
Planning Modulo Theories: Extending the Planning Paradigm

Peter Gregory
School of Computing and Engineering

University of Huddersfield, UK
p.gregory@hud.ac.uk

Derek Long and Maria Fox
Department of Informatics

King’s College London, UK
firstname.lastname@kcl.ac.uk

J. Christopher Beck
Dept. Mech. and Industrial Engineering

University of Toronto, Canada
jcb@mie.utoronto.ca

Abstract
Considerable effort has been spent extending the scope of
planning beyond propositional domains to include, for exam-
ple, time and numbers. Each extension has been designed as a
separate specific semantic enrichment of the underlying plan-
ning model, with its own syntax and customised integration
into a planning algorithm. Inspired by work on SAT Modulo
Theories (SMT) in the SAT community, we develop a mod-
elling language and planner that treat arbitrary first order the-
ories as parameters. We call the approach Planning Modulo
Theories (PMT). We introduce a modular language to repre-
sent PMT problems and demonstrate its benefits over PDDL
in expressivity and compactness. We present a generalisation
of the hmax heuristic that allows our planner, PMTPlan, to
automatically reason about arbitrary theories added as mod-
ules. Over several new and existing benchmarks, exploiting
different theories, we show that PMTPlan can significantly
out-perform an existing planner using PDDL models.

1 Introduction
Classical planning states are valuations over propositional
variables and transitions between states are actions. Each
action has a precondition formula, which is an arbitrary for-
mula over the state variables that must be satisfied for the
action to be applied, and effects which assign new values to
a subset of the state variables. The remaining variables are
assumed to remain unchanged (the STRIPS assumption).

In its simplicity, classical planning shares a lot with SAT,
which is also concerned with valuations of propositional
variables. An interesting development in the SAT commu-
nity is the extension of the propositional language of SAT
via SAT Modulo Theories (SMT) (Nieuwenhuis, Oliveras,
& Tinelli 2006). SMT is the following family of problems:
Instance: A first order formula, F , including constant, pred-
icate and function symbols, and a theory, T , defining the
meanings of the symbols.
Question: Is F satisfiable, subject to the interpretations of
the symbols imposed by T ?

SMTlib (Barrett, Stump, & Tinelli 2010) is a language
developed for describing SMT problems. More than 18
solvers have been built to solve problems for several val-
ues of T , including Difference Logic, Linear Arithmetic,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Arrays and Non-Linear Real-valued Functions (de Moura
& Bjørner 2008; Nieuwenhuis, Oliveras, & Tinelli 2006;
Dutertre & de Moura 2006).

We present a planning formalism for Planning Modulo
Theories (PMT), allowing classical planning to be arbitrar-
ily extended in a modular way, analogously to SMT. In PMT,
new types (e.g. sets, vectors) can be added as modules and
functions operating over those types can then be used in ac-
tions. This approach allows exploitation of core planning
techniques, while decomposing problems into components
that depend on specialised solvers. PMT problems could
be solved by compilation into SMT, relying on SAT to sup-
port the core planning. Although Rintanen has reported
some success in making SAT-planning competitive (Rinta-
nen 2011), there is strong evidence to suggest that dedicated
approaches to planning remain dominant. We present an
implementation of a planner that solves PMT problems di-
rectly. We show how the hmax heuristic can be extended to
arbitrary new types, using a technique based on association
of types with abstractions. We also describe how abstrac-
tions can be constructed automatically, allowing the auto-
matic construction of an hmax heuristic in PMT domains.
We demonstrate some of the advantages PMT offers over
PDDL modelling and present benchmark problems that can-
not be efficiently represented or solved in PDDL, but which
are naturally expressed in PMT. We then show the perfor-
mance of our planner on these domains.

2 Planning Modulo Theories
We now formally define Planning Modulo Theories, extend-
ing classical planning problem analogously to the way that
SMT extends SAT. Recall that a (first order) theory is a set
of first order sentences, usually constructed as the deductive
closure of a set of axioms, defining behaviour of a (possi-
bly infinite) collection of symbols: constants, functions and
predicates. Examples are the theories of arithmetic and sets.

