
Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps∗

Bernhard Haeupler
INSAIT, Sofia University

“St. Kliment Ohridski”

& ETH Zurich

Richard Hlad́ık
INSAIT, Sofia University

“St. Kliment Ohridski”

& ETH Zurich

Václav Rozhoň
INSAIT, Sofia University

“St. Kliment Ohridski”

Robert E. Tarjan
Princeton University

Jakub Tětek
INSAIT, Sofia University

“St. Kliment Ohridski”

Abstract

This paper proves that Dijkstra’s shortest-path algorithm is universally optimal in both its
running time and number of comparisons when combined with a sufficiently efficient heap data
structure.

Universal optimality is a powerful beyond-worst-case performance guarantee for graph al-
gorithms that informally states that a single algorithm performs as well as possible for every
single graph topology. We give the first application of this notion to any sequential algorithm.

We design a new heap data structure with a working-set property guaranteeing that the
heap takes advantage of locality in heap operations. Our heap matches the optimal (worst-case)
bounds of Fibonacci heaps but also provides the beyond-worst-case guarantee that the cost of
extracting the minimum element is merely logarithmic in the number of elements inserted after
it instead of logarithmic in the number of all elements in the heap. This makes the extraction
of recently added elements cheaper.

We prove that our working-set property guarantees universal optimality for the problem of
ordering vertices by their distance from the source vertex: The sequence of heap operations
generated by any run of Dijkstra’s algorithm on a fixed graph possesses enough locality that
one can couple the number of comparisons performed by any heap with our working-set bound
to the minimum number of comparisons required to solve the distance ordering problem on this
graph for a worst-case choice of arc lengths.

∗Partially funded by the Ministry of Education and Science of Bulgaria’s support for INSAIT as part of the
Bulgarian National Roadmap for Research Infrastructure. BH and RH were supported in part by the European
Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant
agreement No. 949272). VR was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 Research and Innovation Programme (grant agreement No. 853109). RT was partially supported by a
gift from Microsoft. JT and RH were supported by the VILLUM Foundation grants 54451 and 16582. JT worked on
this paper while affiliated with BARC, University of Copenhagen. RH partially worked on this paper while visiting
BARC, University of Copenhagen. VR worked on this paper while visiting MIT and thanks Mohsen Ghaffari and
Christoph Grunau for many helpful discussions. RT worked on this paper while visiting the Simons Institute for the
Theory of Computing and INSAIT.

ar
X

iv
:2

31
1.

11
79

3v
3

 [
cs

.D
S]

 2
8

O
ct

 2
02

4

Contents

1 Introduction 1
1.1 Beyond the Worst-Case: Universal Optimality . 1
1.2 Our Results: Universally Optimal Dijkstra’s Algorithm via Heaps with the Working

Set Property . 2
1.3 Intuition & Techniques . 4
1.4 Related Work . 7

2 Preliminaries, Definitions and Our Model 9
2.1 Definitions . 9
2.2 Instance & Universal Optimality . 10
2.3 Our Model . 11

3 Universally Optimal Dijkstra 12
3.1 Framework for Lower Bounding the Optimal Query Complexity 13
3.2 Constructing Barriers in the Exploration Tree . 14
3.3 Finding a Good Interval Coloring . 17

4 Constructing Heaps with the Working Set Property 19

5 Universally Optimal Dijkstra for Comparisons 25
5.1 Contractions Guided by the Dominator Tree . 25
5.2 Algorithm Analysis . 26
5.3 Lower Bound in the Number of Vertices . 29
5.4 Lower Bound in the Number of Forward Edges . 30
5.5 Finishing the Proof of Theorem 5.6 . 31
5.6 Constructing a Linearization from an SSSP Tree . 32

6 Conclusion and Open Problems 34

A Technical Aspects of Our Heap 38
A.1 Constant-Time Interval Maintenance . 38
A.2 Maintaining the Minimum Subheap . 38

B Popular Implementations of Dijkstra Are Not Universally Optimal 40

C Dijkstra’s Algorithm 42

D Lower Bound on the Optimal Query Complexity in the Number of Forward
Edges 43

E Deferred Proofs 45

1 Introduction

Universal optimality is a powerful beyond-worst-case performance guarantee for graph algorithms
that informally states that a single algorithm runs as fast as possible on every single graph topology.

This paper gives the first application of this notion to the standard sequential model of compu-
tation. We prove that Dijkstra’s algorithm, when combined with a sufficiently efficient heap data
structure, is universally optimal for the natural problem of ordering nodes by their distance from
the source.

Second, we design a sufficiently efficient heap necessary for this result. Our new heap is a strict
improvement over Fibonacci heaps [FT87], guaranteeing a stronger beyond-worst-case property for
DeleteMin while keeping the complexities of Insert and DecreaseKey a constant.

Specifically, we identify that a natural working-set property for heaps previously proposed by Ia-
cono [Iac00] is sufficient for guaranteeing the universal optimality of Dijkstra’s algorithm. Very
roughly speaking, the working set property guarantees that the cost of extracting the minimum
element from a heap is logarithmic in the number of elements inserted after that element, instead
of logarithmic in the number of all elements in the heap (the precise definition is a bit stronger).

Our universal optimality result reveals a surprisingly clean interplay between this property and
Dijkstra’s algorithm: Any heap with the working set property enables the algorithm to efficiently
leverage every structural attribute of the graph it operates on, to the fullest extent that any
comparison-based algorithm possibly can.

We also present a variant of Dijkstra’s algorithm which is universally optimal with respect to
both the time complexity and the number of comparisons that are made. We note that while the
time complexity of Dijkstra’s algorithm for any graph lies in the relatively narrow range of Ω(m+n)
and O(m+n log n), the number of comparisons needed to order the nodes by their distance can be
as small as zero.

Beyond our application for Dijkstra’s algorithm, we hope that this paper opens doors for future
research in the direction of applying (variants of) universal optimality for problems in the standard
sequential model of computation.

1.1 Beyond the Worst-Case: Universal Optimality

The notion of asymptotic worst-case complexity is a key concept, achievement, and cornerstone of
theoretical computer science and algorithm design. As the field matures, and our understanding
refines, there are more and more problems for which the state-of-the-art algorithms essentially
match the best performance achievable in the worst case. However, these guarantees may not be
satisfactory – just because there exist some (family of) instances in which one cannot perform well
does not mean one should be satisfied with performing equally badly on any easy instance as well.

The field of parameterized complexity sets the goal of finding some parameter θ(x) of the input x
and gives algorithms that have good complexity with respect to both the input size |x| and θ(x).
In the best case, one may be able to get an algorithm that is optimal w.r.t. |x| and θ(x) – that is,
no correct algorithm would have better complexity under this parameterization.

Taking parameterized algorithms to the extreme, one may set θ(x) = x, that is, parameterize
by the instance itself. This results in a notion called instance optimality [FLN01] (see Sections 1.4
and 2.2 for more discussion). Any algorithm optimal under this parameterization is then at least
as good as any correct algorithm on every single input.

Sadly, instance-optimal algorithms rarely exist. However, one commonly used alternative used
in graph algorithms on weighted graphs is that of universal optimality [HWZ21]. In universal
optimality, we want an algorithm A to be optimal if we parameterize by the graph G, but not the

1

weights w. That is, A is universally optimal if, for any graph G and any other correct algorithm
A′, the worst-case running time of A on G across all possible weights is asymptotically no worse
than the worst-case running time of A′ across all possible weights.

On an intuitive level, a universally optimal algorithm is as fast as possible, on any given graph
topology. For example, if there are fast algorithms for planar graphs, then the universally optimal
algorithm must be fast when run on any planar graph. Planar graphs here can be replaced by any
other subclass of graphs and even concrete graphs. We discuss this notion of optimality formally
in the preliminaries in Section 2.2.

1.2 Our Results: Universally Optimal Dijkstra’s Algorithm via Heaps with the
Working Set Property

We will now discuss how we can make Dijkstra’s algorithm universally optimal when it uses a heap
with the working set property – a certain beyond-worst-case property.

Universal optimality of Dijkstra’s algorithm Dijkstra’s algorithm solves a number of prob-
lems related to shortest paths: it computes the distances to all nodes from a source, it finds the
shortest path tree, and it even returns an ordering of the nodes by their distance. It is folklore
knowledge that the time complexity O(m+ n log n) of Dijkstra’s algorithm with Fibonacci’s heaps
is the “best possible”. But to make this precise, we need to make two commitments: First, we need
to work in an analog of the comparison model (see Section 2.3 for the definition of the comparison-
addition model). Second, we need to consider a problem that includes the task of ordering the
nodes by their distance; only then we can argue that the term O(n log n) in the time complexity
cannot be improved because the distance ordering problem on a star graph is equivalent to sorting.

We take the same approach and throughout this paper, we consider the following problem.

Definition 1.1 (Distance Ordering problem (DO)). Given a directed graph G with n nodes, a
starting node s, and m edges with lengths, output all vertices of G in the increasing order of their
distance from s.

We prove in Section 3 that Dijkstra’s algorithm is in fact universally optimal for the distance
ordering problem if it uses our priority queue from Definition 1.4 that has a certain beyond-worst-
case property.

Theorem 1.2. Dijkstra’s algorithm implemented with any Fibonacci-like priority queue with the
working set property (as defined in Definition 1.4) is a universally optimal algorithm for the distance
ordering problem in the comparison-addition model, in terms of running time. This holds both
for directed and undirected graphs, and when compared against both deterministic and randomized
algorithms.

Consequently, Dijkstra’s algorithm is also universally optimal for the problems that require us
to compute not just the node ordering, but the shortest path tree or the distances as well.

In Section 5, we present a technically more involved algorithm that achieves universal optimality
also in terms of the number of comparisons, not just with respect to the time complexity. We discuss
this algorithm more in Section 1.3.

Finally, in Appendix B, we show that several natural implementations of a priority queue
(e.g. standard Fibonacci heaps or splay trees) do not result in universally optimal Dijkstra’s algo-
rithm.

2

Time
t

x

Wx,t

Figure 1: An illustration of the working set property. Every interval represents an element: the
white circle represents an insertion and the black circle a deletion. The set Wx,t consists of the
items whose associated intervals are highlighted in green and that are intersected by the dashed
line.

Priority queues with the working set property One of our technical contributions is identi-
fying the working set property for priority queues as the right property1 that implies the universal
optimality of Dijkstra’s algorithm. The definition of a working set is well-known in the literature
of binary search trees [ST85] and for heaps, it first appeared in the work of Iacono [Iac00] that
we compare ourselves with later in Section 1.4. The definition is presented next and illustrated in
Figure 1.

Definition 1.3 (Working set [ST85; Iac00]). Consider any priority queue supporting operations
Insert and DeleteMin. For an element x present in the data structure, we define its working
set as follows.

For each time step t between the insertion and extraction of x, we define the working set of x
at time t as the set of elements Wx,t inserted after x and still present at time t. We include x itself
in Wx,t.

We fix any time t0 that maximizes the value of |Wx,t|; we call the set Wx,t0 simply the working
set of x and denote it by Wx.

To give an example: For the first element x1 inserted in the heap, the size of its working set is
equal to the largest size of the heap between the insertion and extraction of x1. For any element
x2 inserted later, its working set size is defined similarly, but elements inserted before x2 “do not
count”.

We design a data structure that improves upon the Fibonacci heap by having the following
working set property.

Definition 1.4 (Fibonacci-like priority queue with the working set property). We say that a data
structure is a Fibonacci-like priority queue with the working set property if it supports the following
operations such that their amortized time complexity for any sequence of operations is as follows:
Insert, FindMin and DecreaseKey in O(1), and DeleteMin in O(1 + log |Wx|), where Wx

is the working set of the element being extracted.

Theorem 1.5. There is a Fibonacci-like priority queue with the working set property.

We believe that Theorem 1.5 is of separate interest. We also show in Theorem 4.9 how one can
further strengthen it by making its guarantees worst-case instead of amortized, with a log log n loss
in the complexity of some operations.

1It seems natural that the “right” property of the priority queue should again be an instance optimality guarantee.
However, the work of Munro, Peng, Wild, and Zhang [Mun+19] has shown that it is not possible to achieve the instance
optimality guarantee for a natural class of priority queue implementations known as tournament heaps.

3

u1
u2

ut

s v1 v2 vr

Figure 2: An example graph. Note that the basic Dijkstra’s algorithm needs Ω(n log t) time to
finish. However, for t ≪ n, Dijkstra’s algorithm with the working set property finishes in time
O(n+ t log t) = o(n log t), which is optimal.

1.3 Intuition & Techniques

In this section, we first discuss an example graph G1 from Figure 2 to facilitate intuition. Then,
we summarize the proofs of our results.

Example Consider the graph G1 from Figure 2 with number of leaves t < n/2. First, let us
compute the time complexity of Dijkstra’s algorithm with the working set on that graph: Up to
an additive O(n) term, the time complexity is dominated by the DeleteMin operations. The
working sets of nodes u1, . . . , ut, v1 are of size O(t), while the working sets of nodes v2, . . . , vr for
r = n− t− 1 have all size 1. Hence, the algorithm has complexity O(n+ t log t).

To see that this is the best possible for G1, notice that ordering nodes u1, . . . , ut by their
distance from s is equivalent to the problem of sorting t numbers which requires Ω(t log t) time in
the comparison model. Moreover, any algorithm needs time Ω(m+ n) = Ω(n) to read the input.

Our main theorem Theorem 1.2 simply shows that for all graphs, the time complexity of Dijk-
stra’s algorithm with the working set property matches the best lower bound for that graph.

To appreciate this result, consider the following, very different, algorithm tailored to G1. The
algorithm starts with the linear order s < v1 < · · · < vn−t−1 and repeatedly uses binary search to
insert a node ui into this order. Such an algorithm has complexity O(n+ t log n) = O(n+ t log t),
i.e., it is also optimal for the graph G1. Theorem 1.2 shows that Dijkstra’s algorithm with the
working set property is competitive on every graph with every such instance-specific algorithm.

Universal Optimality: intuition behind Theorem 1.2 Up to an additive O(m + n) term,
the time complexity of Dijkstra’s algorithm is dominated by the complexity of its DeleteMin
operations. Complexities of those operations are in turn governed by the sizes of appropriate
working sets.

To show the optimality of Dijkstra’s algorithm with the working set on a given graph G, we
carefully construct a lower bound distribution over weights on G that “hides” many instances of
the sorting problem. More precisely, for an arbitrary graph G and its weights w, consider running
Dijkstra’s algorithm on (G,w). Recall that Dijkstra’s algorithm maintains a priority queue and
any node v ∈ V (G) enters and leaves this queue exactly once; at each point in time, the priority
queue contains nodes that are on the “exploration boundary” of the algorithm and this exploration
boundary separates the graph into two parts – the already seen and the yet unseen vertices.

4

s

u

Wu

u′
1

u′
2

W ′
u′
1 Wu′

2

G

Time

︸ ︷︷ ︸ ︸ ︷︷ ︸
uv1vk−1vk . . .

Vertices are inserted
in this order

Only then are u, v1, . . . , vk
extracted in some order

Figure 3: Left: Finding the barrier Wu and then the barrier W ′
u′ . The second barrier is either fully

“before” or “after” Wu. In the first case, not considering Wu in the definition of a working set may
decrease its size, i.e., we may have |W ′

u′ | < |Wu′ |.
Right: To understand the decrease in working set sizes that results from removing u from consid-
eration, we consider the nodes v1, . . . , vk whose working set size decreased (by one). We observe
that first all vertices vk, . . . , v1, u were inserted in that order and only then they were extracted.
This implies a lower bound |Wvi | ≥ i+ 1 on working set sizes.

Consider the node u with the largest working set Wu over the whole run of the algorithm.
Observe that for the time t for which Wu = Wu,t we have that Wu is exactly the set of nodes in
the exploration boundary of Dijkstra’s algorithm at time t (if there was some v on the boundary
not in Wu, then Wu ∪ {v} ⊆Wv, contradicting the maximality of Wu).

The crucial observation is that we can locally change the weights w at edges ingoing to Wu to
get a distribution over weights wu with the following property: If we order nodes in Wu based on
their distance from s under weights wu, their order is a uniformly random permutation. That is,
the instance (G,wu) “embeds” a sorting problem that requires time Ω(|Wu| log |Wu|) to solve. By
the maximality of |Wu| we know, on the other hand, that our algorithm spends overall time of at
most O(|Wu| log |Wu|) on DeleteMin operations for the nodes in Wu.

That is, with wu we managed to “pay for” the nodes in Wu: the time spent by Dijkstra’s
algorithm on them in (G,w) is up to a constant the same as the time any correct algorithm needs
to spend on them on average in an instance sampled from (G,wu).

The rest of the proof of Theorem 1.2 reduces to arguing that we can continue this process
until the whole graph is separated into what we call a barrier sequence. This way, we ultimately
construct a lower bound distribution w that pays for all the DeleteMin operations.

Let us explain how this can be done by showing how the second barrier is selected (see Figure 3).
After the barrier Wu was selected, we continue by finding the node u′ ∈ V (G)\Wu with the largest
working set W ′

u = W ′
u,t′ where we define W ′

v as the working set of v if we do not count the nodes
of Wu in the definition of a working set.

There are now two cases based on whether t′ > t or t′ < t. Importantly, in the first case, all
nodes of W ′

u′ come “after” the nodes of Wu, while in the other case, all nodes come “before”. This
property in the end allows us to construct a lower-bound distribution that embeds the sorting lower
bound for both Wu and W ′

u′ .
In the case t′ < t we encounter an additional issue: The set W ′

u′ can potentially be much
smaller than the set Wu′ , thus the lower bound of Ω(|W ′

u′ | log |W ′
u′ |) may not be able to pay for

the corresponding DeleteMin cost of O(
∑

v∈W ′
u′
log |Wv|). To solve this issue, we upper bound

5

the overall decrease in working set sizes caused by taking Wu out of the picture. In particular, we
analyze the value ∑

v∈V (G)\Wu

log |Wv| − log |W ′
v|. (1)

How much can working set sizes change if we remove just any one node of Wu instead of removing
the whole set at once? The size of each working set can decrease at most by one, but it can decrease
by one for many nodes inserted before u was. Let us call the nodes whose working set decreased
as v1, . . . , vk and let us sort them according to their insertion time from the largest to the smallest
(Figure 3). We note that each vi was extracted only after the insertion of u, otherwise, the size of
its working set would not decrease. This implies that the working set of each vi has a size of at
least |Wvi | ≥ i+ 1 since this is its size at the time of insertion of u. In the worst case, the removal
of u causes that log |Wv1 | changes from log 2 to log 1, log |Wv2 | changes from log 3 to log 2 and so
on. Observing a telescoping sum, we note that the overall decrease of working set sizes in the sense
of Equation (1) is at most log |Wvk | which is at most log |Wu| by our assumption on the maximality
of u.

Recall that the above analysis was done in the case when an arbitrary node of Wu was removed.
Hence, after removing all nodes of Wu one by one, we can upper bound the expression of Equa-
tion (1) by O(|Wu| log |Wu|). This is very fortunate: We can make the first barrier Wu pay for all
the future gaps between lower bounds and upper bounds caused by the mismatch between W and
W ′.

We can now continue our process until the very end when the whole graph G is decomposed
into a sequence of barriers. We can then straightforwardly define a lower bound distribution w
that embeds a sorting lower bound into each barrier.

