bet-
ter than previous and baseline methods, but only by a small
margin. Making effective use of the cost bound in bounded-
cost planning, it appears, remains a challenge.

Introduction
Bounded-cost (heuristic) search is a graph search problem
with an absolute bound on path cost. That is, given a prob-
lem and a cost bound C, we ask for a path of cost at most
C. It does not have to be the cheapest path: any solution
will do as long as its cost is within the bound, and our sole
objective is to find such a path as quickly as possible. This
is different from bounded suboptimal search, which asks for
a solution with a cost that is at most a given multiple of the
optimal cost, in that the bound is absolute. It is reminiscent
of the resource-constrained shortest path (RCSP) problem,
but different in that the path does not have to be shortest.
Even so, RCSP algorithms that require access to the graph
only through a successor function (e.g. Aneja, Aggarwal,
and Nair 1983) can also be applied to bounded-cost search.

Recently, there has been a resurgence in interest in the
bounded-cost search problem in planning (Stern, Puzis, and
Felner 2011; Thayer et al. 2012). It is useful if we have a
plan and wish to find a cheaper plan. Indeed, a bounded-
cost search procedure can be turned into an anytime plan-
ner, by running successive searches using a bound strictly
less than the cost of the last plan found for the next search.
Bounded-cost search is also a natural model for planning un-
der certain types of resource constraints, where any solution
cannot consume more of the resource than what is available
(Nakhost, Hoffman, and Müller 2012).

Perhaps the simplest bounded-cost search procedure we
can imagine is a greedy search, using one heuristic to guide
the search and another heuristic, which estimates cost to goal
and is admissible, to calculate a cost f -value that is used to

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

prune search nodes that provably cannot lead to a solution
within the bound. But what kind of heuristic should we use
to guide this search, to meet our objective minimising the
time to find a solution? Planning heuristics come in two
flavours: cost-sensitive heuristics, which try to estimate the
cost of the cheapest plan (from the current state) and cost-
ignorant heuristics, which estimate the length of the shortest
plan. Neither of these is what we want: Cost-sensitive plan-
ning heuristics are notoriously poor at guiding the search
towards any solution (Cushing, Benton, and Kambhampati
2010; Richter and Westphal 2010), and searching for the
cheapest plan is unnecessary if the cost bound is loose
enough to admit many other plans. Cost-ignorant (plan
length) heuristics are good at estimating distance-to-goal in
directional search spaces (forward or backward search), but
the shortest plan that exists within the bound may be com-
pletely different from the shortest plan in the unconstrained
search space. In other words, even if the heuristic is per-
fectly accurate, it may still misdirect the search because the
heuristic is not estimating the right thing.

This paper examines the problem of designing a heuristic
that is appropriate for the bounded-cost search problem; that
is, a heuristic h(s, C) that given a state and a cost bound
tries to estimate the distance to the nearest goal state that is
reachable within the cost bound. Algorithms proposed for
bounded-cost heuristic search have attempted to use more
than a single heuristic estimate, but have left the heuristics
unchanged. Stern et al. (2011) assume access to a model of
the error of a cost-sensitive heuristic, and use this to convert
the heuristic value into a “potential” which better guides the
search. Thayer et al. (2012) combine estimates of cost and
unconstrained distance from different heuristics.

It turns out that greedy bounded-cost search with the stan-
dard (approximately) shortest delete-relaxed plan heuristic
is quite effective; on planning benchmark problems it out-
performs the ˆPTS, BEES and BEEPS bounded-cost search
algorithms, using unmodified planning heuristics. By blend-
ing shortest and cheapest relaxed plans in the heuristic com-
putation, and using an explicit heuristic penalty for over-cost
relaxed plans, we are able to improve over it, but not by
much. Creating heuristics or search algorithms for bounded-
cost planning that substantially improve over algorithms and
heuristics not designed specifically for the bounded-cost set-
ting appears to be a challenge.

