Minimal Landmarks for Optimal Delete-Free Planning

Patrik Haslum, John Slaney and Sylvie Thiébaux
Optimisation Research Group, NICTA
Research School of Computer Science, Australian National University
firstname.lastname@anu.edu.au

Abstract

We present a simple and efficient algorithm to solve delete-
free planning problems optimally and calculate the h* heuris-
tic. The algorithm efficiently computes a minimum-cost hit-
ting set for a complete set of disjunctive action landmarks
generated on the fly. Unlike other recent approaches, the
landmarks it generates are guaranteed to be set-inclusion min-
imal. In almost all delete-relaxed IPC domains, this leads to
a significant coverage and runtime improvement.

Introduction

Problems without delete lists play an important role in the
planning literature. Most planning heuristics, including the
admissible heuristics h™**, additive h™**, LM-cut, and vari-
ants (Bonet and Geftner 2001; Haslum, Bonet, and Geffner
2005; Coles et al. 2008; Helmert and Domshlak 2009;
Bonet and Helmert 2010) are based on the delete relaxation
of the planning problem which ignores delete lists. These
heuristics attempt to find good lower bounds on the cost A*
of the optimal delete-relaxed plan, which is NP-equivalent
to compute and hard to approximate (Bylander 1994; Betz
and Helmert 2009). Hence practical methods for computing
h* are crucial to assess how close such planning heuristics
are able to get to the holy grail they seek.

Delete-free problems of interest in their own right are also
starting to appear. An example originating in systems biol-
ogy is the minimal seed-set problem (Gefen and Brafman
2011), which challenges both classical optimisation meth-
ods and optimal planners. Moreover, recent work on trans-
lating NP problems into an NP fragment of classical plan-
ning opens the possibility that optimal delete-free planning
could directly be used to solve a wide range of NP-hard
problems (Porco, Machado, and Bonet 2011). Hence prac-
tical methods for solving delete-free problems are also im-
portant to extend the reach of planning technology.

A possible approach to solving such problems is to treat
them as any other planning problem and use any cost-
optimal planning algorithm. However, Helmert and Domsh-
lak (2009, Table 1) show that this approach, or even resort-
ing to domain-specific procedures, still leaves many cases
where h* cannot be computed. Besides two papers in this
conference (Gefen and Brafman 2012; Pommerening and
Helmert 2012), there is no other published work on optimal
planners designed specifically for general delete-free plan-
ning problems. Bonet and Helmert (2010) established that

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

determining ~A* amounts to computing a minimum-cost hit-
ting set for a complete set of action landmarks for the relaxed
problem, and Bonet and Castillo (2011) described an algo-
rithm for computing such a complete set on the fly. However,
neither tried to compute h*, for fear that solving the general
hitting set problem optimally would be too hard, settling in-
stead for computing improvements on LM-cut.

Bonet and Castillo (2011) state that “in the future [they]
would like to like to develop an effective algorithm for com-
puting exact h* values”. This is exactly what we do here.
We present a simple algorithm which efficiently computes
a minimum-cost hitting set of a complete set of landmarks
generated on the fly. Unlike in previous work, the landmarks
it generates are set-inclusion minimal. We show that this re-
sults in simpler hitting set problems and significant improve-
ments in coverage and runtime.

Background

We adopt the standard definition of a propositional STRIPS
planning problem, without negation in action preconditions
or the goal (see, e.g., Ghallab, Nau, and Traverso 2004,
chapter 2). Each action a has a non-negative cost, cost(a),
and the cost of a plan is the sum of the cost of actions in it.
The initial state is denoted by s; and the goal by G.

The Delete Relaxation

The delete relaxation P+ of a planning problem P is a prob-
lem exactly like P except that del(a) = () for each a, i.e., no
action makes any atom false. The delete relaxation heuristic,
h* is defined as the minimum cost of any plan for P,

Let A be a set of actions in P. We denote by Rt (A) the
set of all atoms that are reachable in P, starting from the
initial state, using only actions in A. We say a set of actions
A is a relaxed plan iff the goal G C RT(A). An actual
plan for the delete-relaxed problem is of course a sequence
of actions. That G C RT(A) means there is at least one
sequencing of the actions in A that reaches a goal state. Such
a sequencing can be generated in linear time, starting from
sy and selecting actions greedily as they become applicable.