The working set property: intuition behind Theorem 1.5 Next, we discuss our construc-
tion of a heap with the working set property. Our construction is a general black-box construction
that uses an arbitrary priority queue (think Fibonacci heap) to create a new heap with the same
guarantees that additionally satisfies the working set property of Theorem 1.5.

The main idea behind the construction is straightforward and present in the literature [Iac01;
Băd+07; EFI12]: we keep a list of heaps where the i-th heap has size at most 2i. Whenever we
insert a new element, we insert it into the smallest heap; we will keep it as an invariant that larger
heaps contain older elements than smaller heaps. Whenever a heap gets too large, we recursively
merge it with its larger neighboring heap as follows.

In general, consider the i-th heap Hi. During merging, a new carry heap C arrives from the
merge at position i− 1 and we check whether the total number of elements in Hi and C together
is at most 2i. If so, we merge the two heaps together and finish the merging procedure. Else, C
replaces Hi as the new i-th heap, while Hi is the new carry heap for the next, (i+ 1)-th, level.

Notice that whenever the heap Hi gets “upgraded” to the next position i + 1, we know there
are at least 2i−1 elements in the original carry heap C that just replaced Hi and the smaller heap
Hi−1 together. Otherwise, merging at the i-th level would not have been triggered. This implies
that the working set of every element newly upgraded to position i+ 1 has a size at least 2i−1.

This observation inductively implies that every element in each Hi has the working set of
size Ω(2i). On the other hand, since Hi has at most 2i elements, the cost of extraction from Hi is
O(1 + log 2i). We can thus write the extraction cost as O(1 + log |Wx|), as needed.

Notice that it is not necessary for the i-th heap to be of size roughly 2i, its size can be up to

6

22
i
to make our argument work, and we also choose this doubly exponential approach in the formal

construction in Section 4.
There are a few more technicalities that need to be addressed. For example, to extract the

minimum element, we first need to find out which one of our heaps contains it. As we have at
most O(log log n) heaps if we choose their sizes to grow doubly exponentially, we can maintain
their minima in a separate heap which results in an additive O(log log log n) loss. While this type
of loss is already very small, we show that with careful data structures, we can make the overhead
in our construction negligible and recover the same asymptotic guarantees as the guarantees of the
original heap.

Extension to comparisons The most technically challenging part of this paper is the extension
of our main result, Theorem 1.2, to comparison complexity which measures how many answers to
comparison questions our algorithm needs (see Section 2.3 for details). For example, if the graph
G is a path and s is its leaf, the comparison complexity of the distance ordering problem is, in fact,
0, since we do not need to access the weights of the graph at all to figure out how the nodes have
to be ordered!

We show in Section 5 that there is an algorithm that is universally optimal for both measures
of complexity at once. Dijkstra’s algorithm with the working set property itself is not such an
algorithm: its comparison complexity on Figure 2 is Ω(t log t + n), while the optimal comparison
complexity is only O(t log n). However, looking at our analysis of Dijkstra’s algorithm, we can
notice that it “almost” is universally optimal with respect to comparison complexity – the main
problem is that it can happen that in our lower bound construction, we may embed a sorting
problem on exactly one node. The comparison complexity of sorting one number is then 0, while
the algorithm uses Θ(1) operations, which creates a mismatch between the upper and lower bounds.

This motivates our final algorithm that uses Dijkstra with the working set property as a sub-
routine. Concretely, in our final algorithm, we first carefully contract the input graph using 0
comparison queries. Then, we solve the SSSP problem on that contracted graph by Dijkstra with
the working set property and uncontract the found shortest path tree to the original graph.

This way, we solve the SSSP problem, but not the distance ordering problem. Fortunately, for
trees, there is also a very different universally optimal algorithm for distance ordering based on
dynamic programming. We finish by applying this other algorithm to the found SSSP tree.

How exactly should we contract our graph? If it is undirected, it would be enough to contract
bridges, but when the graph is directed, we need to find a more complex structure known as the
dominator tree.

1.4 Related Work

Shortest path Dijkstra’s algorithm [Dij59] is a foundational algorithm solving variants of the
shortest path problems; using a standard implementation of a heap, its worst-case running time
is O((m + n) log n). A classical result of Fredman and Tarjan [FT87] shows that shortest paths
can be found in O(m+ n log n) by Dijkstra’s algorithm using Fibonacci heaps. This running time
is optimal if we require the algorithm to output the nodes in the sorted order. If we require only
to find the distances and not the ordering, a recent breakthrough by Duan, Mao, Shu, and Yin
[Dua+23] solves the shortest path problem in expected time complexity O(m

√
log n log log n) for

undirected graphs.
If we assume that the weights are integers, or the ratio between maximum and minimum weight

is bounded, there are many more algorithms for the shortest path problem with time complexity

7

getting very close to linear [FW93; FW94; Tho00a; Ram96; Ram97; Tho00b; Hag00; Tho99;
Tho04].

Universal optimality The term “universal optimality” was coined by researchers in the area of
distributed algorithms [GKP98; HRG22; GZ22]. More precisely, the researchers developed tech-
niques for designing distributed algorithms that are close to being universally optimal for many
problems. In particular, there are such distributed algorithms for the approximate shortest path
problem [HWZ21; Zuz+22; Roz+22]. However, as far as we know, our use of universal optimality
outside of distributed algorithms is new.

Instance optimality Our notion of universal optimality is closely related to instance optimal-
ity [FLN01; VV17; ABC17] (see Section 2.2 for a precise definition) which is a golden standard for
the beyond-worst-case analysis. Indeed, in the influential book by Roughgarden [Rou21] containing
30 chapters discussing various approaches to the beyond-worst-case analysis, instance optimality is
covered in the third chapter, only after Introduction and Parameterized Algorithms.

The major problem of instance optimality is that it is an extremely strong notion and thus it is
very rarely possible to satisfy it. For example, instance optimality is not achievable for our distance
ordering problem because an algorithm can guess the linear ordering and the shortest path tree and
check whether the guess is correct in linear time (see Section 2 for more discussion). Consequently,
it is usual that results from the area of instance optimality both restrict the computational model
(as otherwise, it is hard to get lower bounds) and also relax the notion of instance optimality itself
(to disallow silly obstructions to it).

Let us give a concrete example. Afshani, Barbay, and Chan [ABC17] develop algorithms for
a number of geometrical problems, including the 2D convex hull problem. The authors work
in a computational model which is a suitable generalization of the standard comparison model.
Moreover, they achieve the guarantee of order-oblivious instance optimality – a relaxed notion
of instance optimality. Notice that we can view the convex hull problem as an extension of the
standard sorting problem (convex hull sorts via the map x → (x, x2)). This is analogous to how
our distance ordering problem can be viewed as an extension of sorting (distance ordering sorts via
the star graph input). This suggests that problems extending sorting may form an interesting class
of problems amenable to instance optimality analysis.

Beyond-worst-case analysis of data structures Perhaps the most famous open question from
the area of data structure design – the dynamic optimality conjecture for splay trees [ST85] – is
another example of a question from the area of instance optimality. It was shown by Munro, Peng,
Wild, and Zhang [Mun+19] that an analog of the dynamic optimality conjecture fails for a large
class of heaps known as tournament heaps.

Working set property is among a host of beyond-worst-case properties that are famously attained
by splay trees [ST85]. There are analogs of the working set property for heaps and priority queue
implementations that achieve them or that achieve different beyond worst-case guarantees [BHM13;
EFI13; KS18]. However, none of those implementations seem to suffice for our application.

inline]Add more log log n structures by Iacono etc., even though they are search trees
Iacono [Iac00] showed that our working set property from Definition 1.3 is attained by pairing

heaps, a data structure known for excellent theoretical and practical guarantees [Fre+86; Pet05;
IÖ14; KS18; ST23]. However, his analysis does not include the DecreaseKey operation. Elmasry
[Elm06] presented an implementation of a heap that achieves our working set property (in fact, a
stronger one) but does not implement the DecreaseKey operation. Elmasry, Farzan, and Iacono

8

[EFI12] presented an implementation of a heap that again achieves a stronger version of the working
set property, but their implementation of DecreaseKey does not have amortized constant time.

We note that for our purposes, we need a somewhat special variant of the working set property:
we need that DecreaseKey operations are not considered in the definition of working set, but
the data structure has to support these operations.

Sorting under partial information After publicizing a pre-print version of this paper, the
techniques developed here have been applied in the work of Haeupler, Hlad́ık, Iacono, Rozhoň,
Tarjan, and Tětek [Hae+24] to solve the problem of sorting under partial information. The problem,
dating back to Fredman [Fre76], is to sort a set of items having an unknown total order by doing
binary comparisons of the items, given a list of some already-performed comparisons. This list can
be represented as a directed acyclic graph G on the items, and the problem reformulated as that of
finding a fixed unknown topological order of G by performing vertex comparisons. The algorithm
given in [Hae+24] performs O(log T) comparisons and has a running time of O(n + m + log T)
where n, m and T is the number of items, the number of pre-existing comparisons and the number
of topological orders of G, respectively. Both of these bounds are optimal up to constant factors.
The algorithm, called topological heapsort, combines topological sort with heapsort, using a heap
with the working set property to achieve optimality.

There are many parallels between this work and [Hae+24]. Not only can topological heapsort
be viewed as a variation on Dijkstra’s algorithm, but the algorithm is also universally optimal, in
the sense that for any fixed G, it minimizes the running time and number of comparisons (up to
constants) on the worst-case total order consistent with G. Most importantly, the authors prove
the universal optimality of topological heapsort using the framework that we develop in this work.

2 Preliminaries, Definitions and Our Model

We now formally state some definitions that we need. For the sake of completeness, we also restate
Dijkstra’s algorithm in Appendix C.

2.1 Definitions

All logarithms are binary. We use the convention x log x = 0 for x = 0. All undirected graphs
in this paper are connected and in directed graphs, all nodes are reachable from the source. We
assume all trees are rooted at s. In directed graphs, we assume edges are oriented away from the
root. For a rooted tree T and a vertex v, we use the notation T (v) to refer to the subtree of T
rooted at v. For two lists A, B, we use the notation A+B to denote their concatenation. We use
∅ to denote a null value or a null pointer.

Given a (directed or undirected) graph G, the weights w are a function E(G) → R>0; in
particular, we disallow zero weights. This function then induces the distances d : V (G)× V (G)→
R>0 ∪ {+∞}. In shortest path problems, we always assume that the input graph comes with a
special node that we call the source and denote s. We slightly misuse notation by usually not
including the parameterization by s in the definition of our objects, i.e., we write TG,w

SSSP instead of

TG,w,s
SSSP to simplify notation.

Definition 2.1 (SSSP tree, spanning tree, and the exploration tree). Let us have a fixed (directed
or undirected) graph G and a source vertex s.

9

• In undirected graphs, a spanning tree is any tree T ⊆ G with V (T) = V (G). In directed
graphs, a spanning tree is any tree T ⊆ G with V (T) = V (G) rooted at s where edges go in
the direction away from s.

• An SSSP tree TG,w
SSSP ⊆ G is a spanning tree that satisfies that for any vertex v, the sv-path

in TG,w
SSSP is shortest w.r.t. the weights w.

• Given an execution of Dijkstra’s algorithm Algorithm 9 on G with weights w, an exploration
tree TG,w

explore is the tree where the parent of each vertex v is the vertex during whose exploration
v was added to the heap. That is, the parent of each v ̸= s is the vertex u that minimizes
d(s, u) among vertices with uv ∈ E(G).

The following definition of linearizations is crucial since given any graph G, the set of its
linearization is the set of possible outputs to our distance ordering problem Definition 1.1.

Definition 2.2 (Linearizations). For any tree T , a linearization is a complete linear order of V (T)
such that for every edge uv ∈ E(T), we have u < v in the linear order.

For any graph G, we say that L is a linearization of G if there is a spanning tree of G such that
L is a linearization of T .

For a graph G, we use Linearizations(G) for the number of different linearizations of G.
For a linearization L and a vertex v, we denote by L(v) ∈ {1, . . . , n} the position of v in the

linearization. We write u ≺L v if and only if L(u) < L(v).

The following claim shows that each linearization is indeed a possible solution to the distance
ordering problem for some weights.

Claim 2.3 (Equivalent definition of a linearization). For any graph G, L is a linearization of G if
and only if there exist nonnegative weights w such that

1. For every two nodes u ̸= v we have dw(s, u) ̸= dw(s, v),

2. u ≺L v if and only if dw(s, u) < dw(s, v).

Proof. See Appendix E.

We will also need the following definition of forward edges.

Definition 2.4 (Distance-Forward edges). Given a directed graph G with source s and weights
w such that for every e, w(e) > 0, we define FG,w to be the set of edges uv of G such that
d(s, u) < d(s, v).

Analogously, and to make some claims about directed graphs also hold for undirected graphs, for
undirected G, we define FG,w as the set of all edges uv of G such that d(s, u) ̸= d(s, v).

2.2 Instance & Universal Optimality

Universal optimality is a powerful beyond-worst-case notion that can be applied to any problem on
weighted graphs. It is best thought of as a meaningful intermediate notion of optimality between
the standard notion of existential worst-case optimality and instance optimality, which in most
cases is too much to ask for and provably impossible.

To introduce the formal definition of universal optimality, we first need some notation. An
instance of a graph problem consists of a graph topology G and edge or node weights, lengths,
capacities, etc. that we denote by w. We say a (possibly randomized) algorithm A is correct for
a problem if it outputs a correct solution for any instance (G,w) with probability 1. Denote the

10

(expected) running time of an algorithm A on instance (G,w) as A(G,w). We also use Gn,m to
denote the set of topologies with n nodes and m edges, WG to denote the set of all possible weights
for a given topologyG (or lengths, capacities, . . .). Finally, A stands for the set of correct algorithms
(defined above). We can also restrict A to e.g. algorithms that work in the comparison-addition
model, i.e., that only compare and add weights in w.

A correct algorithm A ∈ A is existentially optimal (up to a factor of α(n,m)) if

∀n,m : sup
G∈Gn,m

w∈WG

A(G,w) ≤ α(n,m) inf
A∗

n,m∈A
sup

G∈Gn,m

w∈WG

A∗
n,m(G,w).

That is, this equation corresponds to being optimal with respect to the classical worst-case com-
plexity, parameterized by n and m.

A correct algorithm A ∈ A is instance optimal (up to a factor of α(n,m)) if

∀n,m, ∀G ∈ Gn,m, ∀w ∈ WG A(G,w) ≤ α(n,m) inf
A∗

G,w∈A
A∗

G,w(G,w).

That is, an instance optimal algorithm is competitive with any correct algorithm on any possible
input. Note that this is an extremely strong guarantee: A is supposed to be competitive on any input
(G0, w0) with algorithms of the type “check that (G,w) = (G0, w0); if so, return the (hardcoded)
answer for (G0, w0), otherwise run any slow algorithm”. This is the reason why instance optimality
is an extremely rare property for an algorithm to have; one can check that this type of “instance-
tailored” algorithm implies that instance optimality is impossible for SSSP-like problems in classical
computation models.

Finally, a correct algorithm A ∈ A is universally optimal (up to a factor of α(n,m)) if

∀n,m, ∀G ∈ Gn,m : sup
w∈WG

A(G,w) ≤ α(n,m) inf
A∗

G∈A
sup

w∈WG

A∗
G(G,w).

Note that the universal optimality lies between the worst-case notion of existential optimality
and the instance optimality. This expands the class of problems for which we can apply the
framework, while we still retain very strong guarantees on the performance of the algorithm.

In this work, we focus solely on (existential, instance-, universal) optimality up to a constant
factor, i.e., α(n,m) = O(1).

2.3 Our Model

In this paper, we work in the standard Word-RAM model. Moreover, we treat edge weights as
black boxes that our algorithms can only add and compare. This model is also known as the
comparison-addition model [PR02].

Definition 2.5 (Comparison-addition model). The comparison-addition model implements all op-
erations possible in Word-RAM and additionally, implements operations on an associative array of
protected cells storing the edge weights.

A cell is protected if it is stored in the associative array that contains all edge weights at the
beginning of the algorithm, or if it has been created by an Add operation defined below. Only the
following operations can be executed on protected cells.

11

1. Add(x, y) for two protected memory cells x, y. It returns a protected cell containing x+ y.

2. Compare(x, y) for two protected memory cells x, y. It returns −1, 0 or 1, if x < y, x = y
and x > y respectively.

Definition 2.6 (Time and query complexity). For an algorithm A on an input x, we define the
time complexity to be the random variable equal to the total number of operations performed. We
define the query complexity to be the random variable equal to the total number of Compare
operations performed.

That is, query complexity measures how many bits of information we are getting by comparing
various linear combinations of edge weights.

Optimality For a given graphG, let OPTQ(G) be the number of comparison queries of an optimal
(correct) algorithm for this graph. Formally, let A denote the set of all correct algorithms for the
distance ordering problem. Then we define OPTQ(G) = infA∈A supw>0AQ(G,w), where AQ(G,w)
denotes the (expected) number of comparison queries issued by A on input (G,w). Analogously,
let OPTT (G) = infA∈A supw>0AT (G,w), where AT (G,w) is the (expected) number of operations
performed by A on input (G,w). Since a comparison query takes unit time in our model, we always
have OPTQ(G) ≤ OPTT (G).

3 Universally Optimal Dijkstra

In this section, we prove Theorem 1.2, i.e., that Dijkstra’s algorithm, equipped with a Fibonacci-like
priority queue with the working set property (Definition 1.4), is universally optimal with respect to
the time complexity. In fact, we prove a slightly stronger statement, Theorem 3.1: the algorithm
is universally optimal up to an additive O(n + maxw∈WG

|FG,w|) factor also with respect to the
number of comparisons also. This is later needed in Section 5 to construct the universally optimal
algorithm with respect to both the time complexity and the number of comparisons, a construction
proving the more refined result of Theorem 5.1.

Throughout this section, we use the notation OPTQ(G) and OPTT (G) to denote the number
of comparison queries and time performed by a universally optimal algorithm. See Section 2.3 for
details.

Theorem 3.1. In the comparison-addition model of Section 2, Dijkstra’s algorithm (Algorithm 9)
implemented using any Fibonacci-like priority queue with the working set property has time com-
plexity O(OPTQ(G) +m+ n).

Moreover, the number of comparison queries made by the algorithm is maxw∈WG
|FG,w|.

We shall prove the theorem in the rest of this section but first, we note that it implies universal
optimality with respect to time complexity, since OPTQ(G) +m + n = O(OPTT (G)). The proof
of this fact and of Theorem 1.2 is given in Appendix E.

We proceed with the proof of Theorem 3.1. Let us fix any (directed or undirected) graph G with
n vertices and m edges. The bulk of the proof is to understand the cost of DeleteMin operations.
Formally, we will prove the following proposition.

Proposition 3.2. Consider all calls of DeleteMin performed by Dijkstra’s algorithm (Algo-
rithm 9) with any Fibonacci-like priority queue with the working set property. The total amortized
time complexity of these operations is O(OPTQ(G) + n).

12

T
B1

B2 B3

B4s

Figure 4: An example: tree T with a barrier sequence B1, B2, B3, B4. Note that the sequence
B2, B1, B3, B4 is also a barrier sequence, as is B2, B3, B4, B1, but B1, B3, B2, B4 is not.

Before we prove Proposition 3.2, let us see why this is sufficient to prove Theorem 3.1. The full
proof is deferred to Appendix E.