312

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

Relaxed Plan Heuristics
Relaxed plan heuristics, in general, find a solution (plan) to a
relaxation of the planning problem and use some value com-
puted from this plan, such as its length or cost, as the heuris-
tic estimate. However, modern heuristic search-based plan-
ners use more information extracted from the relaxed plan
than a single number. In particular, actions in the relaxed
plan that are applicable in the current state, known as “help-
ful” (Hoffmann and Nebel 2001) or “preferred” (Helmert
2006) actions, can be used to focus a greedy search. Ac-
curate recognition of preferred actions (i.e., a strong corre-
lation between an action’s appearances in the relaxed and
real plans) can largely compensate for an inaccurate heuris-
tic, as well as reduce search in combination with an accurate
heuristic (Richter and Helmert 2009). Thus, the structure of
the relaxed plan is as important as the heuristic value that is
obtained from it. This is particularly relevant in bounded-
cost search, since relaxed plans with different costs (below
and above the bound) often have similar length but very dif-
ferent sets of constituent actions.

Here, we will concentrate on plans for the delete relax-
ation of planning problems. The delete relaxation of a
planning problem ignores negative action effects (deletes).
Delete-relaxed plan heuristics were introduced in the FF
planner (Hoffmann and Nebel 2001), but here we follow
roughly the formulation of Keyder & Geffner (2008). A re-
laxed plan is found in two steps: First, an estimated cost of
achieving each proposition subset, from the current state s,
is computed. From this estimate, a best supporting action for
each proposition p is chosen as the action awith p ∈ add(a)
that minimises h(pre(a); s)+cost(a), where h(pre(a); s) is
the heuristic estimate of the cost of achieving a’s precondi-
tions from s. (If we seek a short relaxed plan, cost(a) is 1 for
all actions.) Second, the relaxed plan is extracted by back-
chaining from the goals of the planning problem, selecting
for each subgoal the best supporter to achieve it. That is,

π(p; s) =

{
∅ if p ∈ s
{bs(p; s)} ∪

⋃
q∈pre(bs(p;s)) π(q; s) else,

where bs(p; s) is the best supporter of p, and,

π(G; s) =
⋃
p∈G

π(p; s)

The relaxed plan found this way is not guaranteed to be op-
timal. Finally, the heuristic estimate is computed as a func-
tion of the extracted plan. To minimise the number of steps
to reach a goal state, we use h(s) = |π(G; s)|.

This formulation leaves a lot of leeway to influence the
relaxed plan we find by modifying the criterion for selecting
the best supporter. If we want an (approximately) shortest
relaxed plan, we use for h(p; s) a heuristic that estimates the
number of actions needed to achieve p, and count all actions’
costs as 1. If we want an (approximately) cheapest relaxed
plan, we use a h(p; s) that estimates cost. Common choices
for this heuristic are the hmax and hadd heuristics, both of
which can be computed either with actual action costs with
unit costs. Here, we use the additive heuristic, hadd, since it
has been shown to give more accurate relaxed plans (Key-
der and Geffner 2008). We denote the additive heuristic

computed with action costs by hadd[cost] and the heuristic
computed with unit costs by hadd[1]; we use the same an-
notations to indicate the best supporter selected according to
each heuristic.

A simple idea to balance the length and cost of the relaxed
plan is to focus on length, but use cost for tie-breaking. That
is, define the best supporter bs(p; s) as the action a with
p ∈ add(a) that minimises hadd[cost](pre(a); s) + cost(a)
among those that minimise hadd[1](pre(a); s).

In cost-bounded search, we have at every search node a
“budget” of B(n) = C− g(n), where g(n) is the cost of the
path to the node. This is as much as the rest of the plan is
allowed to cost, if we are to respect the cost bound. We can
(and should) take advantage of this information in comput-
ing the relaxed plan, while still keeping a focus on finding a
short acceptable plan. In fact, the ideal solution is the short-
est relaxed plan whose cost is less than B(n), but to find
this plan is equivalent to solving the delete relaxed problem
(cost-)optimally, which is known to be NP-hard. Instead, we
suggest an iterative improvement scheme: First compute an
(approximately) shortest relaxed plan, π0, based on bs[1]. If
the cost of this plan (cost(π0) =

∑
a∈π0

cost(a)) exceeds
the budget, B(n), compute a new relaxed plan, π1, using
the cheapest best supporter bs[cost](p; s) for all subgoals in
some select set P of propositions. This process repeats as
long as the plan is too costly, using in each iteration a larger
set P . The process ends with a relaxed plan πn whose cost
is either within the budget, or that is extracted entirely ac-
cording to bs[cost], i.e., an approximately cheapest plan.