Definition 2.1 — State A state is a valuation over a fi-
nite set of variables, V , where each variable, v ∈ V , has a
corresponding domain of possible values, Dv . The expres-
sion s[v] denotes the value state s assigns to variable v and
s[v = x] is the state that is identical to s except that it as-
signs the value x to variable v. The state space for V is the
set of all valuations over V .

65

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

Classically, all planning state variables have boolean do-
mains. In SAS+ encodings, variables have finite domains,
while, in metric planning, domains can be integers or real
numbers. In PMT we allow arbitrary domains, such as sets,
lists, multi-dimensional vectors over reals and so on. Use
of types such as sets greatly increases the ease with which
certain kinds of problems can be modelled (in some cases of-
fering an exponential compression of the domain encoding),
increasing the range and reach of potential planning appli-
cations. It is worth noting that richly expressive languages
for expressing change over time are far from new (e.g. the
Situation Calculus (McCarthy 1963)), but what we propose
here actually constrains the model to make explicit the ac-
tion structures that cause change in a way that makes them
easier for a planner to reason about.

Definition 2.2 — First order sentence over a state
space S modulo T A first order sentence over a state space
S modulo T is a first order sentence over the variables of the
state space, constant symbols, function symbols and pred-
icate symbols, where T is a theory defining the domains
of the state space variables and interpretations for the con-
stants, functions and predicates. A term over S modulo T
is, similarly, an expression constructed using the symbols
defined by S and T .

The key to extending classical planning into PMT is to
support first order sentences modulo theories in the precon-
ditions of actions.

Definition 2.3 — Action An action, A, for a state space
S modulo T , is a state transition function, comprising:
• A first order sentence over S modulo T , PreA, called the

precondition of A.

• A list, EffA, of assignments to a subset of the state vari-
ables, each setting a variable to a value defined by a term
over S modulo T .
One of the most important ideas in early planning was the

STRIPS assumption: that variables not explicitly affected by
an action are assumed unchanged. This dramatically sim-
plifies the description of actions compared with complete
axiomatisations. We adopt the same assumption in our defi-
nition of action application:

Definition 2.4 — Action application An action, A, for
state space S modulo T , is applicable in state s ∈ S if
T, s |= PreA (that is, the theory together with the valuation
s satisfies the precondition of A). Following application of
A, s is updated by the assignments in EffA to the variables
that they affect, leaving all other variables unchanged.

Definition 2.4 indicates the role that subsolvers play in
PMT: to confirm that an action, A, can be applied in a state,
s, it is necessary to check T, s |= PreA. Doing so involves
interpreting the symbols from T that appear in PreA. T
might, in practice, comprise the deductive closure of several
theories (for example, T might include sets and numbers,
relying on arithmetic and set operations and interaction be-
tween them through the cardinality function), in which case
multiple subsolvers might be required to interpret PreA,
perhaps with interactions between them. We assume that

logical connectives and structural equality are interpreted by
|=.

We now complete the definition of the PMT problem.

Definition 2.5 — Planning Modulo Theory A Planning
Modulo T problem is the tuple 〈S,A, I,G〉 where:
• S is a state space in which all of the variable domains are

defined in T ;
• A is a collection of actions for S modulo T ;
• I is an initial valuation (the initial state) and
• G is a first order sentence over S modulo T (the goal).
A plan is a sequence of actions, 〈a1, ..., an〉 such that ai is
applicable in state si−1 and si is the result of applying ai to
si−1, where s0 = I and T, sn |= G.

PMT supports a lifted representation (as with PDDL)
allowing parameterised families of variables and actions.
Variable families must be parameterised with finite types to
ensure that the set of variables remains finite. We note that
it is straightforward to generalise the above definitions to
include parallel plans and temporal planning problems and
their plans (Fox & Long 2003; 2006).