We assume throughout that G C R (A) for some set of
actions A (which may be the set of all actions in PV), i.e.,
that the goal is relaxed reachable. If it is not, the problem is
unsolvable and ht = co.

Relevance Analysis

For optimal delete-free planning, we only need to con-
sider actions that can achieve a relevant atom for the first

time. This enables more aggressive, yet still optimality-
preserving, pruning of irrelevant actions. The standard rele-
vance analysis method in planning is to backchain from the
goal: goal atoms are relevant, an action that achieves a rele-
vant atom is relevant, and atoms in the precondition of a rel-
evant action are relevant. We strengthen this analysis in the
delete-free case, by considering as relevant only actions that
are possible first achievers of a relevant atom. Action a is a
possible first achiever of atom p if p € add(a) and a is ap-
plicable in a state that is relaxed reachable with only actions
that do not add p, i.e., if pre(a) C R™ ({a|p & add(a)}).

Iterative Minimal Landmark Generation

A disjunctive action landmark (landmark, for short) of a
problem P is a set of actions such that at least one action
in the set must be included in any valid plan for P. Hence,
for any collection of landmarks L for P, the set of actions
in any valid plan for P is a hitting set for L, i.e., contains an
action from each set in L.

For any set of actions A such that G € RT(A), the com-
plement A of A (w.r.t. the whole set of actions) is a disjunc-
tive action landmark for P*. If A is an inclusion-maximal
such “relaxed non-plan”, A is an inclusion-minimal land-
mark, since if some proper subset of A were also a land-
mark, A would not be maximal. This leads to the following
algorithm for computing h™:

Initialise the landmark collection L to (). Repeatedly (1)
find a minimum-cost hitting set A for L; (2) testif G C
RT*(A); and if not, (3) extend A, by adding actions, to
a maximal set A" such that G € R (A’), and add the
complement of A’ to the landmark collection.

The algorithm terminates when the hitting set A contains
enough actions to reach the goal and is thus a relaxed plan.
There is no lower-cost relaxed plan, because any plan for
P must contain an action from every landmark in L, and
A is a minimum-cost hitting set. Finally, the algorithm even-
tually terminates, because every iteration adds a new land-
mark, which cannot already be in L as it is not hit by A, and
there is only a finite set of minimal landmarks for P™.

The algorithm is given in Figure 1. Details about the
procedures NEWLANDMARK (which implements step (3)
above) and MINCOSTHITTINGSET are given below in the
sections on ‘Testing Relaxed Reachability’ and ‘Finding a
Minimum-Cost Hitting Set’ respectively.

Improvements to the Algorithm

In fact, any set of actions that hits every landmark in L but
is not a relaxed plan can be used as the starting point to gen-
erate a new landmark, not in L. This observation is the basis
for two improvements to the algorithm: First, it is not nec-
essary to find an optimal hitting set in every iteration. Only
when the hitting set A is a relaxed plan do we need to ver-
ify that its cost is minimal. Thus, we use a fast approximate
algorithm to generate hitting sets H, updating A as we go
(lines 8-9 of Figure 2: see also next paragraph below), until
one that reaches the relaxed goal is found. Only then do we
apply the optimal branch-and-bound algorithm, detailed be-
low, using the cost of the non-optimal A as an initial upper
bound. After this, A is a cost-minimal hitting set. If it is also

L=9

A=10

while G Z R (A) do
L = L UNEWLANDMARK(A)
A = MINCOSTHITTINGSET(L)

return A

AN e

Figure 1: Basic Iterative Landmark Algorithm

1: L=9

2: while G Z R (U, 1) do

3: L = L UNEWLANDMARK (U, 1)
4: A = MINCOSTHITTINGSET(L)
5: while G Z R (A) do

6: L = L UNEWLANDMARK(A)
7: H = APXHITTINGSET(L)

8 ifGCR'(AUH)then A=H

9 else A=AUH.