The remaining question is how to select, in each iteration,
the set of propositions P whose best supporters are chosen
by cost. There are many possible strategies: we explore
three, which differ in how aggressively they expand the set
P . The first, called “improve once”, simply takes as P the
entire set of propositions immediately. Thus, this strategy
computes at most two relaxed plans: first, a short plan, and if
this plan is too expensive, an (approximately) cheapest. This
limits the overhead that all improvement strategies incur for
computing multiple relaxed plans. The second, called “im-
prove top-down”, adds in each iteration one of the top-level
goals, and all subgoals recursively relevant to this goal (fol-
lowing the cheapest supporter). Goals are added in order of
decreasing cost, i.e., the subplan for the most expensive goal
is replaced first. The number of iterations under this strategy
is at most the number of top-level goals. The third strategy,
called “improve bottom-up”, adds in each iteration one sub-
goal that appears in the relaxed plan, in order of distance
from the current state, i.e., by increasing hadd[1]. Replac-
ing subplans from the bottom ensures that these subgoals
are still relevant, since they appear in the (unchanged) recur-
sive plan extraction from subgoals above. A new subplan is
kept only if it decreases the total cost of the relaxed plan.
This strategy is potentially the most expensive, since it can
perfom a large number of iterations.

Penalising Too Expensive Relaxed Plans
If the heuristic was admissible, we would simply cut off any
node whose estimated cost-to-go exceeds the budget, but as
the cost of the relaxed plan is not optimal we cannot be

313

so drastic and retain completeness. Instead, we can apply
a “soft” pruning, in the form of a penalty to the heuristic
value if the cost of the relaxed plan exceeds the budget. This
moves such nodes further back in the open queue, but leaves
them to be explored if no seemingly better node leads to a
solution. The penalty is multiplicative, that is,

h(n) =

{
fpenalty|π(G;n.s)| if cost(π(G;n.s)) > B(n)
|π(G;n.s)| otherwise

Budget overruns tend to occur relatively deep in the search,
where heuristic values are small. This suggests that the
penalty factor should be fairly high. Experiments, however,
indicate a smaller penalty may be better.

Experiments
We compare the different heuristics in a bounded-cost
greedy search on problems from the satisficing track of the
2008 and 2011 International Planning Competition1. With
the exception of the Tidybot domain, these are all problems
with non-unit action costs. Cost bounds are set to the cost
of the second-best and the best plan found by any planner
in the respective competition, minus 1. In other words, the
first set of problems seek a plan better than the 2nd best, and
the second set a plan better than the best known. In the first
case, a plan within the cost bound is known to exist. Be-
cause plan costs vary greatly between domains, the cost of
the 2nd best plan is thought to be a better measure of a “less
constrained” bounded-cost problem than, for example, the
cost of the best plan plus some constant. For problems in
the second set, a solution may not exist. Note that when
no plan exists within the bound, all search algorithms must
explore the entire space up the point where the admissible
cost estimate cuts off, and thus will behave more or less the
same. The first test set excludes instances for which no 2nd

best plan exists, and the second instances for which the best
plan is known to be optimal. For domains that appeared in
both competitions we use only the subset of instances from
2011 that were new in that year.

The heuristics compared are the shortest, cheapest, short-
est tie-breaking on cheapest, and improve once, top-down
and bottom-up relaxed plans, as described above. We use
preferred actions (based on the relaxed plan) in a dual
queue (Richter and Helmert 2009), but not deferred evalu-
ation. All configurations use the admissible LM-Cut heuris-
tic (Helmert and Domshlak 2009) for cut-offs. Unlike a
normal greedy search, bounded-cost search reopens closed
states when reached by a new path of lower cost. This is
necessary to retain completeness.

We also compare the greedy searches with the ˆPTS, BEES
and BEEPS bounded-cost search algorithms. ˆPTS uses the
cost of the cheapest relaxed plan to calculate the potential.
BEES and BEEPS use the shortest relaxed plan heuristic as
the distance estimator and the cost of the cheapest relaxed
plan as the inadmissible cost estimator. All three use LM-
Cut as the admissible cost estimate for pruning. All search

1http://ipc.informatik.uni-freiburg.de/; http://www.plg.inf.
uc3m.es/ipc2011-deterministic

algorithms and heuristics are implemented in the Fast Down-
ward planner.2 All planners were run with 30-minute CPU
time and 3Gb memory limits.

Discussion of Results
The number of problems solved are summarised in Table
1. Clearly no search algorithm or heuristic dominates: each
performs relatively poorly in some domain. Greedy search
using the shortest relaxed plan is much better than greedy
search using the (length of the) cheapest relaxed plan, con-
firming previous observations that cost-sensitive heuristics
are less effective at guiding search to a plan (Cushing, Ben-
ton, and Kambhampati 2010; Richter and Westphal 2010).