The idea of extending classical planning to include
interpreted predicates and functions was proposed by
Geffner (2000) as Functional STRIPS, which is very simi-
lar in intention to our proposal. However, while Functional
STRIPS is powerful enough to express computations on com-
plex data structures and relationships between these data
structures and the propositional part of a planning problem,
the idea has not been pursued. Furthermore, the Functional
STRIPS proposal does not make theories an explicit parame-
ter of the encodings. In this paper we propose a different
approach which shares some of the same ideas, but goes
further in terms of the way theories are integrated as pa-
rameters to planning problems and we go on to show how
these ideas can be supported in implementation. Dornhege
et al. (2009a) proposed the extension of PDDL with modules
that are linked to semantic attachments. Others have also
used semantic attachments to extend the range of different
kinds of planning technology, such as control-rule guided
search (Bacchus & Kabanza 2000) and hierarchical plan-
ning (Currie & Tate 1991). The idea of exploiting seman-
tic attachments is related to PMT, although the mechanisms
supporting use of these attachments make the management
of interacting theories potentially harder to control.

In Table 1 we note some of the theories that have been
used in existing planning systems. The table shows several
planners that can be seen as having been designed to solve
planning problems modulo specific theories. In each case,
the interpretation of the theory is managed via a specialised
subsolver that can evaluate terms and predicates over terms
within the theory, supporting the associated planner in solv-
ing problems that use the theory. This support varies from
a simple consistency check for sentences in the theory (e.g.
the STN in CRIKEY3) through to production of no-goods for
the associated planner (e.g. LP-SAT).

Other authors have also observed the opportunities that
SMT offers for planning with specific theories. In particu-
lar, Wolfman and Weld’s LP-SAT (1999) uses a compilation

66

Planning problems Theory Planner Subsolver

Simple durative Difference Logic Sapa (Do & Kambhampati 2003) STN solver
actions (PDDL2.1) CRIKEY3 (Coles et al. 2008b)

Continuous effects (PDDL+) Linear Programs COLIN (Coles et al. 2009) LP solver

Metric resources Presburger Arithmetic Metric-FF (Hoffmann 2003) Interval bounded search
LP-RPG (Coles et al. 2008a) LP solver
Filuta (Dvorak & Barták 2010) Specialised solver
LP-SAT (Wolfman & Weld 1999) SAT modulo LP

Axioms Datalog FF variant (Thiébaux, Hoffmann, & Nebel 2005) Specialised

3d manufacturing problems 3d geometry IMACS (Gupta, Nau, & Regli 1998) CAD-based

Physical system models Non-linear functions ASPEN (Chien et al. 2000) External code attachments
SHOP (Nau et al. 1999)
Europa (Reddy et al. 2008)

Data products Ontological theories WSC planner (Hoffmann et al. 2008) Inference over ontologies

Motion planning 2d and 3d geometry TFD/M and FF/M (Dornhege et al. 2009a; 2009b) Semantic attachments

Table 1: Some of the existing examples of planners that use sub-solvers to work with theories.

approach to achieve solutions to planning with metric re-
sources and TM-LPSAT (Shin & Davis 2005) uses a similar
approach to convert PDDL+ problems into SAT modulo LP
problems. TLP-GP (Maris & Régnier 2008) also compiles
to SMT to handle temporal problems, using SAT modulo
temporal problems (solved with STNs). In all of these ex-
amples the researchers have treated the planning problems
as classical planning supplemented with specific fixed the-
ories and have exploited the SMT compilation as a way to
access the power of SMT to solve SAT modulo the specific
theories involved. This is distinct from the idea of theories
as parameters of the planning problem.

Research on SMT has focussed on theories that have ap-
plication in the kinds of program and hardware verifica-
tion tasks that are common application targets of the SAT
technology, such as theories of arithmetic and of arrays.
Similarly, planning can benefit from theories of spatial and
kinematic reasoning to support integrated task and motion
planning (Cambon, Alami, & Gravot 2009), data-operations
for planning pipeline operations such as image process-
ing (Golden 1998) or web-services (Hoffmann 2008), or of
data-structure variables (arrays, sets, lists) to support, for ex-
ample, bioinformatics applications such as DNA analysis.
There are also many examples of systems that integrate pro-
grammed functions into planning models to support efficient
modelling of complex subsystems, such as batteries, thermal
behaviour and so on (Chien et al. 2000). PMT can subsume
all of these examples and incorporate them into a single uni-
formly defined problem structure.

