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Abstract We present an algorithm for planning with time and resources,
based on heuristic search. The algorithm minimizes makespan using an
admissible heuristic derived automatically from the problem instance.
Estimators for resource consumption are derived in the same way. The
goals are twofold: to show the flexibility of the heuristic search approach
to planning and to develop a planner that combines expressivity and per-
formance. Two main issues are the definition of regression in a temporal
setting and the definition of the heuristic estimating completion time.
A number of experiments are presented for assessing the performance of
the resulting planner.

1 Introduction

Recently, heuristic state space search has been shown to be a good framework for
developing different kinds of planning algorithms. It has been most successful in
non-optimal sequential planning, e.g. HSP [4] and FF [12], but has been applied
also to optimal and parallel planning [10].

We continue this thread of research by developing a domain-independent
planning algorithm for domains with metric time and certain kinds of resources.
The algorithm relies on regression search guided by a heuristic that estimates
completion time and which is derived automatically from the problem representa-
tion. The algorithm minimizes the overall execution time of the plan, commonly
known as the makespan.

A few effective domain-independent planners exhibit common features: TGP
[24] and TPSys [7] handle actions with duration and optimize makespan, but
not resources. RIPP [15] and GRT-R [22] handle resources, and are in this respect
more expressive than our planner. Sapa [5] deals with both time and resources,
but non-optimally.

Among planners that exceed our planner in expressivity, e.g. Zeno [20], Ix-
TeT [9] and HSTS [19], none have reported significant domain-independent per-
formance (Jonsson et al. [13] describe the need for sophisticated engineering of
domain dependent search control for the HSTS planner). Many highly expressive
planners, e.g. O-Plan [26], ASPEN [6] or TALplanner [17], are “knowledge in-



tensive”, relying on user-provided problem decompositions, evaluation functions
or search constraints!.

2 Action Model and Assumptions

The action model we use is propositional STRIPS with extensions for time and
resources. As in GRAPHPLAN [3] and many other planners, the action set is
enriched with a no-op for each atom p which has p as its only precondition and
effect. Apart from having a variable duration, a no-op is viewed and treated like
a regular action.

2.1 Time

When planning with time each action a has a duration, dur(a) > 0. We take
the time domain to be R*. In most planning domains we could use the positive
integers, but we have chosen the reals to highlight the fact that the algorithm
does not depend on the existence of a least indivisible time unit. Like Smith and
Weld [24], we make the following assumptions: For an action a executed over an
interval [t,t + dur(a)]

(i) the preconditions pre(a) must hold at ¢, and preconditions not deleted by a
must hold throughout [¢t,t + dur(a)] and

(i4) the effects add(a) and del(a) take place at some point in the interior of the
interval and can be used only at the end point ¢ + dur(a).

Two actions, a and b, are compatible iff they can be safely executed in over-
lapping time intervals. The above assumptions lead to the following condition
for compatibility: a and b are compatible iff for each atom p € pre(a) U add(a),
p & del(b) and vice versa (i.e. p € pre(b) U add(b) implies p & del(a)).

2.2 Resources

The planner handles two types of resources: renewable and consumable. Renew-
able resources are needed during the execution of an action but are not consumed
(e.g. a machine). Consumable resources, on the other hand, are consumed or pro-
duced (e.g. fuel). All resources are treated as real valued quantities; the division
into unary, discrete and continuous is determined by the way the resource is
used. Formally, a planning problem is extended with sets Rp and Cp of renew-
able and consumable resource names. For each resource name r € Rp U Cp,
avail(r) is the amount initially available and for each action a, use(a,r) is the
amount used or consumed by a.

! The distinction is sometimes hard to make. For instance, parcPlan [18] domain defi-
nitions appear to differ from plain STRIPS only in that negative effects of actions are
modeled indirectly, by providing a set of constraints, instead of explicitly as “deletes”.
parcPlan has shown good performance in certain resource constrained domains, but
domain definitions are not available for comparison.