0: if G C R*(A) then A = MINCOSTHITTINGSET(L)
1: return A

—

1

Figure 2: Iterative Landmark Algorithm with improvements

a relaxed plan, it is the solution; if not then the algorithm
continues. One candidate for H is the hitting set from the
previous iteration extended with the cheapest action in the
new (unhit) landmark. Another is the set found by the stan-
dard greedy algorithm using the weighted degree heuristic
(Chvatal 1979), which greedily adds actions in increasing
order of the ratio of their cost to the number of landmarks
they hit. We take whichever of these two has lower cost.
Second, we collect the union of recently found hitting
sets, and first try using this in place of only the last hitting
set. If this larger set is also not a relaxed plan, it is used
as the starting point to generate a new landmark. If it is a
relaxed plan, earlier hitting sets are forgotten and the col-
lection reset to the last hitting set only. The effect of using a
larger relaxed non-plan is similar to that of “saturation” used
by Bonet & Castillo (2011): it makes new landmarks have
less in common with those already in L, thus creating easier
hitting set problems and faster convergence to the optimal
h* value. Taking this idea a step further, as long as the set
of all actions appearing in current landmarks is not a relaxed
plan, we can use that to generate the next landmark, which
will be disjoint from all previous ones. We do this (lines 2
and 3 of Figure 2) to seed L and A before the main loop.
Two steps in this algorithm are frequently repeated, and
therefore important to do efficiently: the first is testing if
the goal is relaxed reachable with a given set of actions, and
the second is finding a hitting set with minimum cost. Their
implementations are detailed in the following sections.

Testing Relaxed Reachability

R™(A), the set of atoms that are relaxed reachable with ac-
tions A, can be computed in linear time by a variant of Di-
jkstra’s algorithm: Keep track of the number of unreached
preconditions of each action, and keep a queue of newly
reached atoms, initialised with atoms true in s;. Dequeue
one atom at a time until the queue is empty; when dequeue-
ing an atom, decrement the precondition counter for the ac-
tions that have this atom as a precondition, and if the counter

reaches zero, mark atoms added by the action as reached and
place any previously unmarked ones on the queue.'

When generating a new landmark, we perform a series
of reachability computations, with mostly increasing sets of
actions, i.e. H, H U {a1}, H U{ay,as}, etc. Therefore,
each reachability test can be done incrementally. Suppose
we have computed RV (A), by the algorithm above, and
now wish to compute R (A U {a}). If pre(a) € RT(A),
R™(AU{a}) equals R (A), and the only thing that must be
done is to initialise a’s counter of unreached preconditions.
If not, mark and enqueue any previously unreached atoms in
add(a), and resume the main loop until the queue is again
empty. If the goal becomes reachable, we must remove the
last added action (a) from the set, and thus must restore the
earlier state of reachability. This is done by saving the state
of RT(A) (including precondition counters) before comput-
ing Rt (AU {a}), and copying it back if needed.

Finding a Minimum-Cost Hitting Set
Finding a minimum-cost hitting set over the set of landmarks
L is an NP-hard problem. We solve it using a recursive
branch-and-bound algorithm, with some improvements.
When finding a hitting set for {ly,...,l,}, we al-
ready have an optimal hitting set for {l1,...,ln—1}.
H*({l1,...,l;m—1}) 1is clearly a lower bound on
H*({ly,...,l;n}), and an initial upper bound can be
found by taking H*({l1,...,lm—1}) + minge,, cost(a).
These bounds are often very tight, which limits the amount
of search. E.g. if [, contains any zero-cost action, the
initial upper bound is the lower bound, and is thus optimal.
Givenaset L = {ly,...,1,,} of landmarks to hit, we pick
alandmark /; € L; the minimum cost of a hitting set for L is
H*(L) = minge;, H*(L—{l|a € I})+cost(a). In our im-
plementation, we pick the landmark whose cheapest action
has the highest cost, using landmark size to break ties (pre-
ferring smaller). We branch on which action in /; to include
in the hitting set, cheapest action first. Next, we describe the
lower bounds, and three improvements to the basic branch-
and-bound scheme, that we use.

Lower Bounds We use the maximum of two lower bounds
on H*(L). The first is obtained by selecting a subset L’ C L
s.t. IN" = Pforany l,l' € L', i.e., aset of pair-wise disjoint
landmarks, and summing the costs of their cheapest actions,
ie., D ;o minge cost(a). Finding the set L’ that yields
the maximum lower bound amounts to solving a weighted
independent set problem, but there are reasonably good and
fast approximation algorithms (e.g. Halld6rsson 2000). The
second bound is simply the continuous relaxation of the in-
teger programming formulation of the hitting set problem:

mianost(a)xa s.t. Zxa >1VielL, z, €{0,1}Va
a a€l

Relaxing the integrality constraint results in an LP, which we

solve using standard techniques (simplex).?