3 Describing PMT Problems
To support convenient description of PMT domains, we pro-
pose a modular variant of PDDL. Dornhege et al. (2009a)
also propose a modular extension of PDDL, but where their
extension is based on attaching external libraries to the pred-
icate and function terms they introduce, our variant focusses
on the addition of theories for types. The idea of a modular
language mirrors SMTlib (Barrett, Stump, & Tinelli 2010),
allowing easy extension by addition of new theories to pro-
vide new types, with new interpreted constants and pred-
icates and functions over these types. Module files contain

declarations of the types of functions manipulating both new
and existing types and are written in Module Definition De-
scription Language (MDDL). The definitions of the variables
and actions that model a planning domain are provided in
core files, which are written in Core Domain Description
Language (CDDL).

In CDDL and MDDL all constants and functions are typed.
Two types are defined in the core language: boolean and
object. The type object defines enumerated domains,
such as the set of locations in a transportation domain. CDDL
provides two functions: polymorphic structural equality and
polymorphic assignment. The return type of equality is
boolean. Assignment takes a variable and an expression of
the same type and updates the state by assigning the value of
the expression (evaluated in the current state) to the variable.

Each module can define a (single) new type, constants of
the type and functions. The functions can be over the new
type and types defined in other modules. The set module in
Figure 1 defines a polymorphic set type. Its functions can be
used in action preconditions, the initial state and goals. The
cardinality function returns a value of type integer, a
type defined in a separate module. Sets can be constructed
in the initial state with either the empty-set constant or the
construct-set function. The parameter of the construct-set
function is ?x+ - a’, meaning that the function takes one
or more constants of type a’. Since it is often useful to have
variable numbers of arguments in function calls, we use the
‘+’ syntax to indicate a variable number of constants of the
final parameter type in the function prototype. Strictly, this
means that such definitions define a family of functions with
overloaded names, differentiated by their arities.

A CDDL file contains a header, defining names and values
for enumerated types, the required modules and the func-
tions that define the state variables for the domain (these can
only use parameters from the enumerated types). Also de-
fined in CDDL are the planning operators. A planning op-
erator is defined in two parts: a precondition list and an ef-
fect list. Each precondition is a boolean function over the
state variables and the list is interpreted as a conjunction.
Each effect is an assignment of an expression to a variable.
An example CDDL operator is shown in Figure 3, exploiting
the interaction of integers, object fluents and sets. In com-

67

(define (module set)
(:type set of a’)
(:functions
(construct-set ?x+ - a’) - set of a’
(empty-set) - set of a’
(cardinality ?s - set of a’) - integer
(member ?s - set of a’ ?x - a’) - boolean
(subset ?x - set of a’ ?y - set of a’) - boolean
(union ?x - set of a’ ?y - set of a’) - set of a’
(intersect ?x - set of a’ ?y - set of a’) - set of a’
(difference ?x - set of a’ ?y - set of a’) - set of a’
(add-element ?s - set of a’ ?x - a’) - set of a’
(rem-element ?s - set of a’ ?x - a’) - set of a’
))

Figure 1: The definition of a set module in MDDL.
(define (domain setdomain)
(:types
location locatable - object
truck obj - locatable)

(:modules integer set)
(:functions
(at ?loc - location) - set of package
(loc-of-truck ?tru - truck) - location
(in ?tru - truck) - set of package
(linked-to ?x - location) - set of location)

Figure 2: Header of a CDDL domain file.

parison to a similar PDDL operator, this operator has fewer
parameters because the location of the truck is determined
functionally by an object fluent expression. In order to en-
force a capacity constraint on each truck, it is only necessary
to use the cardinality function. In PDDL it would be neces-
sary to maintain a numeric fluent to count the items in a
truck.

Variables can be assigned initial values or left undefined.
The undefined value is considered to be a member of every
type except boolean, may not be used in preconditions, but
may be assigned as an effect. The reason that boolean has
no undefined value is that we adopt the usual closed-world
assumption and treat anything that is not true as false.