Proof sketch of Theorem 3.1. We can focus on comparison complexity only, as it dominates the
time complexity. Since Insert and DecreaseKey cost O(1) comparisons per operation, there are
n Insert calls, and all DeleteMin calls cost O(OPTQ(G)+n) time in total (and thus also at most
this many comparisons). Moreover, there are at most maxw |FG,w| Insert and DecreaseKey calls
as each call corresponds to a forward edge.

3.1 Framework for Lower Bounding the Optimal Query Complexity

The rest of the section proves that the overall time complexity of DeleteMin operations is bounded
by O(OPTQ(G) + n), i.e., we prove Proposition 3.2.

We will start by developing a simple framework for lower bounding the value of OPTQ(G).
First, we use the standard entropy argument to show that since each comparison query recovers
only log 3 bits of information, the number of comparisons any algorithm needs to make is at least
the logarithm of the number of possible outputs of the algorithm.

Lemma 3.3. For any directed or undirected graph G, any (even randomized) algorithm for the
distance ordering problem needs Ω(log(Linearizations(G))) comparison queries in expectation for
some weights, i.e., OPTQ(G) = Ω(log(Linearizations(G))).

Proof sketch. See Appendix E for the full proof. For deterministic algorithms, this is the classical
argument that with q comparison, the algorithm can end up in at most 3q different states and thus
answer only 3q different answers. In the full proof, we 1) show we can ensure that every input has
only one valid output (i.e., d(s, u) ̸= d(s, v) for all u ̸= v), which makes the previous argument
valid, and 2) use Shannon’s source coding theorem instead, which allows us to analyze randomized
algorithms as well.

To get a more concrete lower bound that can be compared with the actual cost of Dijkstra’s
algorithm, we will now show how we can efficiently lower bound the number of linearizations using
the structure that we call a barrier sequence. See Figure 4 for the intuition.

Definition 3.4 (Barriers and Barrier sequences). Given a tree T rooted at s, we define:

1. a barrier B ⊆ V (T) is an incomparable set of nodes of T ; that is, there are no two u, v ∈ B
such that u is the ancestor of v in T ,

13

2. for two barriers B1, B2 with B1∩B2 = ∅, we say that B1 ≺ B2 if no node of B2 is a predecessor
of a node of B1,

3. We say that (B1, B2, . . . , Bk) is a barrier sequence if whenever i < j, we have Bi ≺ Bj.

Claim 3.5. A sequence (B1, . . . , Bk) of pairwise-disjoint vertex sets is a barrier sequence if and
only if for all 1 ≤ i ≤ j ≤ k and all u ∈ Bi and v ∈ Bj, v is not an ancestor of u in T .

Proof. This is just a condensed version of the above definition.
Given such a sequence, plugging in i = j immediately gives us that all Bi are barriers, and

plugging in i < j and using the definition of ≺ gives us that Bi ≺ Bj and thus it is a barrier
sequence.

On the other hand, given a barrier sequence, consider any 1 ≤ i ≤ j ≤ k. If i = j, the ancestry
claim holds because Bi is a barrier, and if i < j, it holds because Bi ≺ Bj .

Intuitively, whenever we find a sequence of barriers (B1, B2, . . . , Bk), it means that we can set
up a distribution over weights w such that any distance ordering algorithm is forced to solve a
sequence of sorting problems of sizes |B1|, |B2|, . . . , |Bk| where the i-th sorting problem requires
Ω(|Bi| log |Bi|) comparisons, by the standard sorting lower bound in the comparison model. This
is formalized next.

Lemma 3.6 (Barriers give lower bounds). Let T be any spanning tree of G and (B1, . . . , Bk) be a
barrier sequence for T . Then,

log (Linearizations(G)) ≥ log (Linearizations(T)) = Ω

(
k∑

i=1

|Bi| log |Bi|

)
.

Proof. The first inequality simply follows from the definition of linearization (Definition 2.2).
Denote by L the set of linearizations of T . We will prove by induction on (n, k) that for any

T with n vertices and a barrier sequence (B1, . . . , Bk), we have |L| ≥ |B1|! · · · · · |Bk|!. This proves
the lemma, as then log |L| ≥

∑
i log(|Bi|!) = Ω(

∑
i |Bi| log |Bi|).

If n = 0 or k = 0, the claim holds trivially. Otherwise, consider a tree T and a barrier sequence
(B1, . . . , Bk). Delete from T all vertices in Bk and all their descendants, obtaining a tree T ′. The
sequence (B1, . . . , Bk−1) is now a valid barrier sequence of T ′. By induction, the set L′ of all
linearizations of T ′ satisfies |L′| ≥

∏k−1
i=1 |Bi|!.

For each v ∈ Bk, let Lv denote an arbitrary fixed linearization of T (v), e.g., the DFS pre-
order. For any of the |Bk|! possible orderings σ of Bk, let Lσ denote the sequence obtained by
concatenating all Lv (for v ∈ Bk) together, taken by the order given by σ. Let Lσ be the set of all
|Bk|! such sequences. We claim that for any L′ ∈ L′ and Lσ ∈ Lσ, the concatenation L := L′ + Lσ

is a unique linearization of T . If this is true, then clearly |L| ≥ |L′| · |Lσ| =
∏k

i=1 |Bi|!.
L is a linearization thanks to all Lv being linearizations, Bk being a barrier (so all relative

orders of Lv in Lσ are valid) and (B1, . . . , Bk) being a barrier sequence (so no vertex in L′ can be
a successor of a vertex in Lσ). Uniqueness follows from the fact that changing L′ or Lσ changes L
as well.

3.2 Constructing Barriers in the Exploration Tree

In the rest of this section, we show that we can find suitable barriers in the exploration tree that
“pay for” the cost of the DeleteMin operations. We now sketch the big picture idea behind our
proof of how we relate to each other the working sets and the barriers.

14

· · ·

s

v1 v2 v3 vn−2 0.5 vn−10.50.5

1
2 3 n− 2

n− 1

Figure 5: Example of a graph with radically different TG,w
SSSP and TG,w

explore. TG,w
SSSP only has one

linearization, while TG,w
explore has n! linearizations.

Consider running Dijkstra’s algorithm until some time t. Let us say that S is the set of nodes
that are in the priority queue of the algorithm at time t, and choose t such that S is the largest
possible. On one hand, the total cost the algorithm will pay for the DeleteMin of all elements in
S is O(|S| log |S|), since by definition every working set has size at most |S|.

On the other hand, if we imagine building the exploration tree TG,w
explore in parallel to running

Dijkstra’s algorithm, then S is a suitable barrier in TG,w
explore, and per the previous section, it con-

tributes Ω(|S| log |S|) to the lower bound. To see that S is a barrier, note that S are the leaves
of the partial exploration tree built so far, which is itself a subgraph of the final exploration tree
TG,w
explore, and therefore, S is an incomparable set in the final exploration tree.
If we can continue this process recursively and decompose the whole vertex set into a bar-

rier sequence, then we can relate our barrier-sequence-based lower bound with the actual cost of
DeleteMins, and thus prove optimality.

In order to make the reasoning about possible barriers easier, we will work in the following
framework: imagine drawing intervals, one for each vertex, denoting the timespan between inserting
this vertex and extracting it. Every set of vertices whose intervals all overlap at some time t is a
barrier, precisely because of the argument about the exploration tree above. Therefore, if we color
the intervals so that all intervals of one color have a nonempty intersection, it holds that each color
induces one barrier, and – a fact that we shall prove – the barriers form a barrier sequence, and can
therefore be used to prove a lower bound. The crucial claim of this section is that if we proceed
analogously to our choice of S above – that is, if we greedily color the largest possible intersecting
interval set and solve the rest recursively, the resulting barrier set gives us a good enough lower
bound.

We note that it is important to work with the exploration tree here, not the shortest path tree.
As an example, consider the graph G being equal to the fan in Figure 5. If weights are w(s, vi) = i
and w(vi, vi+1) = 0.5, TG,w

SSSP is a path. Yet, even in this case, running Dijkstra’s algorithm
with a Fibonacci-like priority queue with the working set property results in an Ω(n log n) time
complexity, since the vertices may be inserted to the heap in the order v1, . . . , vn−1 and then if we
run the algorithm, half of the nodes have working set of size at least n/2, so their DeleteMin
cost is Ω(log n). However, in this example, the exploration tree TG,w

explore is equal to the star, so if
we pick a single barrier B = {v1, . . . , vn−1}, this barrier can “pay” Ω(|B| log |B|) = Ω(n log n), i.e.,
it can pay for the operations done by Dijkstra’s algorithm, exactly as we need.

We now need to introduce additional notation. Whenever we run Dijkstra’s algorithm on G,
we can generate a transcript of Insert and DeleteMin operations. Such a transcript allows us
to talk about insertions, deletions, working sets, etc. without the need of talking about the graph
G itself. More formally, every run of Dijkstra’s algorithm on some graph G corresponds to a set I

15

of n time intervals defined as follows.

Definition 3.7 (Dijkstra-induced interval set). An interval set I of size n is a set of n nonempty
closed intervals such that all the 2n start and end times of all intervals are distinct.

A run of Dijkstra’s algorithm induces an interval set, namely each vertex v induces an interval
ι(v) = [ℓ, r], where ℓ is the time v was first discovered and the value associated with vertex v was
inserted into the heap, and r is the time v was extracted from the heap. All times are measured in
the amount of Insert and DeleteMin operations performed on the heap so far. We say such an
interval set is Dijkstra-induced.

We now define the working set of an interval. This definition is analogous to Definition 1.3.

Definition 3.8 (Working set of an interval). For every x ∈ I, working set at time t ∈ x is defined
as the set of intervals y ∈Wx,t starting after x starts and for which t ∈ y. Formally, for x = [ℓx, rx],

Wx,t = { [ℓy, ry] ∈ I | ℓx ≤ ℓy ≤ t ≤ ry }.

The working set Wx of x is then defined as Wx,t∗ for arbitrary t∗ = argmaxt∈x |Wx,t|.

Definition 3.9. We say that the cost of x ∈ I is equal to cost(x) = log |Wx|. We also define for
an interval set I that cost(I) =

∑
x∈I log |Wx|.

We will use the fact that cost(x) corresponds to the amortized cost of the DeleteMin operation
performed on x. Similarly, cost(I) is the overall amortized cost of all DeleteMin operations
performed on the set I.

Definition 3.10 (Intersecting coloring, energy). An intersecting coloring of I with k colors is a
function C : I → [k] that assigns a color to every interval, and, additionally, for every color i ∈ [k],
the intersection of all intervals having color i is nonempty.

Given a coloring C, let ci = |{ a | C(a) = i }|. The energy of C is defined as E(C) =
2
∑k

i=1 ci log ci.

For Dijkstra-induced interval sets, if some intervals are colored with one color, the definition
above states that there exists a time t such that all their corresponding vertices were present in the
heap at time t. In fact, every intersecting coloring induces a barrier sequence in the exploration
tree TG,w

explore, and thus, indirectly, a lower bound on the number of linearizations:

Lemma 3.11 (Intersecting coloring gives a lower bound). Let I be the interval set induced by
running Dijkstra’s algorithm (Algorithm 9) on a graph G, and let C be its arbitrary intersecting
coloring of I. Then

log(Linearizations(G)) ≥ log
(
Linearizations

(
TG,w
explore

))
= Ω(E(C)) .

Proof. For each color c, define Bc = { v ∈ V (G) | C(ι(v)) = c } and tc = min{ t | ∀v ∈ Bc : t ∈
ι(v) }, i.e., the minimum time when all vertices whose corresponding intervals have color c were
in the heap. Without loss of generality, assume t1 < · · · < tk, where to simplify notation, we are
using that the colors are the first k integers for some value k; if these inequalities do not hold, we
permute the colors so as to make them true (this can always be done as no two intervals start at
the same time). We claim that (B1, . . . , Bk) is a barrier sequence in TG,w

explore.
Per Claim 3.5, all we have to show is that for any i ≤ j, u ∈ Bi and v ∈ Bj , v is not a

predecessor of u in TG,w
explore. Take such i, j, u, v, and let ti and tj be the times defined above. We

know that ti ≤ tj .

16

What would it mean for v to be a predecessor of u in the exploration tree? By definition, a
parent p of each vertex w in the exploration tree is the vertex during whose exploration w was
added to the heap. But due to the nature of Dijkstra’s algorithm, this means the insertion of w
into the heap only happened after p was removed from the heap, and the same is true for any
predecessor of w and not just a parent. Specially, the interval ι(p) ends before ι(w) starts. But
this means that if v were a predecessor of u, then necessarily ι(u) ∋ ti > tj ∈ ι(v), which is a
contradiction.

Hence, (B1, . . . , Bk) is a barrier sequence in TG,w
explore. The rest follows from Lemma 3.6 and the

fact that |Bi| = ci and E(C) = 2
∑k

i=1 |Bi| log |Bi|.

The interval formalism allows us to transform a problem about proving time complexity lower
bounds into a problem about coloring intervals. As we argue, cost(I) gives an asymptotic upper
bound on the total cost of the DeleteMin operations. At the same time, E(C) gives an asymptotic
lower bound on OPTQ(G). We can, therefore, prove Proposition 3.2 by proving there always exists
C satisfying E(C) ≥ Ω(cost(I)), which we will do in the rest of this section. We now formalize this
argument:

Lemma 3.12 (Finding a good coloring proves optimality). Run Dijkstra’s algorithm (Algorithm 9)
with any Fibonacci-like priority queue with the working set property on graph G. Let I be the interval
set induced by this run. If there exists a coloring C of I such that E(C) ≥ cost(I), then the total
time complexity of all DeleteMin calls performed by the algorithm is O(OPTQ(G) + n).

Proof. On one hand, the overall time complexity of all DeleteMin operations can be upper
bounded by ∑

v∈V (G)

O(1 + log |Wv|) = O(n+
∑

v∈V (G)

log |Wv|)

= O(n+
∑
x∈I

log |Wx|)

= O(n+ cost(I)) = O(n+ E(C)),

where the first equality holds because
∑n

i=1O(fi(k)) = O(n+
∑n

i=1 fi(k)), the second because the
heap-based and interval-based definitions of working sets coincide, and the third follows from the
definition of cost(I).

On the other hand, per Lemmas 3.3 and 3.11, OPTQ(G) = Ω(E(C)). Put together, the overall
amortized complexity of DeleteMin operations is upper bounded by O(n+OPTQ(G)), as needed.

3.3 Finding a Good Interval Coloring

Ultimately, we want to find the intersecting coloring recursively. This means that we need to
understand how the cost of I changes if we delete an element from it.

Lemma 3.13 (Deleting intervals from I). Consider any interval set I and let x ∈ I. Let k =
maxt |{y ∈ I | t ∈ y}|; that is, k is the largest number of intervals overlapping at any given time.
Then,

cost(I) ≤ cost(I \ {x}) + log |Wx|+ log k. (2)

Moreover, for any element x with |Wx| = k we have

cost(I) ≤ cost(I \Wx) + 2|Wx| log |Wx|. (3)

17

Proof. We start by proving Equation (2). Consider removing x from I and then putting it back:
the overall cost increase cost(I)− cost(I ′) can be bounded first by cost(x) = log |Wx| for the newly
added interval x. Then, some intervals of I ′ may increase the size of their working set by one, due
to x being in their working set in I. To prove Equation (2), we need to bound the overall increase
by log k.

Let t be the starting time of x. Let e1, . . . , ek′ ∈ I ′ be all the intervals containing t, ordered in
the decreasing order of their start time. Notice that k′ ≤ k − 1 since x, e1, . . . , ek′ all overlap at
time t.

We note that e1, . . . , ek′ are the only intervals (besides x) whose contributions to cost(I ′) and
cost(I) differ from each other: every other interval y has t /∈ y, which either means that y ends
before t, or y starts after t. In both cases, x is by definition not included in Wy,t′ for any t′, and
therefore it also is not included in Wy.

Moreover, notice that the working set of ei is of size at least i+1, since one candidate for Wei is
the set Wei,t = {x, e1, . . . , ei}, i.e., the working set of ei at the time t. Since the size of the working
set Wei is either |W ′

ei | or |W
′
ei |+ 1 where W ′

ei is the working set of ei in I ′, we conclude that

cost(I)− cost(I \ {x})− log |Wx|

=
(
log |We1 | − log |W ′

e1 |
)
+ · · ·+

(
log |Wek′ | − log |W ′

ek′
|
)

≤ (log 2− log 1) + · · ·+
(
log(k′ + 1)− log k′

)
= log(k′ + 1)− log 1

≤ log k

as needed. On the third line, we used the fact that log is concave and therefore f(n) = log(n +
1)− log(n) is increasing.

To prove Equation (3), we simply remove the elements of Wx from I one by one and each time
we apply Equation (2). We note that the maximum number of intervals intersecting at any given
time cannot increase by deleting intervals from I, thus the overall difference between cost(I) and
cost(I \Wx) can be upper bounded by 2k log k = 2|Wx| log |Wx|.

Finally, we will now use Lemma 3.13 recursively to find an intersecting coloring with high
energy.

Lemma 3.14 (Greedy analysis). For any interval set I, there exists an intersecting coloring C
such that E(C) ≥ cost(I).

Proof. We construct C by induction on |I|. For I = ∅, set C = ∅. Otherwise, find the interval
x ∈ I with the largest Wx, and use induction on I ′ = I \Wx to find a coloring C ′ which satisfies
E(C ′) ≥ cost(I ′). Now we define C(x) = C ′(x) if x ∈ I ′ and C(x) = c∗ otherwise, where c∗ is a
new color not used in C ′.

On one hand, E(C) = E(C ′) + 2|Wx| log |Wx|, by the definition of E . On the other hand, per
Lemma 3.13, cost(I) ≤ cost(I ′) + 2|Wx| log |Wx|.

Putting this all together, we have E(C) = E(C ′) + 2|Wx| log |Wx| ≥ cost(I ′) + 2|Wx| log |Wx| ≥
cost(I), as needed.

Finally, we may now prove Proposition 3.2:

Proof of Proposition 3.2. Per Lemma 3.14, there always exists C such that E(C) ≥ cost(I). Per
Lemma 3.12, if such a C exists, Proposition 3.2 holds.

18

H M

H0H1
H2

H3 = HR

Older items
here

Newer items
here

0 14 15 21 22 25 26 27

U Example values
(actual values may differ)

Figure 6: Ilustration of the data structure H. Note that the intervals in U depend on the exact
sequence of Inserts and DeleteMins.

4 Constructing Heaps with the Working Set Property

In this section, we design a Fibonacci-like priority queue with the working set property, and by
doing that, prove Theorem 1.5:

Theorem 1.5. There is a Fibonacci-like priority queue with the working set property.

We now give a high-level description of the data structure, then we state the invariants that we
require it satisfies, and then we give a high-level description of some of the operations. The formal
description of the operations then follows.

High-level description of the data structure The general idea is to have O(log log n) Fi-
bonacci heaps2 of sizes roughly 22

0
, 22

1
, 22

2
, . . . such that recently inserted elements are in smaller

heaps, and their DeleteMins are therefore cheap.
The data structure consists of a collection H of Fibonacci heaps containing the elements, to-

gether with auxiliary data structures that allow us to operate efficiently on H. Each of the heaps
gets assigned a rank r ∈ N0, and we have one (possibly implicitly stored, empty) heap for each
rank. Denote by Hr the heap of rank r, and by |Hr| its size (zero if Hr = ∅). For an element x ∈ H,
denote r(x) the rank of the heap x is stored in. Finally, each x ∈ H has assigned a unique insertion
time t(x) ∈ N. Formally, instead of storing raw elements, each Hr stores elements as pairs (x, t(x)).
When we insert a new element y into H, its t(y) will be the last used t(x) incremented by 1.