!This is essentially the same algorithm as the implementation of
relaxed plan graph construction described by Hoffmann & Nebel
(2001, Section 4.3). Liu, Koenig & Furcy (2002) also discuss a
similar algorithm, referring to it as “Generalised Dijkstra”.

2Fisher & Kedia (1990) describe a lower bound which is
weaker, but cheaper to compute, using a greedy approximation and

Caching Because the branch-and-bound algorithm is in-
voked recursively on subsets of L, it may prove increased
lower bounds on the cost of hitting these subsets. Improved
bounds are cached, and used in place of the lower bound
calculation whenever a subset is encountered again. This
is implemented by a transposition table, taking the “state”
cached as the subset of landmarks that remain to be hit. In
the course of computing h™, we will be solving a series of
hitting set problems, over a strictly increasing collection of
landmarks: 0, {l1}, {l1, 2}, etc. Cached lower bounds may
be used not only if a subset of L is encountered again within
the same search, but also if it is encountered while solving a
subsequent hitting set problem.

Decomposition Suppose the collection of landmarks can
be partitioned into subsets L1, . .. L, such that no two land-
marks in different partitions have any action in common.
Then, an optimal hitting set for the entire collection can be
constructed by finding, independently, an optimal hitting set
for each partition and taking their union. It is rarely the case
that the entire landmark collection can be partitioned in this
way, but as we select actions to include and remove land-
marks that have already been hit, the set that remains be-
comes sparser. Thus, opportunities for decomposition can
arise during the search. =~ We found that most of the time
when a split occurs, all partitions but one consist of only one
or two landmarks. These tiny subproblems are solved opti-
mally by simple special-purpose routines, and their optimal
cost used to update the bounds on remaining subproblems.

Dominance Eliminating dominated elements is a standard
technique to speed up hitting set algorithms (e.g. Beasley
1987). Let L(a) be the subset of landmarks in the current
collection that include action a. If, for actions a and a’,
L(a’) C L(a) and cost(a) < cost(a’), we say that a domi-
nates a’. Dominated actions are not considered for inclusion
in the hitting set, since the dominating action hits at least the
same sets, and adds no more to the cost. If two actions hit
the same landmarks and have the same cost, both dominate
each other, but obviously only one can be excluded.

Dominance is determined by the current landmark collec-
tion, so it must be updated when a new landmark is added.
However, we do not update dominance as landmarks are re-
moved during search.’

Results and Conclusions

We compare our method of computing landmarks with that
presented by Bonet & Castillo (2011), when each is used by
our Iterative Landmark Algorithm to generate cost-optimal
relaxed plans. Bonet & Castillo propose a method based on
finding cuts in a graph, similar to how the LM-Cut heuristic
is computed. This is not guaranteed to find minimal land-
marks, but involves essentially only one relaxed reachability

a local improvement loop on the dual of the above LP. We found
that although the bound it gives is often close to the optimal solu-
tion to the LP, solving the LP to optimality still pays off.

3We also do not remove landmarks which become subsumed
as actions are removed on backtracking. Iterating these inferences
to a fixpoint yields a powerful propagator (De Kleer 2011), whose
implementation we leave as future work.

computation, whereas our method may use up to O(|A]) of
them. In our experiments, all aspects of the implementation
apart from landmark generation are identical.

We compare them across problem sets from IPC 1998—
2011, counting the number of problems solved within a 30
minute CPU time limit. The IPC 2000 Blocksworld and Lo-
gistics problem sets include the larger instances intended for
planners with hand-coded control knowledge. For IPC 2008
& 2011 domains, we use the problem sets from the sequen-
tial satisficing track.

Table 1 summarises the results: for each domain, it shows
the total number of problems (col 1), the number solved by
each method (col 2), average number of landmarks gener-
ated (over all problems, col 3), average time in seconds (over
problems solved by both, col 4) — see Figure 3 (left) for run-
times on individual problems — and average width (cf. be-
low) of hitting set problems (over planning problems solved
by both, col 5). As a point of reference, we include the num-
ber of problems for which Helmert and Domshlak (2009)
report they could compute 2, using domain-specific proce-
dures or heuristic search with existing admissible heuristics.