3 Planning with Time

We describe first the algorithm for planning with time, not considering resources.
In this case, a plan is a set of action instances with starting times such that no
incompatible actions overlap in time, action preconditions hold over the required
intervals and goals are achieved on completion. The cost of a plan is the total
execution time, or makespan. We describe each component of the search scheme:
the search space, the branching rule, the heuristic, and the search algorithm.

3.1 Search Space

Regression in the classical setting is a search in the space of “plan tails”, i.e.
partial plans that achieve the goals provided that the preconditions of the partial
plans are met. A regression state, i.e. a set of atoms, summarizes the plan tail;
if s is the state obtained by regressing the goal through the plan tail P’ and P
is a plan that achieves s from the initial state, then the concatenation of P and
P’ is a valid plan. A similar decomposition is exploited in the forward search for
plans.

In a temporal setting, a set of atoms is no longer sufficient to summarize
a plan tail or plan head. For example, the set s of all atoms made true by
a plan head P at time ¢ holds no information about the actions in P that
have started but not finished before ¢. Then, if a plan tail P’ maps s to a goal
state, the combination of P and P’ is not necessarily a valid plan. To make the
decomposition valid, search states have to be extended with the actions under
execution and their completion times. Thus, in a temporal setting states become
pairs s = (E, F'), where E is a set of atoms and F' = {(a1,91),...,(an,0,)} is a
set of actions a; with time increments §;.

An alternative representation for plans will be useful: instead of a set of
time-stamped action instances, a plan is represented by a sequence ((Ag,do),
ooy (Am, 0,)) of action sets A; and positive time increments §;. Actions in
Ag begin executing at time tg = 0 and actions in A;, i = 1...m, at time
ti = D ogj<i0j (i-e. &; is the time to wait between the beginning of actions A;
and the beginning of actions A;1).

State Representation A search state s = (F,F) is a pair consisting of a
set of atoms E and a set of actions with corresponding time increments F =
{(a1,61),--.,(an,0n)}, 0 < &; < dur(a;). A plan P achieves s = (E, F) at time
t if P makes all the atoms in E true at ¢ and schedules the actions a; at time
t — 6;. The initial search state is so = (Gp,0), where Gp is the goal set of the
planning problem. Final states are all s = (E, ) such that E C Ip.

Branching Rule A successor to a state s = (E, F) is constructed by selecting
for each atom p € E an establisher (i.e. a regular action or no-op a with p €
add(a)), subject to the constraints that the selected actions are compatible with



each other and with each action b € F', and that at least one selected action is
not a no-op. Let SE be the set of selected establishers and let

Fhew = {(a,dur(a))|a € SE}.

The new state s’ = (E', F') is defined as the atoms E' that must be true and
the actions F' that must be executing before the last action in F'U Fpey begins.
This will happen in a time increment §,4y:

Ogdv = min{éd | (a,d) € F'U Fpey and a is not a no-op}

where no-op actions are excluded from consideration since they have variable
duration (the meaning of the action no-op(p) in s is that p has persisted in the
last time slice). Setting the duration of no-ops in Fhew equal to d,40, the state
s' = (E', F") that succeeds s = (E, F) becomes

E' = {pre(a) | (a,00av) € F'U Frew}
F' ={(a,0 — 8qav) | (a,6) € F U Foew,8 > Saav}

The cost of the transition from s to s’ is ¢(s,s’) = d44» and the fragment of the
plan tail that corresponds to the transition is

P(s,s") = (A,da0av), where A = {a|(a,80dv) € F U Fpew}

The accumulated cost (plan tail) along a state-path is obtained by adding up
(concatenating) the transition costs (plan fragments) along the path. The accu-
mulated cost of a state is the minimum cost along all the paths leading to s.
The evaluation function used in the search algorithm adds up this cost and the
heuristic cost defined below.

Properties The branching rule is sound in the sense that it generates only
valid plans, but it does not generate all valid plans. This is actually a desirable
feature?. The rule is optimality preserving in the sense that it generates some
optimal plan. This, along with soundness, is all that is needed for optimality
(provided an admissible search algorithm and heuristic are used).

3.2 Heuristic

As in previous work [10], we derive an admissible heuristic by introducing ap-
proximations in the recursive formulation of the optimal cost function.