Invariants We will be maintaining the following invariants:

1. For all r, |Hr| ≤ 22
r
.

2Our reduction is black-box and holds for any data structure with the functionality of Fibonacci heaps.

19

2. Let R be the maximum R such that HR ̸= ∅. If R ≥ 2, then |HR|+ |HR−1| ≥ 22
R−1

.

3. Define a partial order ≺ on heaps as follows: Ha ≺ Hb if for all x ∈ Ha and y ∈ Hb, we have
t(x) < t(y). Then ≺ is actually a linear order and H0 ≻ H1 ≻ . . . ≻ HR. In other words,
elements inserted earlier are in higher-rank heaps.

Note that Invariant 2 implies that the maximum rank is O(log log n) where n is the number of
elements currently in H, as the existence of rank > log log n+ 1 would imply there are more than
22

log logn
= n elements in the last two heaps. Also observe that ≺ is indeed a partial order and that

Ha ≺ Hb and Ha ≺ Hc implies Ha ≺ Hb ∪Hc.

High-level description of the operations With the invariants in mind, we describe the idea
behind the operations. A heap with rank r can grow by merging smaller heaps into it, and once it
grows too much (it would violate Invariant 1), we promote it to the next rank by merging it into
the heap with rank r + 1. Insert creates a heap of size 1 and then triggers a series of merges and
promotions. Decrease and DeleteMin first find the correct heap using auxiliary data structures
(described below), and then perform the operation there. If the two top-rank heaps shrink too
much after an DeleteMin, we merge them together into HR−1 to preserve Invariant 2.

Auxiliary data structures Before we can show how to implement the operations, we describe
the auxiliary data structures associated with H. We now specify their interfaces and prove their
existence later in Sections A.1 and A.2. We note that the data structure from Theorem A.1 is used
both as a standalone data structure and as a building block in Theorem A.2.

Theorem A.1 (Interval maintenance). Assume the Word-RAM model with word size w. There
exists an ordered-dictionary-like data structure U for storing right-open, pairwise non-overlapping
intervals. Interval boundaries are integers from {0, . . . , 2O(w)}. There may be at most ℓ intervals
in the set at once, for some ℓ = O(logw). The data structure supports the following operations,
each with O(1) worst-case time complexity:

• Set(a, b, x): Set U [[a, b)] = x. Caller guarantees [a, b) does not overlap with any other interval
present in U .

• Delete(a, b): Delete [a, b) from U if it exists.

• Get(a, b): Return U [[a, b)] or ∅ if such interval is not in U .

• Find(t): Return (unique) a, b such that t ∈ [a, b) ∈ U , or ∅ if no such interval exists.

• Prev(t): Return largest c, d such that [c, d) ∈ U and d ≤ t.

• Next(t): Return smallest c, d such that [c, d) ∈ U and t < c.

Proof sketch. See Section A.1 for the full proof. It is folklore knowledge that the interval mainte-
nance problem can be straightforwardly reduced to ordered set maintenance. With fusion trees,
this leads to O(logw w) = O(1) time complexity. Incidentally, as ℓ = O(log log n), even with AVL
trees we obtain the same guarantees up to a O(log log log n) factor.

Theorem A.2 (Minimum-keeping). Assume the Word-RAM model with word size w. Then there
exists a data structure that maintains an array M of length ℓ = O(logw) that supports the following
operations:

• Get(i): return M [i].

20

• Decrease(i, x): given x ≤M [i], set M [i] := x.

• ChangePrefix(P): given an array P of length i, set M [0 : i] = P . P is allowed to be larger
than the current length of the array.

• FindMin(): return argminiM [i].

• Pop(): decrease the length of M by one. It is promised that the last two elements of M
contain the same value beforehand.

The elements stored may only be loaded, stored and compared, all in O(1) time per operation.
The amortized time complexity of those operations is as follows: O(1) for Get, Decrease, Find-
Min and Pop, and O(i) for ChangePrefix, where i is the length of the prefix to be changed. The
worst-case time complexity is the same, except for Decrease, which takes O(i) time worst-case
where i is the index being decreased.

Proof sketch. See Section A.2 for the full proof. The problem can be solved by efficiently maintain-
ing a compressed array S of suffix minima of M . Then, FindMin returns S[0], ChangePrefix
only has to recompute first |P | suffix minima, and the complexity of Decrease can be argued to
be O(1) amortized, since a Decrease taking i units of time decreases the number of unique values
of S by roughly i. Storing S efficiently can be achieved using the interval maintenance structure
from Theorem A.1. In particular, as an aside, we can again use an AVL tree instead of a fusion
tree with only a O(log log log n) multiplicative slowdown to all operations.

We now state how we use the auxiliary data structures to store information on H. In the
minimum-keeping data structure, which we will call M , we store in M [r] the current minimum
of Hr. Clearly, using FindMin on M then returns the globally minimal element, which will be
important when implementing DeleteMin.

In the interval data structure, which we will call U , we maintain an interval for each non-empty
heap corresponding to the range of insertion times such that items with these insertion times are
stored in the given heap; note that this is indeed an interval by Invariant 3. Specially, when
we delete an item from Hr, we do not update U . Thus, each interval stored in U is actually a
superset of the insertion time range of the given heap. We need U for the following subtle reason:
The implementation of DecreaseKey in an inner Fibonacci heap needs not only a pointer to an
element that is being decreased, but also a pointer to the heap this element is in. U provides those
pointers.

If the values stored in M,U are as described, we say that the data structures are valid.

Formal description of the operations We start by specifying an important subroutine, Al-
gorithm 1, that describes a merge of inner heaps. First, we need the following definition. In the
process of promoting heaps to larger ranks, we will temporarily create additional carry heaps:

Definition 4.1. Given a heap collection H, a carry heap of rank r is a heap Cr such that |Cr| ≤ 22
r

and Hr ≻ Cr ≻ Hr+1.

Lemma 4.2. Algorithm 1, i.e., PromotionStep, has O(1) amortized time complexity. It main-
tains Invariants 1 and 3 (if they held before executing PromotionStep, they hold after). It also
maintains validity of U . Furthermore, the overall set of elements in the data structure (including
the carry heaps) is preserved.

21

Algorithm 1 PromotionStep

Input: r ∈ N, H satisfying Invariants 1 and 3, carry heap Cr−1 of rank r − 1
Output: H′ := H − {Hr} ∪ {H ′

r} satisfying Invariants 1 and 3; carry heap Cr of rank r (with
respect to H′)

1: if |Hr|+ |Cr−1| ≤ 22
r
then

2: [a, b)← U.Find(t(Hr.FindMin())), [c, d)← U.Find(t(Cr−1.FindMin()))
▷ Get the insertion time ranges associated with Hr and Cr−1 by querying U with an arbitrary
representant.

3: Cr ← ∅, H ′
r ← Hr ∪ Cr−1 ▷ Here ∪ denotes the merge operation on two Fibonacci heaps.

4: U .Remove(a, b), U .Remove(c, d), U.Set(a, d,H ′
r) ▷ Merge the two intervals in U .

5: else
6: Cr ← Hr, H

′
r ← Cr−1

Proof. Recalling that Fibonacci heaps can be merged in O(1) amortized time suffices to prove the
first part of the lemma.

For correctness, first recall that the input is guaranteed to satisfy Hr−1 ≻ Cr−1 ≻ Hr ≻ Hr+1.
Also, note that for Invariants 1 and 3, we only need to look at H ′

r, since no other heap changed.
We consider two cases:

If the if-statement evaluated as true, then Cr = ∅ is trivially a carry heap of rank r. Also
|H ′

r| = |Hr| + |Cr−1| ≤ 22
r
, so Invariant 1 holds. Lastly, by properties of ≻ and ∪, we have

Hr−1 ≻ H ′
r = Hr ∪ Cr−1 ≻ Hr+1, which proves Invariant 3 for H′.

Otherwise, we have H ′
r = Cr−1 and Cr = Hr. From Cr−1 being of rank r − 1, we get |H ′

r| ≤
22

r−1 ≤ 22
r
, so Invariant 1 is satisfied. Similarly, from Hr being of rank r, we get |Cr| ≤ 22

r
.

Finally, by rewriting the heap ordering from before, we get Hr−1 ≻ Cr−1 = H ′
r ≻ Hr = Cr ≻ Hr+1,

which proves both Invariant 3 and the fact that Cr is a carry heap of rank r.
We now argue the validity of U is preserved. If |Hr| + |Cr−1| ≤ 22

r
, we perform a merge

operation on heaps and perform a corresponding merging of intervals in U , retaining validity. In
the other case, the set of heaps does not change, meaning we do not perform any operations on U ,
so validity is also clearly preserved.

Finally, note that the algorithm only redistributes the elements between heaps, so the overall
set of elements is indeed preserved.

Now we finally describe the operations. We start with Insert, given as Algorithm 2.

Algorithm 2 Insert(x)

t(x)← 1 + last used t(y)
C−1 ← {(x, t(x))}
U.Set(t(x), t(x) + 1, C−1)
P ← []
for r = 0, 1, . . . do

Cr = H.PromotionStep(r, Cr−1) ▷ Mutate H in place.
P.Append(H ′

r.FindMin()))
if Cr = ∅ then

break
M.ChangePrefix(P)

22

We now prove that this algorithm is correct and efficient.

Lemma 4.3. Insert preserves Invariants 1 to 3 and the validity of M and U .

Proof. Insert consists of iteratively applying PromotionStep, which already preserves Invari-
ants 1 and 3 and the validity of U . The very first call with C−1 is also valid as |C−1| = 1 ≤ 22

−1

and the interval stored in U is correct. Let us show Invariant 2 is preserved. Consider two cases:
either R increased, or it stayed the same.

If R stayed the same, then look at HR−1. If H ′
R−1 = HR−1, then also H ′

R = HR and we are
done. Otherwise, |H ′

R−1|+ |H ′
R| ≥ |HR−1|+ |HR|, because the elements only move from smaller to

larger ranks and at the same time HR is still the largest non-empty heap. Either way, Invariant 2
holds.

Finally, if R increased to R′, this means that the algorithm did not stop for r = R′ − 1, but it
stopped for r = R′, i.e. that H ′

R′ = CR′−1 = HR′−1 and H ′
R′−1 = CR′−2 = HR′−2. Additionally,

|HR′−1|+ |CR′−2| > 22
R′−1

, otherwise the procedure would have stopped earlier. But given the first
set of equalities, this is precisely what Invariant 2 says.

Finally, the validity of M is preserved because the minima of all heaps that changed get recom-
puted.

We prove the constant amortized complexity of Insert later in Lemma 4.8. Next, the descrip-
tion of DeleteMin is given in Algorithm 3.

Algorithm 3 DeleteMin

1: r ←M.FindMin()
2: m← Hr.DeleteMin()
3: m′ ← Hr.FindMin() ▷ The new minimum after deleting m.
4: set M [r]← m′ by calling M.ChangePrefix(M [: r] + [m′])

5: if r = R and |HR|+ |HR−1| < 22
R−1

then
6: merge HR into HR−1 and merge the respective intervals in U (analogously to Line 4 in

Algorithm 1)
7: HR ← ∅; R← R− 1, M.Pop()

return m

Lemma 4.4. DeleteMin preserves Invariants 1 to 3 and the validity of M and U .

Proof. Neither Invariants 1 and 3 can be violated by deleting elements and Invariant 2 is preserved
explicitly. The only problem that could arise is that even after merging HR into HR−1, Invariant 2
is still not satisfied. But this cannot happen since the fact that all invariants held before the
operation means that |HR|+ |HR−1| = 22

R−1 − 1 ≥ 22
R−2

(the last inequality holds for R ≥ 2).
No maintenance is needed for U as no element moves from one heap to another, except when

R decreases, and then we maintain U correctly. For M , only the heaps Hr, HR−1 and HR change,
and we update M accordingly.

Lemma 4.5. Cost of DeleteMin is O(2r) amortized, where Hr is the heap containing the mini-
mum.

Proof. DeleteMin consists of calling DeleteMin on a Fibonacci heap of size ≤ 22
r
, which costs

O(2r). Additionally, we spend O(r) on FindMin to find Hr and the same amount of time in
ChangePrefix. Finally, we may spend O(1) additional time to maintain Invariant 2.

23

Lemma 4.6. DeleteMin has amortized time complexity O(1 + log |Wx|).

Proof. Per Lemma 4.5, if the element x being extracted is in Hr, the cost of DeleteMin is O(2r).
Hr must at some time t have been promoted from rank r − 1. In order for Insert to reach r − 1
and not stop earlier, we must have had |Hr−2| + |Cr−3| ≥ 22

r−2
when calling PromotionStep

on rank r − 2. Furthermore, Cr−3 ≻ Hr−2 ≻ Hr−1, which means that at time t, there were at
least 22

r−2
elements newer than any element in Hr−1, and in particular, newer than x. Hence,

|Wx| ≥ |Wx,t| ≥ 22
r−2

, and thus log |Wx| ≥ 2r−2 = Θ(2r), which gives us that the cost is O(2r) =
O(1 + log |Wx|).

Now we give the description of DecreaseKey in Algorithm 4.

Algorithm 4 DecreaseKey(pointer to a key x, v)

1: r ← U.Find(t(x)) ▷ Recall that we store t(x) together with the key x
2: Hr.DecreaseKey(x, v)
3: if v < M [r] then
4: M.Decrease(r, v)

Lemma 4.7. DecreaseKey preserves Invariants 1 to 3 and the validity of M and U .

Proof. Invariants 1 to 3 are preserved trivially since the operation does not change the heap sizes
or insertion times at all.

No maintenance is needed for U . For M , only the heap whose element is decreased changes,
and we update M accordingly.

Lemma 4.8. The amortized time complexity of both Insert and DecreaseKey is O(1).

Proof. DecreaseKey consists of O(1) calls to methods on U , Hr and M , all of which take O(1)
time. In the rest of the proof, we focus on Insert.

We define a potential Ψt equal to the number of ranks r such that |Hr| > 22
r−1

at time t. Note
that DeleteMin only changes this potential by a constant and DecreaseKey not at all, meaning
that using this analysis does not affect their amortized complexity subject to this analysis. We thus
only focus on Insert.

We claim that if Insert stopped after reaching rank ř, then Ψt+1 ≤ Ψt − ř + 3. Changes to
H0 and Hř increased the potential by at most 2, and we claim that all of H1, . . . ,Hř−1 previously
contributed to the potential, but their counterparts H ′

1, . . . ,H
′
ř−1 no longer do. Take any r for

0 < r < ř. We know Insert has not stopped after reaching r, which means that H ′
r = Cr−1 and

|H ′
r| = |Cr−1| ≤ 22

r−1
. This meansH ′

r no longer contributes to Ψt+1. Also, since |Hr|+|Cr−1| ≥ 22
r
,

this means that |Hr| ≥ 22
r−|Cr−1| ≥ 22

r−22
r−1

> 22
r−1

(holds for r > 0), so Hr contributes to Ψt.
The (non-amortized) time complexity is O(ř) as this is the amount of time we spend in the

algorithm itself as well as the amount of time we spend in the call of ChangePrefix. Since the
potential decreases by ř − 2, we can use that to pay for the cost, leading to an amortized cost of
O(1).

Finally, we note that FindMin can be implemented by just calling M.FindMin and returning
the result. This is clearly correct and it has O(1) time complexity.

Putting this all together, we are ready to prove Theorems 1.5 and 4.9:

Proof of Theorem 1.5. Correctness follows from Lemmas 4.3, 4.4 and 4.7. Amortized costs of the
operations follow from Lemmas 4.5 and 4.8.

24

In fact, we can get worst-case guarantees with only a O(log log n) slowdown of Insert and
DecreaseKey:

Theorem 4.9. There is a priority queue satisfying the guarantees of Theorem 1.5 such that, addi-
tionally, FindMin has worst-case cost O(1), DeleteMin has worst-case cost O(1+ log |Wx|), and
Insert and DecreaseKey have worst-case cost O(log log n).

Proof sketch. We use the heap from Theorem 1.5 and replace Fibonacci with strict Fibonacci
heaps [BLT12] that strengthen the amortized guarantees of Fibonacci heaps to worst-case ones.
Guarantees of the auxiliary structures of Theorems A.1 and A.2 hold also in the worst case, except
for M.Decrease(i, x) whose worst-case complexity is O(log log n), not O(i).

Then we need to reanalyse Lemmas 4.5 and 4.8, but this time with worst-case lens. Insert
and Decrease run in O(log log n) time in the worst case, as they perform O(1) work on each of
R ≤ log log n heaps in the worst case, and then update the auxiliary structures in O(log log n) time.
The analysis of DeleteMin holds also in the worst case, provided that we use worst-case priority
queues for all Hr. Finally, FindMin trivially works in O(1) worst-case time.

5 Universally Optimal Dijkstra for Comparisons

In Section 3, we showed an algorithm that is universally optimal w.r.t. time complexity and uni-
versally optimal up to an additive term w.r.t. query complexity. The goal of this section is to get
rid of this additive term and thus prove the following theorem.

Theorem 5.1. There exists an algorithm for the distance ordering problem that is universally
optimal both with respect to time complexity and query complexity, on directed graphs and when
compared against correct deterministic algorithms.

We remark that Theorem 5.1 can be extended to undirected graphs by slightly modifying
the analysis, which we will not do here. We also believe that it can be extended to randomized
algorithms, although this seems to require a different analysis.

We prove Theorem 5.1 in a series of claims that analyze Algorithm 5, given below. Algorithm 5
is based on Dijkstra’s algorithm (Algorithm 9) with a Fibonacci-like priority queue with the working
set property from Theorem 3.1. It has two parts. In the first part (Algorithm 6), we only attempt
to find the SSSP tree in the input graph and not the linearization. In the second part (Algorithm 8),
we use a straightforward dynamic programming algorithm to find the linearization given the SSSP
tree.

To find the SSSP tree, we need to be more careful than in Section 3 – to give an example, if
the input graph is an undirected path and the source is its second vertex, the optimal number of
comparisons for distance ordering is Θ(log n), so we cannot use Dijkstra’s algorithm directly as it
will perform up to Θ(n) comparisons. It turns out that we can solve this problem in the simpler
case of undirected graphs by contracting all bridges in the graph and running Dijkstra only on the
contracted graph. In our more complicated, directed, case, we perform an analogous operation –
we use the dominator tree of G to find a directed equivalent of bridges that we can contract.

5.1 Contractions Guided by the Dominator Tree

We next present the definitions and results related to the dominance relation and the dominator
trees in directed graphs.

25

Definition 5.2 (Dominator [LM69; LT79]). Given a directed graph G, a source vertex s, and
u, v ∈ V (G), u ̸= v, we say that

• u dominates v if every path from s to v also visits u,

• u immediately dominates v if u dominates v and every other dominator of v dominates u as
well.

It is known [LM69] that every vertex other than s has exactly one immediate dominator, possibly
equal to s. This justifies the following definition:

Definition 5.3 (Dominator tree [LT79]). The dominator tree TG
D is a tree on the vertex set of G.

It is rooted at s and the parent of each vertex is its immediate dominator. Note that TG
D is not

necessarily a subgraph of G, i.e., u may immediately dominate v even though uv /∈ E(G).