Clearly, investing more time into computing minimal
landmarks pays off. Our method solves a large superset of
the problems solved by Bonet & Castillo’s method, and is
often significantly faster. There are two main reasons for
this: first, our method usually requires fewer landmarks to
be generated before a relaxed plan is found; second, and
more significant, using minimal landmarks leads to simpler
hitting set problems. The optimal hitting set solver needs to
be invoked on far fewer problems (a quarter, on average),
and as shown in Figure 3 (right), those are solved with fewer
node expansions (less than a third, on average). The worst
case complexity of the hitting set problem is bounded by
the width of the set collection (Bonet and Helmert 2010).
We also found a strong correlation between width and the
practical problem difficulty (70% of problems with above-
median width also have an above-median number of node
expansions, and vice versa), though there is no simple quan-
titative relationship. Minimal landmarks yield problems of
lower width, and since the optimal hitting set computation
dominates runtime in most cases, this leads to a significant
speedup. Of course, this comes at a cost: our method spends
an average of 31.1% of its time generating landmarks, com-
pared to only 3.3% using Bonet & Castillo’s method. In the
Schedule domain, all hitting set problems encountered are
very easy (accounting for less than 15 seconds in total on
the hardest instance), so the difference in runtime is domi-
nated by the overhead for generating minimal landmarks.

Our algorithm solves as many or more problems than
heuristic search or domain-specific methods in nearly all do-
mains. Notable exceptions are Satellite (for which the re-
sults reported by Helmert and Domshlak were obtained by
a domain-specific method) and TPP. Using this larger data
set, we can estimate the average error of the LM-Cut heuris-
tic, relative to h*, on initial states to 3.5% over unit-cost
problems and 15.3% over non-unit cost domains. Helmert
and Domshlak estimate the average relative error to be only
2.5%, but note that “It is likely that in cases where we cannot
determine kT, the heuristic errors are larger [...]”, a hypoth-
esis that we can now confirm.

Domain # # solved avg. #lms avg. time (s) avg. width
ML BC HD| ML BC ML BC | ML BC
Airport 50 50 50 37| 246 247 2191 1490 | 18 20
Blocksworld 3-ops (small) 35| 35 35 36 56 0.19 6.24 6 25
Blocksworld 3-ops (large) 66 | 53 18 305 595 | 102.33 193.67 18 118
Blocksworld 4-ops (small) 35| 35 35 35 17 17 0.01 0.01 1 1
Blocksworld 4-ops (large) 66 | 66 66 66 66 0.57 0.54 1 1
Depots 22 18 12 10| 164 412 0.33 9.00 | 23 92
Driverlog 20| 13 8 14| 170 556 015 6335 29 93
Freecell 60 | 17 0 6| 275 531
Gripper 201 20 20 20 47 47 0.01 0.01 1 1
Logistics’00 (small) 271 27 27 26 46 53 0.06 0.21 9 13
Logistics’00 (large) 52123 10 331 485 123 15845 | 60 141
Logistics 98 35| 15 6 10| 373 710 0.02 0.09 5 22
Miconic 150 | 150 99 150 57 704 0.08 160.66 | 11 250
MPrime 35 28 17 24 79 546 084 93.69| 17 167
Mystery 2825 19 18 68 441 046 4572 | 17 120
Pathways 30 | 28 8 5| 196 315 0.06 207.04 | 18 86
Pipesworld NoTankage 501 20 9 18| 243 997 0.25 794 29 120
Pipesworld Tankage 50| 15 6 11| 219 756 0.07 1930 19 121
PSR (small) 50 50 50 50 3 3 0.05 0.05 1 1
Rovers’06 40| 18 19 14| 365 581 | 2631 8835 | 54 101
Satellite’04 36 8 5 9| 261 573 0.18 372 26 80
Schedule 500 | 500 500 101 92 | 3091 8.25 7 9
Storage 30| 23 20 115 214 121 41.71 25 o4
TPP 30 15 15 18| 255 654 550 2891 | 32 98
Trucks (ADL) 30 30 30 10 45 77 0.38 3.01 7 40
ZenoTravel 200 13 10 13| 135 334 091 9181 | 29 70
Cybersec 30 30 27 138 298 | 21.16 157.68 | 57 122
Elevators 30| 27 11 437 737 | 2143 17687 | 180 412
Openstacks (ADL) 30 30 30 124 162 1.31 7.87 1 79
ParcPrinter 30| 30 30 79 100 0.20 0.36 9 13
PegSol 30 30 30 40 61 0.05 016 | 24 39
Scanalyzer 30| 15 4 118 446 0.03 24048 8 158
Sokoban 30 30 30 59 147 0.20 758 21 78
Transport 30 6 6 522 911 0.45 1.83 | 43 85
Woodworking 30 19 9 113 302 018 2602 | 12 50
Barman 20| 18 5 264 1372 7.46 147.71 | 133 480
FloorTile 20| 12 9 248 559 | 10.08 24897 | 104 220
NoMystery 20 5 4 324 175 1.58 1340 | 44 165
Visitall 20 2 0 1624 1636