% The plans generated are such that a regular action is executing during any given time
interval and no-ops begin only at the times that some regular action starts. This is
due to the way the temporal increments 0,4, are defined. Completeness could be
achieved by working on the rational time line and setting d.q4v to the ged of all
actions durations, but as mentioned above this is not needed for optimality.



For any state s = (E, F'), the optimal cost is H*(s) = t iff ¢ is the least time
t such that there is a plan P that achieves s at t. The optimal cost function, H*,
is the solution to the Bellman equation [2]:

H*(s) =

0 if s is final
{ W

mins’ER(s) C(S, Sl) + H* (SI)

where R(s) is the regression set of s, i.e. the set of states that can be constructed
from s by the branching rule.

Approximations. Since equation (1) cannot be solved in practice, we derive
a lower bound on H* by considering some inequalities. First, since a plan that
achieves the state s = (E, F), for F = {(a;,0;)}, at time ¢ must achieve the
preconditions of the actions a; at time ¢t — §; and these must remain true until
t, we have

H*(E,F) > max H*( U pre(a;), 0) + ok (2)
(ar,0k)EF
(a;,0;)EF,8; >0k
H*(E,F) > H*(EU |J pre(a),0) (3)
(a;,0;)EF

Second, since achieving a set of atoms E implies achieving each subset E' of E
we also have

* > * !
H*(E,) > E,ggfglgmﬂ (E',0) (4)

where m is any positive integer.

Temporal Heuristic H*. We define a lower bound HF on the optimal func-
tion H* by transforming the above inequalities into equalities. A family of ad-
missible temporal heuristics Hf* for arbitrary m = 1,2,... is then defined by
the equations

HF'(E,0)=0 if EC Ip ()

m = 1 = ! m( ol 1 <
HP(EO) =, min (s = (E,0)5)+ HF () H|E| <m (6)

ax  HP(E',)) if|[E| >m (7

HM(E, () =
7(E.0) BCRR |<m

HP(BE,F)=max[ max HF( |J  pre(a),0) +6 ,

(ak,0k)EF (ai,0:)EF,8; >0
HPEU | pre(a),0)] ©
(ai,0;)EF

The relaxation is a result of the last two equations; the first two are also satisfied
by the optimal cost function. Unfolding the right-hand side of equation (6) using
(8), the first two equations define the function H7*(E, F') completely for F' = {}



and |E| < m. From an implementation point of view, this means that for a fixed
m, HP'(E, D) can be solved and precomputed for all sets of atoms with |E| < m,
and equations (7) and (8) used at run time to compute the heuristic value of
arbitrary states. The precomputation is a simple variation of a shortest-path
problem and its complexity is a low order polynomial in |A|™, where |A| is the
number of atoms.

For a fixed m, equation (6) can be simplified because only a limited set of
states can appear in the regression set. For example, for m = 1, the state s in
(6) must have the form s = ({p},?) and the regression set R(s) contain only
states s’ = (pre(a),0) for actions a such that p € add(a). As a result, for m = 1,
(6) becomes

Hy({p}0) = min  dur(e)+ H}(re(a).0) ©)

The corresponding equations for H% are in [11].

3.3 Search Algorithm

Any admissible search algorithm, e.g. A*, IDA* or DFS branch-and-bound [16],
can be used with the search scheme described above to find optimal solutions.

The planner uses IDA* with some standard enhancements (cycle checking
and a transposition table) and an optimality preserving pruning rule explained
below. The heuristic used is H%, precomputed for sets of at most two atoms as
described above.

Incremental Branching In the implementation of the branching scheme, the
establishers in SE are not selected all at once. Instead, this set is constructed
incrementally, one action at a time. After each action is added to the set, the
cost of the resulting “partial” state is estimated so that dead-ends (states whose
cost exceeds the bound) are detected early. A similar idea is used in GRAPHPLAN.
In a temporal setting, things are a bit more complicated because no-ops have a
duration (d44y) that is not fixed until the set of establishers is complete. Still, a
lower bound on this duration can be derived from the regular actions selected
so far and in the state being regressed.