Fact 5.4 (Common properties of dominators [LT79]). Let G be a directed graph and TG
D its domi-

nator tree. The dominance relation is a partial order on vertices, i.e. it is transitive, reflexive and
antisymmetric. For two vertices u, v ∈ V (G), u is an ancestor of v in TG

D if and only if u dominates
v in G.

Theorem 5.5. The dominator tree of G can be constructed in linear time. It can be used to answer
queries of the form “Does u dominate v in G?” in O(1) time.

Proof. There are many linear-time algorithms for constructing the dominator tree [Har85; Als+99;
GT04; Fra+13]. Per Fact 5.4, dominance in G is equivalent to ancestry in TG

D , and that can be
solved in O(n) precomputation and O(1) time per query by running DFS on TG

D and remembering
for every node v the times in(v) and out(v) DFS entered and left this node respectively. Then u
dominates v ̸= u if and only if in(u) < in(v) ≤ out(v) < out(u).

We now give Algorithm 5 and its first part, Algorithm 6, which computes an SSSP tree. Recall
that OPTQ(G) is defined as the query complexity of an optimal algorithm computing the lineariza-
tion, and thus the existence of Algorithm 6 serves as a proof that, in some sense, constructing an
SSSP tree is easier or equally hard as the distance ordering.

Algorithm 5 Query-Universally optimal algorithm

Input: G,w, s, we assume every node of G is reachable from s
Output: linearization L of nodes of G with respect to w

1: Get TG,w
SSSP by running Algorithm 6

2: Calculate L from TG,w
SSSP by running Algorithm 8

5.2 Algorithm Analysis

We next state the theorem that we are going to prove in Sections 5.2 to 5.5. Recall that Algorithm 6
covers the first part of the overall optimal algorithm Algorithm 5.

Theorem 5.6. Algorithm 6 correctly finds TG,w
SSSP . It has O(OPTQ(G)) query complexity and

O(OPTT (G)) time complexity.

26

Algorithm 6 SSSP tree construction in OPTQ(G) queries

Input: G,w, s, we assume every node of G is reachable from s
Output: SSSP tree TG,w

SSSP of G with respect to w

1: TG
D ← the dominator tree of G

2: Drop from G all edges uv where v dominates u.
3: while TG

D has a node u with outdegree one do
4: v ← the (only) child of u
5: Contract uv in both G and TG and recompute weights w (see Claim 5.7).
6: Let TG′′

D , G′′, w′′ be the result.
7: Compute G′ and w′ from G′′ and w′′ by deduplicating parallel edges using Algorithm 7. Let

TG′
D ← TG′′

D .

8: Compute the SSSP tree TG′,w′

SSSP by Dijkstra’s algorithm (Algorithm 9 modified to return a SSSP
tree as well), using any Fibonacci-like priority queue with the working set property.

9: Get TG,w
SSSP by uncontracting TG′,w′

SSSP ; in particular, all edges that got contracted on Line 5 are

included in TG′,w′

SSSP .

Algorithm 7 Multiedge deduplication

Input: multigraph G, edge weights w
Output: simple graph G′, weights w′

1: Let G′ and w′ be empty.
2: for all u, v ∈ V (G) such that an edge from u to v exists in G do
3: Add edge e = uv to G′.
4: Set w′(e) to compute min ei∈E(G)

start(ei)=u
end(ei)=v

w(ei) the first time it is accessed and lazily return it.

return G′, w′

27

Roadmap The rough roadmap is as follows: The rest of this subsection proves the correctness
of the algorithm.

Then we prove that since no contractions are possible in G′, the execution of Algorithm 9
(which, per Theorem 3.1, performs O(OPTQ(G

′)+ |V (G′)|+maxw |FG′,w|) comparison queries) on
the remaining graph G′ actually has O(OPTQ(G

′)) query complexity, that is, the additive terms are
all paid for by O(OPTQ(G

′)). Specifically, in Section 5.3, we show that OPTQ(G
′) = Ω(|V (G′)|),

and in Section 5.4, we show that OPTQ(G
′) = Ω(maxw |FG′,w| − |V (G′)|). The latter lower bound

also analogously applies to G and we use it to show that maxw |FG,w| − n = O(OPTQ(G)) and
hence we can afford to do the deduplication in Algorithm 7.

Finally, in Section 5.5, we assemble all parts to finish the proof of Theorem 5.6.

Structure of contractions and correctness The following technical claim collects a few tech-
nical properties of how dominators and contractions interact. This allows us to argue e.g. that we
can contract our graph, find the SSSP tree in the contracted graph, and then uncontract; properties
like these ensure that our algorithm is correct.

While Claim 5.7 talks about contracting a single edge in the dominator tree, it makes sense to
think about it in the context of contracting a whole path u1, u2, . . . , uk in the dominator tree TG

D

(by path we mean a sequence of nodes whose outdegree is exactly 1 in the dominator tree). The
claim justifies that this path also “looks like a path” in the original graph G. More precisely, on
one hand, G has to contain edges u1u2, u2u3, . . . uk−1uk (As ui is the only node directly dominated
by ui−1, how else would it be dominated if not for this direct edge?).

On the other hand, consider any ui for i > 1. It turns out that ui−1ui is the only edge incoming
to ui! This is because on one hand, vertices not dominated by ui−1 cannot have an outgoing edge
to ui lest ui−1 is not dominating ui. On the other hand, edges outgoing from vertices dominated by
ui were deleted in Line 2. What remains are vertices dominated by ui−1 but not by ui, but those
do not exist by our assumption on ui−1 having outdegree one.

Note that in the following claim, we denote both nodes in a graph G and its dominator tree
TG
D with the same letters u, v, . . . Similarly, an edge e = uv may be both an edge in G and in TG

D .
For the graph G/e that we get by contracting an edge e = uv ∈ E(G), we use the notation [uv] to
denote the newly created vertex in V (G′) while we use [x], x ∈ V (G) to denote all other nodes in
V (G′). We sometimes slightly abuse notation and do not carefully distinguish between objects in
G and G/e and between parallel edges.

Claim 5.7 (Structure of contractions). Let TG
D be the dominator tree of a multigraph G rooted at

s, let w be weights on G, and e = uv ∈ E(TG
D) an edge such that u is a node with outdegree one in

TG
D and v its unique child in TG

D . Assume that every node in G is reachable from s. Also, assume
that G may have duplicate edges from one vertex to another, but there are no duplicate edges from
a dominator vertex to a dominated vertex. Furthermore, assume that there are no edges xy ∈ E(G)
where y dominates x.

We claim:

1. The edge e also exists in G and it is the only incoming edge to v in G.

2. There is no edge uz ∈ E(G) other than e for which z ∈ TG
D (v).

Next, define G′, T ′, w′ as follows. We set G′ = G/e and T ′ = TG
D /e. Let ϕ(x) : V (G) → V (G′) be

the mapping performed by the contraction, i.e., ϕ(u) = ϕ(v) = [uv] and ϕ(x) = [x] otherwise. We
set w′ = w with the exception that for every edge f = vx ∈ E(G) and its counterpart f ′ = [uv][x] ∈
E(G′), we define w′(f ′) = w(u, v) + w(f). In particular, for any edge f = ux and its counterpart
f ′ = [uv][x], we set w′(f ′) = w(f). Then, the following holds:

28

3. Every node in G′ is reachable from ϕ(s). G′ has no two edges e1, e2 such that they both go
from x to y and x dominates y. Also, there are no edges xy where y dominates x.

4. T ′ = TD(G
′).

5. TG′,w′

SSSP = TG,w
SSSP /e.

6. FG′,w′ = FG,w/e, |FG′,w′ | = |FG,w| − 1 and |V (G′)| = |V (G)| − 1.

Proof. See Appendix E.

Corollary 5.8. Algorithm 6 correctly finds TG,w
SSSP .

Proof. Claim 5.7 guarantees that each contraction is valid and all necessary invariants are pre-
served. Specifically, part 4 proves that we do not have to recompute the dominator tree after each
contraction and part 5 proves that e is always used in TG,w

SSSP and that we can indeed calculate

TG′,w′

SSSP and then uncontract it to find TG,w
SSSP . The correctness of Algorithm 6 then follows from

applying induction on Claim 5.7.

5.3 Lower Bound in the Number of Vertices

In this section, we prove that the +n term in Theorem 3.1 is negligible for G′ that arises in
Algorithm 6, i.e., that |V (G′)| = O(OPTQ(G

′)).
We first show that after contracting the nodes of outdegree one in the dominator tree, the new,

contracted, tree cannot be too deep.

Lemma 5.9. Let G be a directed graph and TG
D its dominator tree. Assume that no node in TG

D

has outdegree 1. Let v1, . . . , vk be any sequence of distinct vertices in G such that vi dominates vi+1

for all i. Then k ≤ (n+ 1)/2.

Proof. Since every non-leaf vertex of TG
D has ≥ 2 children, there are ≥ 2 vertices on each but the

very first level of TG
D . Thus, its height is at most (n− 1)/2.

By the definition of TG
D , if vi dominates vi+1, then vi+1 ∈ TG

D (vi). We thus have a sequence
TG
D (v1) ⊃ TG

D (v2) ⊃ · · · ⊃ TG
D (vk) of trees of gradually decreasing height. Since TG

D (v1) has height
at most (n− 1)/2, this means that k ≤ (n+ 1)/2 as needed.

This implies that the number of linearizations is at least exponential in the number of vertices:

Lemma 5.10. Let G be a directed graph and TG
D its dominator tree. Assume that no node in TG

D

has outdegree 1. Then,
log(Linearizations(G)) = Ω(n).

Proof. Define ℓ(v) = dG,1(s, v), where 1 is a vector of unit weights and dG,1 therefore measures
BFS distance. We partition vertices of G by BFS layers, i.e., define Bi = { v ∈ V (G) | ℓ(v) = i }.
In the first part of the proof, we want to upper bound the number of layers for which |Bi| = 1.
Denote this number k.

Let v1, . . . , vk be all the vertices for which Bℓ(vi) = {vi}, ordered by increasing ℓ(vi). Fix some
i and look at a path from s to vi+1. Due to the properties of BFS, before a path visits a vertex
in layer L, it must visit a vertex in each previous layer. In particular, a path to vi+1 must visit
layer ℓ(vi) and its single vertex vi. Thus vi dominates vi+1, and this is true for all i. Hence we may
apply Lemma 5.9 on v1, . . . , vk to conclude that k ≤ (n+ 1)/2.

29

Now let TG
BFS := TG,1

SSSP be an arbitrary BFS tree of G. Observe that B0, . . . , BR (with R =
maxv ℓ(v)) is a barrier sequence with respect to TG

BFS . By Lemma 3.6, log(Linearizations(G)) =
Ω (
∑

i |Bi| log |Bi|) . Now use that a log a ≥ a− 1 for a ≥ 1 and a log a ≥ a for a ≥ 2 to write:

∑
i

|Bi| log |Bi| ≥

(∑
i

|Bi|

)
− k = n− k ≥ n− (n+ 1)/2 ≥ n/2− 1 = Ω(n).

In the first inequality, we used the fact that at most k of the |Bi| are equal to 1.

Corollary 5.11. Let G′ be the result of Algorithm 6 performing contractions on G. Then |V (G′)| =
O(OPTQ(G

′)).

Proof. G′ and TG′
D satisfy the conditions of Lemma 5.10, so it can be applied and |V (G′)| =

O(log(Linearizations(G′))). By Lemma 3.3, log(Linearizations(G′)) = O(OPTQ(G
′)), and thus

|V (G′)| = O(OPTQ(G
′)) as needed.

5.4 Lower Bound in the Number of Forward Edges

Next, we prove that every deterministic algorithm needs to make at least Ω(|FG,w| − n + 1) com-
parison queries. (In contrast to Section 5.3, we make no assumptions on G.) The idea of our lower
bound is as follows: the algorithm makes linear queries, so if it does not do enough of them, we
have enough degrees of freedom to find a linear subspace such that the algorithm cannot tell the
inputs from that subspace apart. On the other hand, for at least one other input in that subspace,
the answer to the distance ordering problem is different.

The full proof is somewhat technical and can be found in Appendix D. Here we present its
main argument, Lemma 5.12, and briefly mention the details needed to finish the lower bound.
Note that in Lemma 5.12 below, we talk about running the algorithm on instances with possibly
zero-weight edges, which we otherwise forbid (see Section 2.1). This is fine as long as we do not
use the instance to claim incorrectness. Making the weights strictly positive is one detail that we
sort out in Appendix D.

Lemma 5.12. Run a deterministic correct algorithm A on input (G,w) (with w > 0), and assume
it makes at most |FG,w| − n queries, and let L be the linearization it outputs. Then there exist
weights w′ ≥ 0 such that A run on (G,w′) performs the same queries and gets the same answers,
and furthermore, there is an edge uv ∈ FG,w such that w′(uv) = 0 and L(v) > L(u) + 1. That is, v
comes after u in L, but they are not neighboring in L.

Proof. Each query can be represented as a⊤i w = bi, where the algorithm supplies ai and gets back
sgn(bi). If the algorithm makes at most |FG,w| −n queries, there is an affine space W = {x ∈ Rm |
Ax = b } having dimW ≥ m−|FG,w|+n such that the (deterministic) algorithm cannot distinguish
between w and any w′ ∈W . If we add at most m− |FG,w|+ n− 1 additional constraints requiring
that all edges but those in FG,w \ {uv | L(v) = L(u) + 1 } keep their weight, we are still left with a
nontrivial affine subspace K ⊂W having dimK ≥ 1.

We can choose an arbitrary 0 ̸= d ∈ Rm such that w + d ∈ K. Assume d has at least one
negative component, otherwise take −d. If we now move from w in the direction of d, there exists
α ∈ R+ such that w′ := w + αd ≥ 0, but for some edge e, w′(e) = 0.

Since w′ ∈ K ⊆W , the queries posed by A cannot distinguish between w and w′. Additionally,
the edge uv having w′(uv) = 0 must also have uv ∈ FG,w and L(v) > L(u) + 1, because any f not
satisfying one of these conditions has w′(f) = w(f) > 0 by the definition of K.

30

One may be tempted to conclude that we have shown that we can turn (G,w) with a linearization
L into (G,w′) with a linearization L′ ̸= L such that A behaves the same on both inputs, and that
this is therefore a contradiction with the correctness of A. However, there are two problems with
this argument: first, (G,w′) can have multiple valid linearizations if dw(s, x) = dw(s, y) for some
x ̸= y; specially, L may still be valid for (G,w′). And second, the lemma gives us w′ ≥ 0, not w′ > 0,
and so the input (G,w′) is not a valid input to A and we cannot use it to derive a contradiction.

Both of these problems can be solved by applying appropriate perturbations to w and w′, see
Appendix D. The rough idea is that we can perturb w so that the answers to the comparison queries
are never 0. Since the algorithm only gets sgn(bi) and not bi as a response to a query, this then
gives us enough flexibility to be able to perturb w′ without changing the answers to queries in such
a way that w′ > 0 and L is inconsistent with w′. This gives us the following result:

Lemma 5.13. Let (G,w) be a weighted (directed or undirected) graph. Then, any valid determin-
istic algorithm for the distance ordering problem in the comparison-addition model from Section 2
needs to make at least |FG,w| − n comparison queries when run on some graph (G,w′).

Proof. See Appendix D.

We get the following corollary.

Corollary 5.14. For any G, maxw |FG,w| − n+ 1 ≤ OPTQ(G).

5.5 Finishing the Proof of Theorem 5.6

We are ready to finish the proof of Theorem 5.6.
First, we observe that the optimal comparison complexity only decreases after we contract G

to G′.

Proposition 5.15. Let G′ be the contraction of G produced by Algorithm 6. Then OPTQ(G
′) ≤

OPTQ(G).

Proof. One way of computing a linearization of G′ is to first “reduplicate” it to G′′ and then
uncontract G′′ to G, duplicating weights in the first step and putting zero weights on the newly
uncontracted edges in the second step, and then run an optimal algorithm for G. This approach
gives an upper bound on OPTQ(G

′) as needed.

We also check that the number of comparisons used for parallel edge removal is bounded by the
number of forward edges.

Proposition 5.16. Run Algorithm 5 on (G,w). The total number of comparison queries caused
by Algorithm 7 (that is, the total number of lazy queries evaluated later in the algorithm) is at most
maxw |FG,w| − n+ 1.

Proof. See Appendix E.

Before proving Theorem 5.6, we focus on time complexity separately:

Theorem 5.17. Algorithm 6 can be implemented in O(m+ n+OPTQ(G)) time.

Proof. By Theorem 5.5, the construction of TG
D and the subsequent dropping of edges in G go-

ing against the direction of dominance can be done in O(n + m) time. To implement the edge
contraction on Line 5, we first find all vertices of degree one in TG

D , these vertices form a graph
whose connected components are oriented paths. Then, we contract each such path at once. With

31

a careful implementation, both the contraction and deduplication can be performed in O(n +m)
time. By Theorem 3.1, the Algorithm 9 invocation runs in O(OPTQ(G

′) + |V (G′)| + |E(G′)|)
time. As |V (G′)| ≤ n, |E(G′)| ≤ m, and OPTQ(G

′) ≤ OPTQ(G) (per Proposition 5.15), this is
O(OPTQ(G)+n+m). Finally, the uncontractions can be done in O(n+m) time. Hence, the total
time complexity is O(n+m+OPTQ(G)) as claimed.

Now we are ready to prove Theorem 5.6:

Proof of Theorem 5.6. By Corollary 5.8, Algorithm 6 is correct. By Theorem 5.17, its time com-
plexity is O(m+ n+OPTQ(G)) and by Lemma E.1, this is O(OPTT (G)).

Finally, by Theorem 3.1 and Proposition 5.16, the query complexity is

O
(
OPTQ(G

′) + |V (G′)|+max
w
|FG′,w|+ (max

w
|FG,w| − |V (G)|+ 1)

)
.

Using Corollaries 5.11 and 5.14 (the latter one applied twice), we conclude that this quantity is at
most O(OPTQ(G

′) + OPTQ(G)), and by Proposition 5.15, this is O(OPTQ(G)) as needed.

5.6 Constructing a Linearization from an SSSP Tree

It remains to describe the algorithm DP (G,w, TG,w
SSSP) that constructs the linearization of (G,w)

in universally optimal time, given the shortest path tree of (G,w) as an additional input. The
algorithm does not take into account edges in E(G) \ TG,w

SSSP as those do not, by definition, have
any effect on the linearization.

Thus, we only need to solve the easier version of the original problem: Given a tree (T,w),
we need to find its linearization. Algorithm 8 straightforwardly solves this problem using dynamic
programming. For convenience, it also passes around dG,w(s, ·), the computed distances from s.
Those can be easily precomputed from (T,w) in linear time and 0 comparison queries.

Algorithm 8 internally uses a query-optimal procedure for merging two sorted lists:

Lemma 5.18. There is an algorithm MergeSortedLists for merging two sorted lists L1 and L2

of arbitrary lengths |L1| ≤ |L2| that uses at most 2 log
(|L1|+|L2|

|L1|
)
comparisons.

Proof. We use the algorithm of Hwang and Lin [HL72]. In their Theorem 2, they prove that their

algorithm uses at most log
(|L1|+|L2|

|L1|
)
+ |L1| − 1 comparisons, and we will prove that this is at most

2 log
(|L1|+|L2|

|L1|
)
.