4 Comparing CDDL/MDDL and PDDL
We now examine an example domain that is natural to model
using sets but which is difficult to model in PDDL, even with
quantification and numbers. Consider a logistics-style do-
main where trucks are required to deliver packages between
different locations. Packages are loaded into trucks one at
a time, but all packages in a truck are unloaded at the same
time (they are dump-trucks).

In the PMT framework, this unload action (along with rel-
evant state functions) can be modelled as follows:
(:functions
(pos ?tru - truck) - location
(at ?loc - location) - set of package
(in ?tru - truck) - set of package
(connects ?loc - location) - set of location)

(:action UNLOAD-TRUCK
:parameters (?t - truck)
:precondition (true)
:effect
((at (pos ?)) := (union (at (pos ?t)) (in ?t))
(in ?t) := (empty-set)))

The function pos defines object fluents each denoting the
location of a truck. The at and in functions denote sets
representing the packages at each location and in each truck,
respectively, and the connects function returns the set of
locations that can be reached from a given location. The
unload action uses this representation to model the effects
correctly: the set of packages at the location of the truck is

(:action load-truck
:parameters (?p - package ?t - truck)
:precondition ((member (at (loc-of ?t)) ?p)

(< (cardinality (in ?t)) 2))
:effect
((loc-of ?t) := (rem-element (at (loc-of ?t)) ?p)
(in ?t) := (add-element (in ?t) ?p)))

Figure 3: Sample operator using the set module, integer
module and object fluents. The truck has unit capacity: as-
signment to (in ?t) directly affects the result returned by
(cardinality (in ?t)) in the next state.

updated to its union with the packages in the truck and there
are then no packages left in the truck.

In order to model this problem in standard PDDL, we pro-
pose the following alternatives:

1. The ADL fragment of the language can be used, quantify-
ing over the packages in the effects of actions.

2. The propositional fragment of PDDL can be used with the
powerset of the universal package enumerated as distinct
named PDDL objects.
The ADL approach appears preferable to the propositional

one, since the latter requires an exponential construction of
sets of packages. However, in practice, most planners capa-
ble of handling ADL ground the powerset when confronted
with the ADL version, effectively producing the same model
as the propositional version.

Within the PMT framework, it is possible to specify goals
based on function evaluation. For example, the goal:
(= (cardinality (at loc1)) (cardinality (at loc2)))

specifies that the numbers of packages at loc1 and loc2
must be equal. It is possible to encode this goal in PDDL
only by changing the former model to include metric vari-
ables that count the numbers of items in the trucks and at lo-
cations. The counts must then be updated in a consistent way
in load and unload actions (this is only possible because we
know implicitly that all package sets are disjoint, so when
a truck unloads the size of the set of objects at the location
increases by the size of the set of objects in the truck). The
goal can then be specified in the following way:

(= (cardinality-at loc1) (cardinality-at loc2))

where cardinality-at is a metric fluent counting pack-
ages at each location. Very few planners are currently capa-
ble of handling ADL and numbers.

The cardinalities goal can be modelled using the ADL sub-
set of PDDL in combination with explicitly naming the sub-
sets of packages that can occur. This is achieved by adding
a predicate that models whether two (named) sets have the
same cardinality. When a load or unload occurs, the effect
determines which (named) subset is now present in the truck
and the location. The cardinality of the sets at two locations
can be then be checked using the cardinality testing pred-
icate. This example illustrates how changing the forms of
goal expressions can greatly complicate the PDDL model.

A very wide range of goals can be specified in the PMT
framework. For example, using the set module, it is pos-
sible to reason about combinations of any sets using stan-
dard set operations. In the PDDL model, each new set must
be managed explicitly throughout the actions. Consider the
following PMT goal:
(= (cardinality (union (connects (position truck1))

(connects (position truck2))) 4)

68

specifying that the union of the sets of locations accessible
to the two trucks has four elements. This goal is extremely
challenging to write in the PDDL model, since the two sets
of accessible locations might overlap. It can be captured by
adding a new function to the domain (accessible, say)
that explicitly defines, in the initial state, the size of the
union of the sets of connected locations for each pair of lo-
cations. Then the goal can be written:
(exists ?l1 ?l2 - location (and (at truck1 ?l1)

(at truck2 ?l2) (= (accessible ?l1 ?l2) 4)))

Adding this function will still not allow us to express goals
that involve three or more trucks, or those that require the set
of reachable locations to include a specific subset of values,
or a host of other variations. In general, it is not possible
to create a definitive PDDL representation of a PMT model
because there is always a more expressive goal specification
than can be captured in the PDDL domain model.