Selecting the Atom to Regress The order in which atoms are regressed
makes no difference for completeness, but does affect the size of the resulting
search tree. We regress the atoms in order of decreasing “difficulty”: the difficulty
of an atom p is given by the estimate HZ({p},0).

Right-Shift Pruning Rule In a temporal plan there are almost always some
actions that can be shifted forward or backward in time without changing the
plan’s structure or makespan (i.e. there is some “slack”). A right-shifted plan is
one in which such movable actions are scheduled as late as possible.



As mentioned above, it is not necessary to consider all valid plans in order
to guarantee optimality. In the implemented planner, non-right-shifted plans are
excluded by the following rule: If s’ is a successor to s = (E, F), an action a
compatible with all actions in F may not be used to establish an atom in s
when all the atoms in E' that a adds have been obtained from s by no-ops. The
reason is that a could have been used to support the same atoms in E, and thus
could have been shifted to the right (delayed).

4 Planning with Resources

Next, we show how the planning algorithm deals with renewable and consumable
resources.

4.1 Renewable Resources

Renewable resources limit the set of actions that can be executed concurrently
and therefore need to enter the planning algorithm only in the branching rule.
When regressing a state s = (E, F'), we must have that

Z use(a;,r) < avail(r) (10)

(ai,0;) EFUFpew

for every renewable resource r € Rp.

Heuristic The HF heuristics remain admissible in the presence of renewable
resources, but in order to get better lower bounds we exclude from the regression
set any set of actions that violates a resource constraint. For unary resources
(capacity 1) this heuristic is informative, but for multi-capacity resources it
tends to be weak.

4.2 Consumable Resources

To ensure that resources are not over-consumed, a state s must contain the
remaining amount of each consumable resource r. For the initial state, this is
rem(so,r) = avail(r), and for a state s’ resulting from s

rem(s',r) = rem(s,r) — Z use(a;, ) (11)
(@i ti)EFnew

for each r € Cp.



Heuristic The heuristics H7* remain admissible in the presence of consumable
resources, but become less useful since they predict completion time but not con-
flicts due to overconsumption. If, however, consumable resources are restricted
to be monotonically decreasing (i.e. consumed but not produced), then a state s
can be pruned if the amount of any resource r needed to achieve s from the initial
situation exceeds rem(s,r), the amount remaining in s. The amount needed is
estimated by a function need™(s,r) defined in a way analogous to the function
H™(s) that estimates time. The planner implements need' (s, r).

Because resource consumption is treated separately from time, this solution is
weak when the time and resources needed to achieve a goal interact in complex
ways. The HJ' estimator considers only the fastest way of achieving the goal
regardless of resource cost, while the need™ estimator considers the cheapest
way to achieve the goal regardless of time (and other resources). To overcome
this problem, the estimates of time and resources would have to be integrated,
as in for example [22]. Integrated estimates could also be used to optimize some
combination of time and resources, as opposed to time alone.

4.3 Maintenance Actions

In planning, it is normally assumed that no explicit action is needed to main-
tain the truth of a fact once it has been established, but in many cases this
assumption is not true. We refer to no-ops that consume resources as main-
tenance actions. Incorporating maintenance actions in the branching scheme
outlined above is straightforward: For each atom p and each resource r, a quan-
tity use(maintain(p),r) can be provided as part of the domain definition and
is set to 0 by default. Since the duration of a no-op is variable, we interpret
use(maintain(p),r) as the rate of consumption. For the rest, maintenance ac-
tions are treated as regular actions, and no other changes are needed in the
planning algorithm.?

5 Experimental Results

We have implemented the algorithm for planning with time and resources de-
scribed above, including maintenance actions but with the restriction that con-
sumable resources are monotonically decreasing, in a planner called TP4%. The
planner uses IDA* with some standard enhancements and the H2 heuristic. The
resource consumption estimators consider only single atoms.

3 This treatment of maintenance actions is not completely general. Recall that the
branching rule does not generate all valid plans: in the presence of maintenance
actions it may happen that some of the plans that are not generated demand less
resources than the plans that are. When this happens, the algorithm may produce
non-optimal plans or even fail to find a plan when one exists. This is a subtle issue
that we will address in the future.