We show the following inequality: for 0 ≤ k ≤ n/2, it holds that log
(
n
k

)
≥ k. For k = 0, we

have log 1 = 0 ≥ 0 as needed. For k > 0, we start with proving the known inequality that
(
n
k

)
≥ nk

kk
.

First note that for a > b > x > 0, a
b ≥

a−x
b−x , as we can write

a

b
· b− x

a− x
=

ab− ax

ab− bx
> 1,

since a > b and thus ab− ax > ab− bx. Hence,(
n

k

)
=

n

k
· n− 1

k − 1
· · · · · n− k + 1

1
≥ n

k
· n
k
· · · · · n

k
=

nk

kk
.

Now we can write:

log

(
n

k

)
≥ log

nk

kk
= k log

n

k
≥ k log

n

n/2
= k log 2 = k.

32

Thus, the algorithm of Hwang and Lin [HL72] uses at most log
(|L1|+|L2|

|L1|
)
+|L1| ≤ 2 log

(|L1|+|L2|
|L1|

)
comparison queries, as needed.

Algorithm 8 DP – Universally optimal distance ordering on a tree

Input: a rooted tree T , its root r, array d of distances from s
Output: a linearization of T

1: function DP(T , r, d)
2: L← []
3: Let u1, . . . , ut be children of r.
4: for i = 1, . . . , t do
5: L←MergeSortedLists(L, DP (T (ui), ui, d)) ▷ (use d to perform the comparisons)
6: L← [r] + L
7: return L

Lemma 5.19. There exists a time- and query- universally optimal algorithm for the distance
ordering problem on trees.

Proof. Consider Algorithm 8. Observe that at every point in the algorithm, the list [r] + L is
a linearization of some tree Tpart, where Tpart is a subgraph of T consisting of vertex r and the
subtrees of the first t′ sons of r for some 0 ≤ t′ ≤ t.

We prove by induction that at all times, the number of comparison queries performed so far
(including all recursive calls) is at most 2 log(Linearizations(Tpart)).

Initially, L = [], Tpart is a single vertex r and log(Linearizations(Tpart)) = 0, which is also the
number of comparisons performed. In the inductive case, let Ti := T (ui), denote Li the linearization
of Ti, and let Tpart, L and T ′

part, L
′ be the partial tree and linearization before and after processing

the i-th son of r. We can assume from induction that we have already proven the claim for all
smaller T and also for all i′ < i on this particular T .

By induction, the algorithm has so far used at most 2 log(Linearizations(Tpart)) comparison
queries on Tpart and at most 2 log(Linearizations(Ti)) comparison queries on Ti. Merging L and Li

together takes at most 2 log
(|L|+|Li|

|L|
)
queries. So, on one hand, the total query complexity after

constructing L′ is at most

2 log

(
Linearizations(Tpart) · Linearizations(Ti) ·

(
|L|+ |Li|
|L|

))
.

On the other hand, T ′
part has exactly Linearizations(Tpart) · Linearizations(Ti) ·

(|L|+|Li|
|L|

)
lin-

earizations, since every linearization of T ′
part is uniquely determined by the choice of L and Li and

the way in which to interleave them, and vice versa.
Thus, we used at most 2 log Linearizations(T ′

part) comparison queries to compute L′. By in-
duction the total number of comparison queries to compute the linearization of T is at most
2 log(Linearizations(T)), as needed.

Using Lemma 3.3, we conclude that the algorithm is universally optimal with respect to query
complexity. Its time complexity is proportional to query complexity (up to an additive term linear
in the input size), and so it is universally optimal with respect to time complexity as well.

We can now finish the proof of Theorem 5.1.

33

Proof of Theorem 5.1. The correctness of Algorithm 5 follows from Corollary 5.8 and the correct-
ness of Algorithm 8.

Algorithm 5 spends O(OPTT (G)) time in Algorithm 6 and O(OPTT (T
G,w
SSSP)) time in Algo-

rithm 8. The latter is bounded by O(OPTT (G)) as well, since every problem on TG,w
SSSP can be

solved by running the optimal algorithm on G and giving the edges in E(G) \ E(TG,w
SSSP) infinite

weights. Hence, the overall time complexity of Algorithm 5 is O(OPTT (G)).
Finally, by the same argument, its query complexity is O(OPTQ(G)) + O(OPTQ(T

G,w
SSSP)) =

O(OPTQ(G)).

6 Conclusion and Open Problems

In general, it would be very interesting to see more applications of the concepts of universal and
instance optimality. Here we state a concrete open problem that we find interesting.

Universally optimal MST Is there a deterministic universally-optimal algorithm for the min-
imum spanning tree (MST) problem in the comparison model? We note that by the result of
Chazelle [Cha00], the deterministic complexity of MST is already extremely close to linear (up to
the inverse Ackermann function). Moreover, the result of Pettie and Ramachandran [PR02] pro-
vides an explicit worst-case asymptotically optimal MST algorithm. It is unclear how to achieve
universal optimality using their approach: their algorithm uses the idea that if we reduce the prob-
lem of computing MST in a graph with m edges and n vertices to computing MST in a graph with
m/2 edges and n/2 vertices in O(OPT (m,n)) time, we can recurse and solve the MST problem
fully in O(OPT (m,n)) time. This line of reasoning does not seem to be applicable if we want to
achieve universal optimality.

References

[ABC17] Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. “Instance-Optimal Geometric
Algorithms”. In: J. ACM 64.1 (Mar. 2017). issn: 0004-5411. doi: 10.1145/3046673.
url: https://doi.org/10.1145/3046673.

[Als+99] Stephen Alstrup, Dov Harel, Peter W Lauridsen, and Mikkel Thorup. “Dominators in
linear time”. In: SIAM Journal on Computing 28.6 (1999), pp. 2117–2132.

[Băd+07] Mihai Bădoiu, Richard Cole, Erik D Demaine, and John Iacono. “A unified access
bound on comparison-based dynamic dictionaries”. In: Theoretical Computer Science
382.2 (2007), pp. 86–96.

[BHM13] Prosenjit Bose, John Howat, and Pat Morin. “A history of distribution-sensitive data
structures”. In: Space-Efficient Data Structures, Streams, and Algorithms: Papers in
Honor of J. Ian Munro on the Occasion of His 66th Birthday (2013), pp. 133–149.

[BLT12] Gerth Stølting Brodal, George Lagogiannis, and Robert E Tarjan. “Strict fibonacci
heaps”. In: Proceedings of the forty-fourth annual ACM symposium on Theory of com-
puting. 2012, pp. 1177–1184.

[Cha00] Bernard Chazelle. “A minimum spanning tree algorithm with inverse-Ackermann type
complexity”. In: Journal of the ACM (JACM) 47.6 (2000), pp. 1028–1047.

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1 (1959), pp. 269–271.

34

https://doi.org/10.1145/3046673
https://doi.org/10.1145/3046673

[Dua+23] Ran Duan, Jiayi Mao, Xinkai Shu, and Longhui Yin. “A Randomized Algorithm for
Single-Source Shortest Path on Undirected Real-Weighted Graphs”. In: arXiv preprint
arXiv:2307.04139 (2023).

[Elm06] Amr Elmasry. “A priority queue with the working-set property”. In: International
Journal of Foundations of Computer Science 17.06 (2006), pp. 1455–1465.

[EFI12] Amr Elmasry, Arash Farzan, and John Iacono. “A priority queue with the time-finger
property”. In: Journal of Discrete Algorithms 16 (2012), pp. 206–212.

[EFI13] Amr Elmasry, Arash Farzan, and John Iacono. “On the hierarchy of distribution-
sensitive properties for data structures”. In: Acta informatica 50.4 (2013), pp. 289–
295.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal Aggregation Algorithms for
Middleware”. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems. PODS ’01. Santa Barbara, California, USA:
Association for Computing Machinery, 2001, pp. 102–113. isbn: 1581133618. doi: 10.
1145/375551.375567. url: https://doi.org/10.1145/375551.375567.

[Fra+13] Wojciech Fraczak, Loukas Georgiadis, Andrew Miller, and Robert E Tarjan. “Finding
dominators via disjoint set union”. In: Journal of Discrete Algorithms 23 (2013), pp. 2–
20.

[Fre76] Michael L Fredman. “How good is the information theory bound in sorting?” In: The-
oretical Computer Science 1.4 (1976), pp. 355–361.

[Fre+86] Michael L Fredman, Robert Sedgewick, Daniel D Sleator, and Robert E Tarjan. “The
pairing heap: A new form of self-adjusting heap”. In:Algorithmica 1.1-4 (1986), pp. 111–
129.

[FT87] Michael L Fredman and Robert Endre Tarjan. “Fibonacci heaps and their uses in
improved network optimization algorithms”. In: Journal of the ACM (JACM) 34.3
(1987), pp. 596–615.

[FW93] Michael L. Fredman and Dan E. Willard. “Surpassing the information theoretic bound
with fusion trees”. In: Journal of Computer and System Sciences 47.3 (1993), pp. 424–
436. issn: 0022-0000. doi: https://doi.org/10.1016/0022-0000(93)90040-4. url:
https://www.sciencedirect.com/science/article/pii/0022000093900404.

[FW94] Michael L. Fredman and Dan E. Willard. “Trans-dichotomous algorithms for minimum
spanning trees and shortest paths”. In: Journal of Computer and System Sciences 48.3
(1994), pp. 533–551. issn: 0022-0000. doi: https://doi.org/10.1016/S0022-
0000(05)80064-9. url: https://www.sciencedirect.com/science/article/pii/
S0022000005800649.

[GKP98] Juan A Garay, Shay Kutten, and David Peleg. “A sublinear time distributed algorithm
for minimum-weight spanning trees”. In: SIAM Journal on Computing 27.1 (1998),
pp. 302–316.

[GT04] Loukas Georgiadis and Robert Endre Tarjan. “Finding dominators revisited”. In: SODA.
2004, pp. 869–878.

[GZ22] Mohsen Ghaffari and Goran Zuzic. “Universally-Optimal Distributed Exact Min-Cut”.
In: arXiv preprint (2022).

35

https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/375551.375567
https://doi.org/https://doi.org/10.1016/0022-0000(93)90040-4
https://www.sciencedirect.com/science/article/pii/0022000093900404
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80064-9
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80064-9
https://www.sciencedirect.com/science/article/pii/S0022000005800649
https://www.sciencedirect.com/science/article/pii/S0022000005800649

[Hae+24] Bernhard Haeupler, Richard Hlad́ık, John Iacono, Václav Rozhoň, Robert Tarjan, and
Jakub Tětek. Fast and Simple Sorting Using Partial Information. 2024. arXiv: 2404.
04552 [cs.DS].

[HRG22] Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. “Hop-constrained expander
decompositions, oblivious routing, and distributed universal optimality”. In: Proceed-
ings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. 2022,
pp. 1325–1338.

[HWZ21] Bernhard Haeupler, David Wajc, and Goran Zuzic. “Universally-optimal distributed
algorithms for known topologies”. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing. 2021, pp. 1166–1179.

[Hag00] Torben Hagerup. “Improved Shortest Paths on the Word RAM”. In: Automata, Lan-
guages and Programming. Ed. by Ugo Montanari, José D. P. Rolim, and Emo Welzl.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 61–72. isbn: 978-3-540-45022-
1.

[Har85] Dov Harel. “A linear algorithm for finding dominators in flow graphs and related prob-
lems”. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Com-
puting. 1985, pp. 185–194.

[HL72] Frank K. Hwang and Shen Lin. “A simple algorithm for merging two disjoint linearly
ordered sets”. In: SIAM Journal on Computing 1.1 (1972), pp. 31–39.

[Iac01] John Iacono. “Alternatives to splay trees with O(log n) worst-case access times”. In:
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms. 2001,
pp. 516–522.

[Iac00] John Iacono. “Improved upper bounds for pairing heaps”. In: Scandinavian Workshop
on Algorithm Theory. Springer. 2000, pp. 32–45.

[IÖ14] John Iacono and Özgür Özkan. “A tight lower bound for decrease-key in the pure heap
model”. In: arXiv preprint arXiv:1407.6665 (2014).

[KS18] László Kozma and Thatchaphol Saranurak. “Smooth heaps and a dual view of self-
adjusting data structures”. In: Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing. 2018, pp. 801–814.

[LT79] Thomas Lengauer and Robert Endre Tarjan. “A fast algorithm for finding domina-
tors in a flowgraph”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 1.1 (1979), pp. 121–141.

[LM69] Edward S Lowry and Cleburne W Medlock. “Object code optimization”. In: Commu-
nications of the ACM 12.1 (1969), pp. 13–22.

[Mun+19] J Ian Munro, Richard Peng, Sebastian Wild, and Lingyi Zhang. “Dynamic Optimality
Refuted–For Tournament Heaps”. In: arXiv preprint arXiv:1908.00563 (2019).

[PT14] Mihai Pătraşcu and Mikkel Thorup. “Dynamic Integer Sets with Optimal Rank, Se-
lect, and Predecessor Search”. In: 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. IEEE
Computer Society, 2014, pp. 166–175. doi: 10.1109/FOCS.2014.26. url: https:
//doi.org/10.1109/FOCS.2014.26.

[Pet05] Seth Pettie. “Towards a final analysis of pairing heaps”. In: 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’05). IEEE. 2005, pp. 174–183.

36

https://arxiv.org/abs/2404.04552
https://arxiv.org/abs/2404.04552
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1109/FOCS.2014.26

[PR02] Seth Pettie and Vijaya Ramachandran. “An optimal minimum spanning tree algo-
rithm”. In: Journal of the ACM (JACM) 49.1 (2002), pp. 16–34.

[Ram96] Rajeev Raman. “Priority Queues: Small, Monotone and Trans-Dichotomous”. In: Pro-
ceedings of the Fourth Annual European Symposium on Algorithms. ESA ’96. Berlin,
Heidelberg: Springer-Verlag, 1996, pp. 121–137. isbn: 3540616802.

[Ram97] Rajeev Raman. “Recent Results on the Single-Source Shortest Paths Problem”. In:
SIGACT News 28.2 (June 1997), pp. 81–87. issn: 0163-5700. doi: 10.1145/261342.
261352. url: https://doi.org/10.1145/261342.261352.

[Rou21] Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge Uni-
versity Press, 2021. doi: 10.1017/9781108637435.

[Roz+22] Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li.
“Undirected (1+eps)-Shortest Paths via Minor-Aggregates: Near-Optimal Determin-
istic Parallel and Distributed Algorithms”. In: Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing. STOC 2022. Rome, Italy: Association
for Computing Machinery, 2022, pp. 478–487. isbn: 9781450392648. doi: 10.1145/
3519935.3520074. url: https://doi.org/10.1145/3519935.3520074.

[Sha48] Claude Elwood Shannon. “A mathematical theory of communication”. In: The Bell
system technical journal 27.3 (1948), pp. 379–423.

[ST23] Corwin Sinnamon and Robert E Tarjan. “Efficiency of Self-Adjusting Heaps”. In: arXiv
preprint arXiv:2307.02772 (2023).

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. “Self-adjusting binary search trees”.
In: Journal of the ACM (JACM) 32.3 (1985), pp. 652–686.

[Tho00a] Mikkel Thorup. “Floats, Integers, and Single Source Shortest Paths”. In: J. Algorithms
35.2 (May 2000), pp. 189–201. issn: 0196-6774. doi: 10.1006/jagm.2000.1080. url:
https://doi.org/10.1006/jagm.2000.1080.

[Tho04] Mikkel Thorup. “Integer priority queues with decrease key in constant time and the
single source shortest paths problem”. In: Journal of Computer and System Sciences
69.3 (2004). Special Issue on STOC 2003, pp. 330–353. issn: 0022-0000. doi: https:
//doi.org/10.1016/j.jcss.2004.04.003. url: https://www.sciencedirect.com/
science/article/pii/S002200000400042X.

[Tho00b] Mikkel Thorup. “On RAM Priority Queues”. In: SIAM Journal on Computing 30.1
(2000), pp. 86–109. doi: 10.1137/S0097539795288246. url: https://doi.org/10.
1137/S0097539795288246.

[Tho99] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Integer Weights
in Linear Time”. In: J. ACM 46.3 (May 1999), pp. 362–394. issn: 0004-5411. doi:
10.1145/316542.316548. url: https://doi.org/10.1145/316542.316548.

[VV17] Gregory Valiant and Paul Valiant. “An automatic inequality prover and instance opti-
mal identity testing”. In: SIAM Journal on Computing 46.1 (2017), pp. 429–455.

[Zuz+22] Goran Zuzic, Goramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui Sun.
“Universally-Optimal Distributed Shortest Paths and Transshipment via Graph-Based
L1-Oblivious Routing”. In: Proceedings of the 33rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM. 2022.

37

https://doi.org/10.1145/261342.261352
https://doi.org/10.1145/261342.261352
https://doi.org/10.1145/261342.261352
https://doi.org/10.1017/9781108637435
https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1006/jagm.2000.1080
https://doi.org/10.1006/jagm.2000.1080
https://doi.org/https://doi.org/10.1016/j.jcss.2004.04.003
https://doi.org/https://doi.org/10.1016/j.jcss.2004.04.003
https://www.sciencedirect.com/science/article/pii/S002200000400042X
https://www.sciencedirect.com/science/article/pii/S002200000400042X
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1145/316542.316548
https://doi.org/10.1145/316542.316548

A Technical Aspects of Our Heap

In this section, we present two data structures needed to maintain auxiliary data about our heap
from Section 4.

A.1 Constant-Time Interval Maintenance

First, we describe a standard data structure for maintaining a set of disjoint intervals in a search
tree. It is used in Section 4 to keep track of which elements are in which heap, and also in Section A.2
to efficiently maintain a run-length encoded array. In terms of the interface that we specified back
in Section 4, in this section we are proving Theorem A.1. Recall:

Theorem A.1 (Interval maintenance). Assume the Word-RAM model with word size w. There
exists an ordered-dictionary-like data structure U for storing right-open, pairwise non-overlapping
intervals. Interval boundaries are integers from {0, . . . , 2O(w)}. There may be at most ℓ intervals
in the set at once, for some ℓ = O(logw). The data structure supports the following operations,
each with O(1) worst-case time complexity:

• Set(a, b, x): Set U [[a, b)] = x. Caller guarantees [a, b) does not overlap with any other interval
present in U .

• Delete(a, b): Delete [a, b) from U if it exists.

• Get(a, b): Return U [[a, b)] or ∅ if such interval is not in U .

• Find(t): Return (unique) a, b such that t ∈ [a, b) ∈ U , or ∅ if no such interval exists.

• Prev(t): Return largest c, d such that [c, d) ∈ U and d ≤ t.

• Next(t): Return smallest c, d such that [c, d) ∈ U and t < c.

Proof. We may use any ordered set data structure D that allows attaching data to stored ele-
ments. Set(a, b, x) stores D[a] = (b, x), Delete(a, b) checks if D[a][0] = b and if yes, deletes
D[a]. Get(a, b) checks if D[a][0] = b and if yes, returns D[a][1]. Find,Prev,Next can all be
implemented by calling the Prev and Next methods of the ordered set D.

If we use e.g. an AVL tree to representD, we get a O(log ℓ) time complexity of all operations. On
the other hand, using a fusion tree [FW93] (or, more precisely the dynamic variant of Pătraşcu and
Thorup [PT14]), the time complexity we get is O(logw ℓ) = O(logw logw) = O(1), as promised.