Of the hybrid strategies, improve once and top-down are
better than following the cheapest relaxed plan, while im-
prove bottom-up is not. Somewhat surprisingly, there is
no evidence that this is due to the overhead of computing
many relaxed plans during the improvement process: aver-
aged across instances solved by all greedy search strategies,
total run time divided by total node expansions shows no
significant differences.

Comparing the relaxed plan heuristics pairwise, on in-
stances solved by both in each pair, reveals a little more:
As expected, using the cheapest relaxed plan expands more
nodes than using the shortest, about 30% more. But all
three relaxed plan improvement strategies expand even more
(about 50–60% more). Even the two heuristics that solve
more instances than the shortest relaxed plan (improve once
improve top-down, with penalty) expand around 30% more
nodes (on those instances that are solved also using the
shortest relaxed plan). Comparing the three improvement
strategies, once and top-down expand very similar num-
bers of nodes, while the bottom-up strategy expands slightly
fewer. We may conjecture that good performance of the
shortest plan heuristic is due to “luck”, i.e., that the plan
it leads to is within the bound most of the time only be-
cause the cost bounds are loose. However, the relative per-
formance of all relaxed plan heuristics, with and without
penalty, remains roughly the same also using the tighter cost
bound (last row in Table 1).

The impact of the penalty for over-budget relaxed plans
is far from even. It has the most beneficial effect when ap-
plied to a relaxed plan that was extracted taking cost into
account: fpenalty = 10 leads to an increase by 10 instances
solved when applied to the cheapest relaxed plan, and 19 in-
stances solved when applied to the relaxed plan found by the
improve once strategy. Experiments with a subset of strate-
gies suggest that a smaller penalty factor is better (though 9
of the additional problems solved with the cheapest relaxed
plan and fpenalty = 2 are in the ParcPrinter domain).

The ˆPTS, BEES and BEEPS search algorithms are much
less effective than greedy search, regardless of which re-
laxed plan heuristic is used (though note the exception in
the PegSol domain). This raises the question, why? First,
note that ˆPTS, BEES and BEEPS do not benefit from pre-
ferred actions. Implementing preferred actions in these al-
gorithms is non-trivial: in ˆPTS, the applicable actions in the

2http://fast-downward.org

314

First problem set: C = cost of 2nd best plan− 1
Domain # Greedy search P BE BE

Sh. Ch. StC I.1 I.T. I.B. Sh. Ch. StC I.1. I.T. I.B. T ES EP
No penalty Penalty factor 10 S S

Elevators 40 21 8 16 21 22 11 26 11 19 26 25 14 9 21 21
Openstacks 40 23 25 23 22 21 23 18 25 16 22 21 23 12 23 23
ParcPrinter 39 24 34 21 26 26 23 23 24 21 25 23 22 8 9 9
PegSol 34 25 20 25 23 22 26 25 26 25 26 25 28 34 34 34
Scanalyzer 30 26 21 21 21 21 18 22 22 22 22 22 18 22 23 23
Sokoban 23 10 8 10 9 9 11 11 10 11 10 10 11 10 10 10
Transport 40 12 11 13 10 11 10 13 13 11 12 11 11 6 8 8
Woodworking 39 23 22 21 23 23 19 20 22 20 25 24 19 4 3 3
Barman 20 9 9 9 9 9 5 9 9 9 9 9 5 0 0 0
Floortile 8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
NoMystery 19 11 11 11 11 11 11 16 16 16 16 15 11 15 11 11
Parking 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VisitAll 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Tidybot 20 4 4 4 4 4 4 5 5 5 5 5 5 6 7 6
Total: 392 190 175 176 181 181 163 190 185 178 200 192 169 128 151 150

Penalty factor 2
Total: 195 195 200

Penalty factor 1000
Total: 189 185 199

Second problem set: C = cost of best plan− 1
Total: 286 54 46 44 51 48 34 54 50 45 57 60 42 19 31 30

Table 1: Number of bounded-cost problems solved, IPC 2008 & 2011 satisficing problem set. Column “#” shows the number
of instances. Relaxed plan types are abbreviated as follows: Shortest: Sh. Cheapest: Ch. Shortest, tie-breaking on cheapest:
StC. Improve once: I.1. Improve top-down: I.T. Improve bottom-up: I.B.