4 TP4 is implemented in C. Planner, problems, problem generators and experiment
scripts are available at http://www.ida.liu.se/~pahas/hsps/. Experiments were
run on a Sun Ultra 10.
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5.1 Non-Temporal Planning

First, we compare TP4 to three optimal parallel planners, IPP, BLACKBOX and
STAN, on standard planning problems without time or resources. The test set
comprises 60 random problems from the 3-operator blocksworld domain, ranging
in size from 10 to 12 blocks, and 40 random logistics problems with 5 — 6 deliver-
ies. Blocksworld problems were generated using Slaney & Thiebaux’s BWSTATES
program [23].

Figure 1(a) presents the results in the form of runtime distributions. Clearly
TP4 is not competitive with non-temporal planners, which is expected consider-
ing the overhead involved in handling time. Performance in the logistics domain,
however, is very poor (e.g. TP4 solves less than 60% of the problems within 1000
seconds, while all other planners solve 90% within only 100 seconds), indicating
that other causes are involved (most likely the branching rule, see below).

5.2 Temporal Planning

To test TP4 in a temporal planning domain, we make a small extension to the
logistics domain®, in which trucks are allowed to drive between cities as well as
within and actions are assigned durations as follows:

% The goal in the logistics domain is to transport a number of packages between lo-
cations in different cities. Trucks are used for transports within a city and airplanes
for transports between cities. The standard domain is available e.g. as part of the
ATPS 2000 Competition set [1].



Actions Duration Actions Duration
Load/Unload 1 Drive truck (between cities) 12
Drive truck (within city) 2 Fly airplane 3

This is a simple example of a domain where makespan-minimal plans tend to be
different from minimal-step parallel plans.

For comparison, we ran also TGP and Sapa® The test set comprised 80 random
problems with 4 — 5 deliveries. Results are in figure 1(b). We ran two versions of
TGP, one using plain GRAPHPLAN-like memoization and the other minimal con-
flict set memoization and “intelligent backtracking” [14]. TP4 shows a behaviour
similar to the plain version of TGP, though somewhat slower. As the top curve
shows, the intelligent backtracking mechanism is very effective in this domain
(this was indicated also in [14]).

5.3 Planning with Time and Resources

Finally, for a test domain involving both time and non-trivial resource con-
straints we have used a scheduling problem, called multi-mode resource con-
strained project scheduling (MRCPS) [25]. The problem is to schedule a set of
tasks and to select for each task a mode of execution so as to minimize project
makespan, subject to precedence constraints among the tasks and global resource
constraints. For each task, each mode has different duration and resource require-
ments. Resources include renewable and (monotonically decreasing) consumable.
Typically, modes represent different trade-offs between time and resource use,
or between use of different resources. This makes finding optimal schedules very
hard, even though the planning aspect of the problem is quite simple.

The test comprised sets of problems with 12, 14 and 16 tasks and approx-
imately 550 instances in each (sets J12, J14 and J16 from [21]). A specialized
scheduling algorithm solves all problems in the set, the hardest in just below 300
seconds [25]. TP4 solves 59%, 41% and 31%, respectively, within the same time
limit.

6 Conclusions

We have developed an optimal, heuristic search planner that handles concurrent
actions, time and resources, and minimizes makespan. The two main issues we
have addressed are the formulation of an admissible heuristic estimating com-
pletion time and a branching scheme for actions with durations. In addition,
the planner incorporates an admissible estimator for consumable resources that
allows more of the search space to be avoided. Similar ideas can be used to
optimize a combination of time and resources as opposed to time alone.

The planner achieves a tradeoff between performance and expressivity. While
it is not competitive with either the best parallel planners or specialized sched-
ulers, it accommodates problems that do not fit into either class. An approach

5 We did not run Sapa ourselves. Results were provided by Minh B. Do, and were
obtained using a different, but approximately equivalent, computer.



for improving performance that we plan to explore in the future is the combi-
nation of the lower bounds provided by the admissible heuristics H}* with a
different branching scheme. See [8] for details.
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