A.2 Maintaining the Minimum Subheap

This section explains how to efficiently find the heap containing the minimum in our collection of
O(log log n) Fibonacci heaps. In terms of the interface that we specified back in Section 4, in this
section we are proving Theorem A.2. Recall:

Theorem A.2 (Minimum-keeping). Assume the Word-RAM model with word size w. Then there
exists a data structure that maintains an array M of length ℓ = O(logw) that supports the following
operations:

• Get(i): return M [i].

• Decrease(i, x): given x ≤M [i], set M [i] := x.

• ChangePrefix(P): given an array P of length i, set M [0 : i] = P . P is allowed to be larger
than the current length of the array.

38

• FindMin(): return argminiM [i].

• Pop(): decrease the length of M by one. It is promised that the last two elements of M
contain the same value beforehand.

The elements stored may only be loaded, stored and compared, all in O(1) time per operation.
The amortized time complexity of those operations is as follows: O(1) for Get, Decrease, Find-
Min and Pop, and O(i) for ChangePrefix, where i is the length of the prefix to be changed. The
worst-case time complexity is the same, except for Decrease, which takes O(i) time worst-case
where i is the index being decreased.

In the rest of this section, we prove this theorem. We start with a correct but slow idea and
show how to speed it up. We ignore the Pop operation until the very end, as we require it in
Section 4 only because of a minor technicality.

Suffix minima If there were no ChangePrefix calls, we could just remember the global min-
imum and update it on every Decrease in O(1) per operation. However, this approach is too
costly if we reintroduce ChangePrefix calls, since then we have to iterate over the whole M every
time.

Instead, we will maintain an array S of suffix minima: S[i] will contain the minimum over
M [i :]. This means S[0] contains the global minimum, so FindMin is trivial. ChangePrefix can
now be processed in Θ(i) time, since the only values of S that are affected by a change of M [: i]
are S[: i], and we can use S[i] to get the minimum of M [i :] instead of iterating over the whole
array. Unfortunately, the cost of Decrease is now also Θ(i), since decreasing M [i] may possibly
change all of S[: i]. To satisfy Theorem A.2, we need to make it O(1) amortized.

Compressing values A helpful observation is that the changes to S made by Decrease are
very special. Since S is nondecreasing, we can implement Decrease by taking j = i, i− 1, . . . , 0,
and performing S[j] ← M [i] until we find j∗ with M [j∗] ≤ M [i], at which point we stop. This
takes Θ(i − j∗) time, which does not help the worst-case time complexity. However, observe that
we set all values in S[j∗ : i] to the same value. Hence, if we had a way to store S in a compressed
form, compressing each interval where S is constant into a single value, we could use a simple
amortization argument, taking the number of distinct values as a potential function, to prove that
the time complexity of Decrease is actually O(1) amortized. Fortunately, the following theorem
holds:

Theorem A.3 (Skippable array). Assume the Word-RAM model with word size w. There exists
an array-like data structure that can represent (resizable) arrays of size 2O(w) and additionally
supports the following two operations. Initially, the array is empty. All operations take O(1) time
worst-case.

• Skip(i): return largest j < i such that the array value at j and i differ.

• ChangeSkip(i, x): set A[j] = A[j + 1] = . . . = A[i] = x for j = Skip(i). Return j.

Proof. Let A be the array we want to represent. It will be represented using D from Theorem A.1
as follows: we partition A into maximal same-valued intervals [a, b) where A[a] = . . . = A[b−1] = x,
and store D[[a, b)] = x. Both accessing A[i] and the Skip operation can be trivially implemented in
O(1) time using Find andGet. Changing A[i] can be implemented inO(1) time by finding [a, b) ∋ i
and splitting it into at most 3 new intervals, updating D[[i, i + 1)], looking at the neighboring
intervals and possibly merging some of them if their values are now the same. ChangeSkip can

39

be implemented by splitting the interval [a, b) ∋ i into two and changing the value of the left one.
Finally, pushing can be implemented similarly to storing a value, and popping can be implemented
by finding the appropriate interval in D and shrinking it by 1.

With this data structure, we can prove Theorem A.2:

Proof of Theorem A.2. We store M as a regular array. Additionally, we store its suffix minima S as
a skippable array from Theorem A.3. Get and ChangePrefix are implemented trivially in O(1)
and O(i) time respectively, FindMin returns S[0] in O(1) time. Decrease(i, x) is implemented
by starting from i = j and alternating between ChangeSkip and Skip on S[j] until we reach j < i
where M [j] < x. Define a potential function that counts the number of distinct elements in S.
Then if Decrease performs s Skips, this takes O(s) time and the potential decreases by s − 1.
Therefore, the potential decrease can pay for the cost of Decrease and the amortized cost is thus
O(1). Finally, Pop can be implemented by just shortening M and S. Since the last two elements
of M are promised to be equal, this means that S does not need to be recomputed.

B Popular Implementations of Dijkstra Are Not Universally Op-
timal

In this section, we examine various priority queue data structures and, prove that if we use them in
Dijkstra’s algorithm (Algorithm 9), the resulting algorithm will not be universally optimal. Note
that any such priority queue also cannot have the working set property. In Lemma B.3 and Corol-
lary B.4, we show this for some common heaps (notably, Fibonacci heaps), and in Lemma B.5
and Corollary B.8, we show this for some common search trees (notably, splay trees).

Both lower bound claims use specific graph constructions. The first lower bound uses the
construction from Figure 2. The second lower bound uses a similar, denser construction, which we
will now describe.

Example B.1 (Dense counterexample). For any k ∈ N and n = k2, define the following directed
graph G = (V,E) with n+ k vertices:

V = Vn ∪ Vk for Vn = [n], Vk = {n+ 1, . . . , n+ k},
E = Pn ∪ Vn × Vk for Pn = { (i, i+ 1) | 1 ≤ i < n }

In other words, the graph consist of a directed path and then a set Vk of k additional vertices such
that every vertex of the path has an edge to all vertices in Vk. Set s = 1.

Lemma B.2. Let G = (V,E) be the graph from Example B.1. An universally optimal algorithm
can solve the distance ordering problem on this graph in O(n3/2) time.

Proof. Take Dijkstra’s algorithm with a Fibonacci-like priority queue with the working set property.
Note that the working set size of all vertices is at most

√
n, and for all but

√
n vertices, it is actually

1. Therefore, the cost of all DeleteMin calls is O(n+
√
n log

√
n) = O(n). The cost of all Insert

calls is O(|V |) = O(n), and the cost of all DecreaseKey calls is O(|E|) = O(n3/2), and besides
that, the algorithm performs only O(|V |+ |E|) = O(n3/2) additional work.

Now we are ready to give both lower bounds. First, we prove a simple lower bound for priority
queues taking Ω(log n) time per DeleteMin.

40

Lemma B.3. Let Q be a priority queue such that DeleteMin on Q takes Ω(log |Q|) time. Then
the instantiation of Dijkstra’s algorithm (Algorithm 9) using Q as the priority queue is not univer-
sally optimal.

Proof. Let G be the graph from Figure 2 with t =
√
n and r = n −

√
n. Define weights w such

that w(vivi+1) = 1 and w(sui) = n + 42 for all i. We prove the statement by showing that the
algorithm runs on (G,w) in Ω(n log n) time. Indeed: since the vertices ui get inserted into the
heap immediately at the start and are only extracted at the end, the algorithm performs Ω(n)
DeleteMin calls on a heap of size Ω(

√
n), so in total, it spends Ω(n log n) time on DeleteMin

calls. On the other hand, as we have already seen in Section 1.3, an universally optimal algorithm
solves the distance ordering on G in linear time.

Corollary B.4. Dijkstra’s algorithm that uses binary heaps, binomial heaps or Fibonacci heaps as
the priority queue data structure is not universally optimal.

Proof. For binomial and Fibonacci heaps, this follows directly from Lemma B.3, as in both cases,
DeleteMin internally performs bucket sorting into Θ(log |Q|) bins.

For binary heaps, we have no lower bound on the complexity of DeleteMin, but we can note
that Insert of a vertex 1 < v ≤ n takes Θ(log n) time, since the value is inserted to the last level
of a heap of size Θ(

√
n) and then it “bubbles up” all the way to the top. Therefore, we can use the

argument from Lemma B.3, but on Inserts instead.

Next, we turn our attentions to a large class of search trees that includes, among others, AVL
trees, (a, b)-trees, red-black trees and splay trees.

Lemma B.5. Let Q be a priority queue such that it is possible, via read-only white-box access to
the data structure, to enumerate all elements of Q in sorted order in time o(|Q| log |Q|). Then the
instantiation of Dijkstra’s algorithm (Algorithm 9) using Q as the priority queue is not universally
optimal.

We will prove Lemma B.5 by showing that a universally optimal Dijkstra with such a Q would
imply a faster-than-possible algorithm for the following sorting problem:

Definition B.6 (Successive sorting). Given n arrays a1, . . . , an, each of them being a permutation
of the set {1, . . . , k}, output n arrays S1, . . . , Sn, each of length k, such that for each i, ai[Si[1]] <
ai[Si[2]] < · · · < ai[Si[k]]. We are working in the comparison (Word-)RAM model defined in
Definition 2.5, i.e., the elements ai[j] cannot be accessed directly, but only summed and compared.

Lemma B.7. For any n and k, any (deterministic or randomized) algorithm solving the successive
sorting problem needs to perform Ω(nk log k) comparisons in the worst case.

Proof sketch. The proof is analogous both to the classic proof for (regular) sorting and to the proof
of Lemma 3.3. Here we prove the lemma only for deterministic algorithms. There are (k!)n possible
inputs and every one of them has a unique valid output. After q comparisons, the algorithm can
only be in 3q possible states. Therefore, if the algorithm never uses more than q comparisons, it
can produce at most 3q possible outputs. Therefore, it needs Ω(log((k!)n)) = Ω(nk log k) queries
in the worst case in order to sort all inputs correctly.

Now we are ready to prove Lemma B.5:

41

Proof of Lemma B.5. Let A be Dijkstra’s algorithm instantiated with the Q from the statement as
the priority queue. Assume A is universally optimal. Let G be the graph from Example B.1. We
show that we can solve the successive sorting problem for k =

√
n by running an algorithm A′ that

encodes its input into suitable weights w for the graph G and then runs a slightly modified version
of A on (G,w). We show that we can do this in o(n3/2 log n) time, which contradicts the successive
sorting lower bound, and therefore proves that A cannot in fact be universally optimal.

Define w as follows: Set ε = 1/100n2. For e ∈ Pn, define w(e) := ε. For e = (i, n + j) (recall
the definition of Vk in Example B.1), define w(e) := n− i+ ai[j]/n.

Now define di(v) as the distance from s to v if we are only allowed to use vertices Vk∪{1, . . . , i}.
By definition, di(v) ≥ di+1(v) for all i. Then we can prove by induction that for all v ∈ Vk and all
1 ≤ i < n, we have n− i ≤ di(v) = n− i+ ai[j]/n+ (i− 1)ε < n− i+

√
n/n+ 1/100n < n− i+ 1.

Therefore, it holds that ai[x] < ai[y] if and only if di(n+ x) < di(n+ y).
We also know how A behaves: it starts in s, insert all vertices from Vk into Q and then repeats

the following: insert the next i ∈ Vn into Q, immediately pop it, iterate over all edges e ∈ {i} × Vk

and decrease all values in the queue.
We let algorithm A′ run a modification of A that behaves as follows: first, instead of storing

just the weights in Q, we also, for each weight, store the identifier of the vertex this weight refers
to. (Internally, we may achieve this by storing ordered pairs (x, v) in Q instead of just x.) Then,
every time after the algorithm pops the vertex i ∈ Vn from Q and performs all the Decreases, we
perform a read-only traversal of Q in sorted order and store the associated vertices into an array Si.
Now Si stores the vertex numbers {n+1, . . . , n+k} sorted by di(v), and by the above observation,
they are also sorted by ai[j−n]. After the modified A ends, we output S1, . . . , Sn, with all numbers
decreased by n.

We see that A′, together with the initial preprocessing, solves successive sorting in o(n3/2 log n):
The original algorithm A takes Θ(n3/2) time in total, and we additionally traverse Q of size

√
n,

n times in total. By our assumption, each traversal takes o(
√
n log n) time, so o(n3/2 log n) in

total, and this is also the total complexity of A′. But by Lemma B.7, every algorithm solving the
successive sorting problem needs Θ(n3/2 log n) time, which is a contradiction.

Corollary B.8. Dijkstra’s algorithm that uses AVL trees, red-black trees, (a, b)-trees or splay trees
as the priority queue data structure is not universally optimal.

Proof. Follows immediately, as all those search trees can be traversed by DFS in Θ(|Q|) time.

Initially, this result may seem at odds with the dynamic optimality conjecture for splay trees
[ST85], as we have found a data structure – namely the heap from Section 4 – that is asymptotically
more efficient for a sequence of operations than the splay tree. However, the conjecture only applies
to binary search trees, which the heap from Section 4 clearly is not. Therefore, our result says
nothing about (and is not contradicted by) the dynamic optimality conjecture.

C Dijkstra’s Algorithm

For the sake of completeness, we now state the Dijkstra’s algorithm in Algorithm 9. Especially
note that edges uv such that ds(u) > ds(v) are always ignored and do not contribute to the query
complexity.

42

Algorithm 9 Dijkstra’s Algorithm

Input: A graph G = (V,E), weights w, a source vertex s ∈ V
Output: A linearization L of G, i.e., vertices of G sorted according to distance from s

1: S ← {} ▷ A set of explored vertices, initially empty.
2: L← [s] ▷ A list representing the linearization.
3: Q← {} ▷ Priority queue storing (distance, vertex) pairs, sorted by distance. Initially empty.
4: P ← [∅, . . . , ∅] ▷ For each vertex v, a pointer into Q, or ∅, if v has not been inserted yet.
5: D ← [+∞, . . . ,+∞] ▷ For each vertex, the current best distance from s.
6: P [s]← Q.Insert((0, s)), D[s]← 0
7: while |Q| ≠ ∅ do
8: du, u← Q.DeleteMin()
9: L← L+ [u], S ← S ∪ {u}

10: for all uv ∈ E where v /∈ S do
11: if P [v] = ∅ then
12: P [v]← Q.Insert((+∞, v)) ▷ Insert a dummy value first.
13: D[v]← min(D[v], du + w(uv)) ▷ Use du to update the current best distance to v.
14: Q.DecreaseKey(P [v], (D[v], v)) ▷ For simplicity, call even if D[v] did not change.
15: return L

D Lower Bound on the Optimal Query Complexity in the Number
of Forward Edges

Here we present the technical proof of Lemma 5.13 presented in Section 5.4. The goal is to prove
that for all (G,w), OPTQ(G) ≥ |FG,w| − n.

Given a deterministic algorithm A that uses at most |FG,w|−n queries on (G,w) and outputs L,
Lemma 5.12 guarantees the existence of weights w′ such that A cannot tell w and w′ apart and,
furthermore, dw′(s, v) = dw′(s, u) for some u, v non-adjacent in L. However, this is not sufficient
to get a contradiction, as L may still be consistent with (G,w′), for example if all dw′(s, x) are the
same. Also w′(uv) = 0, while the distance ordering problem requires w′ > 0, so (G,w′) is not even
a valid input to A.

The core idea is to perform appropriate perturbations to w and w′. Concretely, we use that the
comparison-addition model is actually strictly weaker than we assumed in Section 5.4, since the
algorithm does not get the result a⊤i w for each query, but only its sign. In Lemma D.1, we show one
can without loss of generality assume that A never gets an “is equal” answer to any of its queries,
and if not, we can perturb w to make it so without weakening the bound on queries. With such
a guarantee, we are free to perturb w′, since for a sufficiently small ε, any ε-perturbation will not
change the answers of the queries. In Lemma D.2, we show that with this freedom, we are able to
find a ε-perturbation w′′ of w′ that is strictly positive and for which L is not a valid linearization.
The proof of Lemma 5.13 then ties all these steps together.

Lemma D.1 (Preprocessing weights). Let G be a (directed or undirected) graph and w > 0 arbitrary
weights. Let A be any correct deterministic algorithm for the distance ordering problem that always
terminates. Then, there are weights w′ > 0 such that:

1. FG,w ⊆ FG,w′.

2. If we run A on (G,w′), the answer to every query is ±1.

Proof. We start by defining ε0 := minuv∈FG,w
|d(s, v) − d(s, u)|/10n and taking a ℓ∞-ball B0 =

43

w + (0, ε0)
m. Note that ε0 > 0 by the definition of FG,w, and also that for all ŵ ∈ B0, we have

FG,w ⊆ FG,ŵ. To prove this, note that dw(s, v) < dŵ(s, v) < dw(s, v) + nε0, because the length
of every path increases by some δ ∈ (0, nε0) when transitioning from w to ŵ. Therefore, for any
uv ∈ FG,w, we have dŵ(s, v) − dŵ(s, u) > dw(s, v) − dw(s, u) − nε0 ≥ 10nε0 − nε0 > 0, and thus
uv ∈ FG,ŵ.

Now we construct a sequence of open, nonempty ℓ∞-norm balls B0 ⊆ B1 ⊆ · · · ⊆ Bk by
induction as follows:

We run algorithm A on G, with the weight vector changing adversarially (but so that it is at
all times consistent with previous queries). Once the algorithm asks the i-th query a⊤i w, we let
Hi := {x ∈ Rm | a⊤i x = 0} be the hyperplane of all the weight vectors that make the i-th query
evaluate to 0. Then we find an arbitrary nonempty open ℓ∞-norm ball Bi satisfying

Bi ⊆ Bi−1 \Hi

Such Bi always exists, since the set on the right-hand side is open and nonempty. Then we pick
arbitrary wi ∈ Bi and report sgn(a⊤i wi) as the answer to the query. Note that sgn(a⊤i x) = sgn(a⊤i y)
for any two x, y ∈ Bi, since the whole Bi is on one side of H. Since wi ∈ Bi ⊆ Bj for all j < i, this
means that wi gives retroactively valid answers to all previous queries as well.

After the algorithm finishes with Bk as the final ball, we take an arbitrary w′ ∈ Bk as the
final weight vector. By the above paragraph, w′ ∈ Bk is consistent with all queries the algorithm
made, and thus running A on (G,w′) will produce the same set of queries that we observed, and
the answer to each of them will be ±1.

Additionally, w′ ∈ B0, and thus FG,w ⊆ FG,w′ , so w′ satisfies the first property. Lastly, w′ > 0,
since w′ > w > 0.

Lemma D.2 (Postprocessing weights). Given (directed or undirected) G,w ≥ 0, ε > 0 and an edge
uv such that w(uv) = 0, it is possible to find weights w′ ∈ w + (0, ε)m such that any linearization
L consistent with w′ has L(v) ≤ L(u) + 1.

Proof. Let B = w + (0, ε)m be an ℓ∞-ball. For every ∅ ̸= E1, E2 ⊆ E(G), E1 ̸= E2, consider the
hyperplane

HE1,E2 =

w ∈ Rm

∣∣∣∣∣∣
∑
e∈E1

w(e) =
∑
e∈E2

w(e)

 .

Now define
B′ = B \

⋃
∅≠E1,E2⊆E(G)

E1 ̸=E2

HE1,E2 .