Table 1: Comparison between our Minimal Landmark (ML)
generation method, Bonet & Castillo’s method, and results
reported by Helmert and Domshlak (HD). Domains with
non-unit action costs are grouped below the line.

o
kS ¥ Jo
c? =
> 3
g 2
[GFS E
<24 1%}
T2 T
£ = o
k] Q
s @
- £
= 2o
%3 o
g £
9 @
5 | M
8 |: S |
g |t g |
T <+
25 T T T e T T T T T
1e-03 1e-01 + 1e+03 [20 40 60 80 100
Minimal Landmark Generation Frequency

Figure 3: Left: Time to compute h* using Minimal Land-
mark Generation and Bonet-Castillo methods, on problems
solved by both. The schedule domain (500 instances) is in
gray. Right: Distribution of the relative time spent on hitting
set computation with the two methods.

We also tried the algorithm on the minimal seed-set prob-
lem. It solves all instances, in marginally less time (2/3 on
average) than that reported by Gefen and Brafman (2011)
for their domain-specific algorithm.

Acknowledgements P. Haslum and S. Thiébaux are sup-
ported by ARC Discovery Project DP0985532 “Exploiting
Structure in Al Planning”. The authors would also like to
acknowledge the support of NICTA which is funded by the
Australian Government as represented by DBCDE and ARC
through the ICT Centre of Excellence program.

References

Beasley, J. 1987. An algorithm for the set covering problem.
European Journal of Operational Research 31:85-93.

Betz, C., and Helmert, M. 2009. Planning with h™ in the-
ory and practice. In Proc. of the ICAPS 09 Workshop on
Heuristics for Domain-Independent Planning.

Bonet, B., and Castillo, J. 2011. A complete algorithm for
generating landmarks. In Proc. 21st International Confer-
ence on Automated Planning and Scheduling (ICAPS’11),
315-318.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5-33.

Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proc. 19th European Confer-
ence on Artificial Intelligence (ECAI’10), 329-334.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1—
2):165-204.

Chvatal, V. 1979. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research 4(3):233—
235.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008.
Additive-disjunctive heuristics for optimal planning. In
Proc. 18th International Conference on Automated Planning
and Scheduling (ICAPS’09), 44-51.

De Kleer, J. 2011. Hitting set algorithms for model-based
diagnosis. In Proc. 22nd International Workshop on Princi-
ples of Diagnosis (DX’11), 100-105.

Fisher, M., and Kedia, P. 1990. Optimal solution of set
covering/partitioning problems using dual heuristics. Man-
agement Science 36(6):674—688.

Gefen, A., and Brafman, R. 2011. The minimal seed set
problem. In Proc. 21st International Conference on Auto-
mated Planning and Scheduling (ICAPS’11), 319-322.

Gefen, A., and Brafman, R. 2012. Pruning methods for op-
timal delete-free planning. In Proc. 22nd International Con-
ference on Automated Planning and Scheduling (ICAPS’12).

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers. ISBN: 1-55860-856-7.

Halldérsson, M. 2000. Approximations of weighted in-
dependent set and hereditary subset problems. Journal of
Graph Algorithms and Applications 4(1):1-16.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Proc.
20th National Conference on Al (AAAI'05), 1163-1168.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What'’s the difference anyway? In
Proc. 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 162-169.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Al
Research 14:253-302.

Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up the
calculation of heuristics for heuristic search-based planning.

In Proc. 18th National Conference on Artificial Intelligence
(AAAI’02), 484-491.

Pommerening, F., and Helmert, M. 2012. Optimal plan-
ning for delete-free tasks with incremental Im-cut. In Proc.
22nd International Conference on Automated Planning and
Scheduling (ICAPS’12).

Porco, A.; Machado, A.; and Bonet, B. 2011. Auto-
matic polytime reductions of NP problems into a fragment
of STRIPS. In Proc. 21st International Conference on Au-
tomated Planning and Scheduling (ICAPS’11), 178-185.