relaxed plan do not necessarily correlate with the change in
potential, and BEES and BEEPS already have multiple open
queues with rules for selecting which queue to expand from.
However, disabling preferred actions in the greedy search
only decreases problems solved by 15% with the shortest
plan heuristic and 13% with the improve once heuristic. In
other words, this is not enough to explain the difference in
performance. Another possible explanation is that these al-
gorithms rely on assumptions about the (inadmissible) cost-
estimating heuristic that are not satisfied by relaxed plan
heuristics. ˆPTS assumes access to a model of heuristic er-
ror.3 The explicit estimation search algorithm, on which
BEES and BEEPS build, assumes “an unbiased estimate of
the cost-to-go” (Thayer and Ruml 2011), i.e., that the inad-
missible cost estimating heuristic neither over-estimates nor
under-estimates systematically. It is questionable to what
extent this is true of relaxed plan heuristics, or of planning
heuristics generally. Looking only at the initial state esti-
mate of length, and comparing it to the length of the final
plan, over instances solved with the shortest relaxed plan
heuristic, the cases where the heuristic errs to one side out-
number the cases where it errs to the other at least 10 : 1 in

3The ˆPTS implementation uses a linear heuristic error model.
This is the same model that was used for experimental evaluation
in in previous work (Stern, Puzis, and Felner 2011; Thayer et al.
2012).

every domain except Scanalyzer.

Conclusions
This investigation into heuristics for bounded-cost planning
perhaps opens more problems and questions for the future
than it provides answers. Designing heuristics, or any mech-
anism, that effectively uses the cost bound information to
guide – not just prune – the search for a plan appears to
be a challenge. Given the potential usefulness of efficient
bounded-cost planning, this seems an important challenge
for future research to address.

The ideas applied here to delete-relaxed plans can, in prin-
ciple, be used for any kind of heuristic estimate based on
finding a solution for some kind of problem relaxation. For
example, abstraction of a planning problem yields a prob-
lem with a smaller state space, typically one small enough
that it can be represented explicitly. Finding the shortest
plan within the cost bound (budget) for the abstract prob-
lem amounts to solving a resource-constrained shortest path
problem on the state space graph. Algorithms for RCSP are
only pseudo-polynomial (i.e., polynomial in the magnitude
of the cost bound, rather than its representation), but find-
ing the shortest or cheapest path is easy, so hybrid strategies
similar to those we have proposed can be devised. Also, un-
like delete relaxed planning, RCSP admits polynomial time
approximation schemes (Hassin 1992).

315

Acknowledgements
I’m grateful to Jordan Thayer for providing the ˆPTS, BEES
and BEEPS implementations. NICTA is funded by the
Australian Government represented by the Department of
Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of
Excellence program.

References
Aneja, Y.; Aggarwal, V.; and Nair, K. 1983. Shortest chain
subject to side constraints. Networks 13:295–302.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost-
based search considered harmful. In Proc. Symposium on
Combinatorial Search (SoCS’10).
Hassin, R. 1992. Approximation schemes for the restricted
shortest path problem. Mathematics of Operations Research
17(1):36–42.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. 19th International Conference on Automated Planning
and Scheduling (ICAPS’09).
Helmert, M. 2006. The Fast Downward planning system.
Journal of AI Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of AI
Research 14:253–302.

Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. European Conference
on AI.
Nakhost, H.; Hoffman, J.; and Müller, M. 2012. Resource-
constrained planning: A monte carlo random walk approach.
In Proc. 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS’12), 181–189.
Richter, S., and Helmert, M. 2009. Preferred operators
and deferred evaluation in satisficing planning. In Proc.
19th International Conference on Automated Planning and
Scheduling (ICAPS’09), 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of AI Research 39:127–177.
Stern, R.; Puzis, R.; and Felner, A. 2011. Potential-search:
A bounded-cost search algorithm. In Proc. 21st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’11), 234–241.
Thayer, J., and Ruml, W. 2011. Bounded suboptimal search:
A direct approach using inadmissible estimates. In Proc.
22nd International Conference on Artificial Intelligence (IJ-
CAI’11), 674–679.
Thayer, J.; Stern, R.; Felner, A.; and Ruml, W. 2012. Faster
bounded-cost search using inadmissible heuristics. In Proc.
22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), 270–278.

316