Clearly, B′ is nonempty, since we are subtracting a finite amount of (m− 1)-dimensional sets from
a m-dimensional set. Now take any w′ ∈ B′. We claim that dw′(s, x) ̸= dw′(s, y) for x ̸= y. This is
true because every dw′(s, x) can be expressed as

∑
e∈Ex

w′(e) where Ex are the edges on a shortest
path from s to x, and equality would imply the existence of two nonempty Ex ̸= Ey giving the
same sum.

Finally, set εF := minx∈V (G) |dw′(s, u)− dw′(s, x)|/10 and ε′ := min(ε, εF). define w′′ by taking
w′′ := w′ and setting w′′(uv) := ε′/2.

Now we claim that w′′ satisfies the conditions. Clearly w′′ ∈ w + (0, ε)m (remember that
w(uv) = 0). Take any L consistent with w′′. If L(v) ≤ L(u) + 1, we are done. Assume L(v) >
L(u) + 1, i.e., assume dw′′(s, u) ≤ dw′′(s, z) ≤ dw′′(s, v) for some z. We claim this cannot happen:
clearly, dw′′(s, u) = dw′(s, u) and dw′′(s, v) ≤ dw′′(s, u) + ε′/2, as uv is the only edge whose weight

44

decreased. On the other hand, we claim that dw′′(s, z) > dw′′(s, u) + ε′/2. That is because either
dw′′(s, z) = dw′(s, z), in which case this holds trivially, or dw′′(s, z) < dw′(s, z). But then the
shortest path to z in (G,w′′) uses the edge uv, in which case it consists of the shortest path to v,
the edge uv and at least one more edge from v (since x ̸= v).

Hence, necessarily L(v) ≤ L(u) + 1, which concludes the proof.

Now we are ready to prove Lemma 5.13 that we restate for convenience.

Lemma 5.13. Let (G,w) be a weighted (directed or undirected) graph. Then, any valid determin-
istic algorithm for the distance ordering problem in the comparison-addition model from Section 2
needs to make at least |FG,w| − n comparison queries when run on some graph (G,w′).

Proof. Fix the algorithm A. First, we use Lemma D.1 to pass from w to some w′. Let Lw′ be the
linearization returned by A for (G,w′). Assume A makes at most |FG,w| − n ≤ |FG,w′ | − n queries.
By Lemma 5.12, there exist weights w0 ≥ 0 such that the algorithm cannot distinguish between
(G,w′) and (G,w0) and such that there is a forward edge uv ∈ FG,w′ with Lw′(v) > Lw′(u)+1 and
w′(uv) = 0. Our goal is to perturb w0 in a way that leads to a contradiction.

First, there exists ε > 0 such that every ŵ ∈ w0 + (0, ε)m is indistinguishable from w0 by A.
That is because for every query A makes, the set of weight vectors indistinguishable from w0 by
that query is an open half-space, and the finite intersection of all such half-spaces is thus an open
set S ∋ w0. By openness, w0 + (−ε, ε)m ⊆ S for some ε > 0, and thus also w0 + (0, ε)m ⊆ S.

Now we call upon Lemma D.2 to find a w∗ ∈ w0 + (0, ε)m for which all linearizations L∗ have
L∗(v) ≤ L∗(u) + 1. But this is a contradiction: w∗ > 0 and by the previous paragraph, running
A on (G,w′) and (G,w∗) leads to the same queries and thus the algorithm answers with the same
linearization Lw′ . On one hand, we know that Lw′(v) > Lw′(u) + 1, but on the other hand, we
know that if Lw′ were a valid linearization for (G,w∗), it would need to have Lw′(v) ≤ Lw′(u) + 1.
Therefore, A is not correct.

inline]Add a remark to section 5 that it’s m− n for undirected graphs (without proof)

E Deferred Proofs

In this section, we include some short-but-technical proofs from the main part of the paper. We
always restate the claim and then prove it.

Claim 2.3 (Equivalent definition of a linearization). For any graph G, L is a linearization of G if
and only if there exist nonnegative weights w such that

1. For every two nodes u ̸= v we have dw(s, u) ̸= dw(s, v),

2. u ≺L v if and only if dw(s, u) < dw(s, v).

Proof of Claim 2.3. We start by proving the forward implication. For every edge uv ∈ E, we define
w(uv) = |{x | u ≺L x ≼L v }| if u ≺L v and w(uv) = ∞, otherwise. Let s be the minimum w.r.t.
L. We argue that for any vertex v, it then holds dw(s, v) = |{x | x ≺L v }|. This will imply both
properties.

Since L is a linearization, there is a spanning tree T such that L is a linearization of this T .
Consider the s-v path in T . Since L is a linearization of T , this path visits vertices in increasing
order under ≺L, meaning that there is a path with finite length.

45

Let s = v1, v2, . . . , vk = v be the shortest s-v path. All the edges have to be such that vi ≺ vi+1

as otherwise the weight would be infinite by the definition of w. This allows us to write

|{x | x ≺ v }| =
k−1∑
i=1

|{x | vi ≺L x ≼L vi+1 }| =
k−1∑
i=1

d(vi, vi+1)

which is the total length of the path, showing that d(s, v) = |{x | x ≺ v }| since the path in
question is the shortest s-v path.

We now prove the reverse implication. Suppose there exist nonnegative weights w on the edges
of G such that the two properties are satisfied. We now prove that L is a linearization. Consider
the tree TG,w

SSSP . It is easy to verify that L is a linearization of this tree, since for any u ≺L v, it
holds d(s, u) < d(s, v), and u thus cannot be a successor of v.

Theorem 3.1. In the comparison-addition model of Section 2, Dijkstra’s algorithm (Algorithm 9)
implemented using any Fibonacci-like priority queue with the working set property has time com-
plexity O(OPTQ(G) +m+ n).

Moreover, the number of comparison queries made by the algorithm is maxw∈WG
|FG,w|.

Proof of Theorem 3.1. First, let us bound the query complexity of the algorithm. By properties
of Fibonacci heap with working set property from Definition 1.4, we know that the amortized
complexity of Insert and DecreaseKey is O(1). Thus, the total amortized query complexity of
Insert operations is O(n).

Next, we focus on DecreaseKey operations. We notice that due to our implementation of
Dijkstra’s algorithm in Appendix C, the DecreaseKey calls correspond 1-to-1 to edges e = uv
such that u comes before v in the output linearization. In fact, by Claim 2.3 there exist weights
w′ that define the same linearization and where additionally dw′(s, u) ̸= dw′(s, v) for u ̸= v. If
we run Dijkstra on G with weights w′, it will perform the exact same DecreaseKey calls, and
additionally, the edges e = uv that those calls correspond to have dw′(s, u) < dw′(s, v) (as opposed
to dw(s, u) ≤ dw(s, v) with the original weights w). That is, they are forward edges. Thus,
the number of all DecreaseKey calls is at most |FG,w′ | and we can bound the overall cost of
DecreaseKey operations by O(maxw̃ |FG,w̃|).

Finally, we use Proposition 3.2 to bound the cost of DeleteMin operations by O(OPTQ(G)+
n). Together, we get that the number of queries is bounded by O(OPTQ(G) + n +maxw |FG,w|),
as needed.

The time complexity is dominated by priority queue operations and additional linear time for
bookkeeping, thus we can similarly bound the time complexity of the algorithm by O(OPTQ(G) +
m+ n).

Lemma E.1. OPTQ(G) +m+ n = O(OPTT (G)).

Proof. Since every comparison query takes unit time, we have OPTQ(G) ≤ OPTT (G). We note
that the output of the distance ordering problem has size Ω(n), thus OPTT (G) = Ω(n).

It remains to argue that OPTT (G) = Ω(m). Consider any fixed weights w such that all
pairwise distances by the weights are distinct. Let L be the output ordering of the vertices under
w. Assuming that the input graph is given as a list of edges, we prove that any correct algorithm
needs to read non-zero amount of data about at least Ω(m) edges.

Suppose this is not the case. This means that there is a pair of vertices u ≺L v for which we
have seen neither of the two possible directed arcs uv, vu (or, the undirected edge uv in the case
when G is undirected), and at the same time they are not adjacent in L. It may be, however, the

46

case that the edge that we have not read is the edge uv with arbitrarily small weight. This makes
the returned ordering L invalid since with a sufficiently small weight, v has to immediately follow
u in L, proving that the algorithm is not correct.

Theorem 1.2. Dijkstra’s algorithm implemented with any Fibonacci-like priority queue with the
working set property (as defined in Definition 1.4) is a universally optimal algorithm for the distance
ordering problem in the comparison-addition model, in terms of running time. This holds both
for directed and undirected graphs, and when compared against both deterministic and randomized
algorithms.

Proof of Theorem 1.2. The theorem follows immediately from the combination of Theorem 3.1
and Lemma E.1.

Lemma 3.3. For any directed or undirected graph G, any (even randomized) algorithm for the
distance ordering problem needs Ω(log(Linearizations(G))) comparison queries in expectation for
some weights, i.e., OPTQ(G) = Ω(log(Linearizations(G))).

Proof of Lemma 3.3. Let A be any algorithm that solves the distance ordering problem. Let us
first assume that A is deterministic.

By Claim 2.3, for any linearization L of T , there exists a setting of weights wL such that L is
the unique solution to the distance ordering problem on (G,wL). For any given L, we fix one such
wL arbitrarily and denoteW the set of all wL. Consider a uniform distribution overW. Its entropy
is H = log(|W|) = log(Linearizations(G)). Now sample wL ∈ W from this distribution, run A on
(G,wL), and denote by CL ∈ {−1, 0, 1}∗ the sequence of answers to the comparison queries made
by A.

By the Shannon’s source coding theorem for symbol codes [Sha48], any ternary prefix-free code
C : W → {−1, 0, 1}∗ has to have an expected length of at least H/ log 3. But as A is correct and
deterministic, the mapping that maps each wL to CL is such a code. Namely, if CL = CL′ , then
due to determinism, the algorithm asked the same queries and got the same answers, and hence it
output L = L′ and we necessarily have wL = wL′ . For similar reasons, CL cannot be a prefix of
CL′ . Therefore, A has to perform at least log3(Linearizations(G)) queries in expectation.

Now let A be a randomized algorithm and let X be the random variable denoting the num-
ber of comparisons performed by A. By the previous statement, for any choice of random bits r,
we have E[X | R = r] ≥ log3(Linearizations(G)). By the law of total expectation, we also have
E[X] ≥ log3(Linearizations(G)). Finally, we can write E[X] =

∑
wL∈W E[X | w = wL]/|W|, and as

X is nonnegative, there exists an input wL such that E[X | w = wL] ≥ log3(Linearizations(G)) =
Ω(log(Linearizations(G))). In other words, for some weights wL, algorithm A needs to make
Ω(log(Linearizations(G))) queries in expectation, just as we wanted.

Note that this lower bound holds also in Word-RAM, since every query only supplies log2 3 =
Θ(1) bits of information.

Proposition 5.16. Run Algorithm 5 on (G,w). The total number of comparison queries caused
by Algorithm 7 (that is, the total number of lazy queries evaluated later in the algorithm) is at most
maxw |FG,w| − n+ 1.

Proof. First, use the same argument as in the proof of Theorem 3.1 to claim that we can in fact
transition to some other weights ŵ such that FG,w ⊆ FG,ŵ, Dijkstra’s algorithm on (G, ŵ) asks the
same queries as Dijkstra’s algorithm run in (G,w), and furthermore it only asks queries about edges
in FG,ŵ. Although not immediately clear, one can observe that the same holds also for (G′, w′) and

47

(G′, ŵ′), and for FG,w′ and FG,ŵ′ . As |FG,w| ≤ |FG,ŵ|, we can carry on with the proof by setting
w = ŵ (and the conclusion will apply also to the original w as well).

Let f = |FG,w|, n = |V (G)| and f ′′ = |FG′′,w′′ |, n′′ = |V (G′′)|. By Claim 5.7 and by induction,
f − n = f ′′ − n′′. Therefore, it is enough to show that Algorithm 7 causes at most f ′′ − n′′ + 1
queries.

Algorithm 7 causes at most one query per each e ∈ FG′′,w′′ . Partition all edges in G′′ by their
endpoints, namely, for u, v ∈ V (G′′), let Cu,v contain all edges from u to v in G′′. Note that for
each choice of u and v, either all edges of Cu,v are forward, or none is. For each pair u, v ∈ V (G′′),
define Du,v as Cu,v if the edges in Cu,v are forward, and as an empty set otherwise. Note that
|FG′′,w′′ | =

∑
u,v∈V (G′′) |Du,v|.

We can see that for each Du,v, we actually need to pay only |Du,v| − 1 comparisons, not |Du,v|,
since finding a minimum among k elements can be done using k − 1 comparisons. Therefore, the
total number of comparisons we need to perform is

∑
u,v∈V (G′′)max(0, |Du,v| − 1) = |FG′′,w′′ | − h,

where h is the number of pairs (u, v) such that Du,v is nonempty. If we recall that G′ is defined
as the deduplication of G′′, we immediately get that h = |E(G′)|. Since G′ is connected, we have
h ≥ |V (G′)| − 1 = |V (G′′)| − 1 = n′′ − 1.

Thus, the total number of comparisons is f ′′ − n′′ + 1, as needed.

Claim 5.7 (Structure of contractions). Let TG
D be the dominator tree of a multigraph G rooted at

s, let w be weights on G, and e = uv ∈ E(TG
D) an edge such that u is a node with outdegree one in

TG
D and v its unique child in TG

D . Assume that every node in G is reachable from s. Also, assume
that G may have duplicate edges from one vertex to another, but there are no duplicate edges from
a dominator vertex to a dominated vertex. Furthermore, assume that there are no edges xy ∈ E(G)
where y dominates x.

We claim:

1. The edge e also exists in G and it is the only incoming edge to v in G.

2. There is no edge uz ∈ E(G) other than e for which z ∈ TG
D (v).

Next, define G′, T ′, w′ as follows. We set G′ = G/e and T ′ = TG
D /e. Let ϕ(x) : V (G) → V (G′) be

the mapping performed by the contraction, i.e., ϕ(u) = ϕ(v) = [uv] and ϕ(x) = [x] otherwise. We
set w′ = w with the exception that for every edge f = vx ∈ E(G) and its counterpart f ′ = [uv][x] ∈
E(G′), we define w′(f ′) = w(u, v) + w(f). In particular, for any edge f = ux and its counterpart
f ′ = [uv][x], we set w′(f ′) = w(f). Then, the following holds:

3. Every node in G′ is reachable from ϕ(s). G′ has no two edges e1, e2 such that they both go
from x to y and x dominates y. Also, there are no edges xy where y dominates x.

4. T ′ = TD(G
′).

5. TG′,w′

SSSP = TG,w
SSSP /e.

6. FG′,w′ = FG,w/e, |FG′,w′ | = |FG,w| − 1 and |V (G′)| = |V (G)| − 1.

Proof. In the following, we abuse multigraph notation, so that, for example, xy ∈ E(G) means
“there exists an edge from x to y in G”. Also,

1. Let z be any vertex such that f = zv ∈ E(G). Such a z exists, otherwise v would not be
reachable from s. Take an arbitrary path P in G from s to v through z. As u dominates v,
P must go through u, and since this holds for all P , necessarily z ∈ TG

D (u). But z /∈ TG
D (v),

since by our assumption, there cannot exist an edge zv ∈ E(G) where v dominates z. Then,
necessarily, z = v, as v is the only child of u in TG

D . Finally, f has to be a unique multiedge
as u dominates v.

48

2. Take any such z ̸= v and f = uz. On one hand, since z ̸= u and z ∈ TG
D (u), necessarily

z ∈ TG
D (v). On the other hand, take any simple path P from s to z using the edge f . P

cannot go through v, as it would have to visit it before u, and that would imply u does not
dominate v. But then v does not dominate z, as we have found a path from s to z not going
through v. Thus, z ∈ TG

D (v) and z /∈ TG
D (v) at the same time, which is a contradiction.

3+4. For arbitrary z ∈ V (G), take any path P from s to z. Necessarily, the path P ′ = P/e is a
path in G′ from ϕ(s) to ϕ(z), and thus, ϕ(z) is reachable from ϕ(s) in G′. As ϕ is surjective,
all vertices in V (G′) are reachable from ϕ(s).

By a similar argument, whenever a path P contains a vertex x ∈ V (G), then a path P/e
contains ϕ(x). Hence, if z dominates x, then ϕ(z) dominates ϕ(x), and vice versa (with the
only exception that v does dominate u), and the dominance relation is thus preserved. By
the way the contraction happened, we may conclude that T ′ = TD(G

′).

Suppose we have two edges e1, e2, both going from x to y such that x dominates y. Since G
has no such parallel edges, this necessarily means either that x = [uv] and uϕ−1(y), vϕ−1(y) ∈
E(G), or y = [uv] and ϕ−1(x)u, ϕ−1(x)v ∈ E(G). In the first case, since T ′ = TD(G

′), this
means that u dominates ϕ−1(y). By point 2, uϕ−1(y) cannot exist as ϕ−1(y) ̸= v, which is a
contradiction. In the second case, we similarly have ϕ−1(x)v ∈ E(G), but by point 1, such
an edge cannot exist for ϕ−1(x) ̸= u.

Finally, assume x dominates y in G′ and there is an edge from y to x. Since this does
not happen in G, then necessarily either x = [uv] or y = [uv]. Consider the first case.
Necessarily u and v both dominate ϕ−1(y), since T ′ = TD(G

′). Then either ϕ−1(y)u ∈ E(G)
or ϕ−1(y)v ∈ E(G), and both contradict the assumptions on G. Similarly, in the second case,
ϕ−1(x) dominates both u and v and the necessary existence of either uϕ−1(x) or vϕ−1(x)
again contradicts the assumptions on G. Therefore, no such x and y exist.

5. By the fact that u dominates v and there is only one edge from u to v, necessarily any path
to v, including the shortest one, must use edge e, so e ∈ TG,w

SSSP . On the other hand, one
can verify that w′ is constructed precisely in such a way that, for all P , w(P) = w′(P/e).
Therefore, if P is a shortest sz-path in G, then P/e is a shortest ϕ(s)ϕ(z)-path in G.

6. Since u and v get merged into a single vertex, we have |V (G′)| = |V (G)| − 1. By checking
the definition of w′, we can validate that if an edge is forward, it will be forward also after
the contraction, except for e, which disappears. Hence also |FG′,w′ | = |FG,w| − 1, as needed.

49

	Introduction
	Beyond the Worst-Case: Universal Optimality
	Our Results: Universally Optimal Dijkstra’s Algorithm via Heaps with the Working Set Property
	Intuition & Techniques
	Related Work

	Preliminaries, Definitions and Our Model
	Definitions
	Instance & Universal Optimality
	Our Model

	Universally Optimal Dijkstra
	Framework for Lower Bounding the Optimal Query Complexity
	Constructing Barriers in the Exploration Tree
	Finding a Good Interval Coloring

	Constructing Heaps with the Working Set Property
	Universally Optimal Dijkstra for Comparisons
	Contractions Guided by the Dominator Tree
	Algorithm Analysis
	Lower Bound in the Number of Vertices
	Lower Bound in the Number of Forward Edges
	Finishing the Proof of thm:contractingalgisoptimal
	Constructing a Linearization from an SSSP Tree

	Conclusion and Open Problems
	Technical Aspects of Our Heap
	Constant-Time Interval Maintenance
	Maintaining the Minimum Subheap

	Popular Implementations of Dijkstra Are Not Universally Optimal
	Dijkstra’s Algorithm
	Lower Bound on the Optimal Query Complexity in the Number of Forward Edges
	Deferred Proofs