5 A PMT Planner
We have implemented a forward state-space planner, PMT-
Plan, operating on PMT models directly. One of the chal-
lenges in building such a planner is that, since types and
functions are user-defined through modules, the planner
must handle arbitrary (and possibly infinite) types. This has
very significant implications for the heuristic computation,
as well as complicating other aspects of the typical planning
process, such as grounding. At an implementation level, it
is a design goal to make it as easy as possible for a user to
implement a new module for use in PMTPlan.

The planner has two parts: the Core and the Modules,
supporting the CDDL and MDDL elements of the domain de-
scriptions respectively. The Core drives the search for a plan
and accesses each of the Modules. The Modules are custom
components which implement the new types and functions.
The Core module provides the boolean and object types
and implements assignment. It provides the following func-
tions:
assign :: variable -> expression -> state -> state
= :: expression -> expression -> boolean

Each of the Core and Module components implements the
following interface:
evaluate :: expression -> state -> constant
satisfies :: expression -> state -> boolean

The function evaluate returns the value of a given
expression in a given state and satisfies determines
whether or not a boolean expression is satisfied in a state
(realising the first of the components of Definition 2.4).
It might appear that satisfies is redundant since it can
be implemented using evaluate, but we will highlight
its role when we discuss heuristics. Each module imple-
ments evaluate and satisfies for the expressions it pro-
vides. For example, the set module evaluate implements
the union function by calculating the actual union of two
sets, using its own internal representation of the sets in-
volved. The Core evaluate function implements equal-
ity, evaluation of variables in a state, handles object values
and invokes calls on appropriate modules when evaluating
module-defined functions.

The module designer must implement the functions that
each module provides. A precondition expression is checked

by a call to Core.satisfies and an effect is applied by
calling Core.evaluate on the assigned expression and
then setting the modified variable to the expression value in
the next state. This is all that is needed to implement state
progression, which is sufficient to support a simple breadth-
first search through state space to find plans.

5.1 Abstractions and Heuristics
One of the most powerful techniques in modern planning
is the use of relaxed problems to provide an estimate of
plan length, providing a heuristic for A∗ or similar searches.
A simple heuristic is hmax, which can be seen as the
length of the shortest plan in the relaxed reachable state
space (Haslum & Geffner 2000). The standard relaxation
used to compute hmax, in propositional domains, is to ig-
nore delete effects of actions. We now consider a slightly
different interpretation of the computation of hmax and use
it to generalise the computation to arbitrary types.

As Haslum and Geffner (2000) observe, hmax is equiv-
alent to h1, constructed by building a relaxed reachability
analysis from the state being evaluated, s, until the goals
are satisfied: the analysis constructs a sequence of states,
starting from s, generating each successive state by simul-
taneously applying the add effects of all actions whose pre-
conditions are satisfied in the preceding state, until the goals
are satisfied. The length of the sequence is then the heuris-
tic value of s. One way to see this process is that the value
assigned to a variable by any update effect, regardless of
whether it is true or false, is combined with the value of the
variable in the preceding state by logical disjunction. The
reason for using disjunction is that the relaxation must be
monotonic: once a sentence is true in a state it must re-
main true in all subsequent states in the reachability analysis.
In a classical propositional model, goals and preconditions
are all conjunctions of positive literals, so monotonicity is
achieved by ensuring that variables remain true once they
have become true.

If goals or preconditions are arbitrary propositional sen-
tences over the state variables then achieving monotonic
behaviour requires a modification of this approach. In the
reachability analysis, the propositional variables are consid-
ered to take values in a new domain, {F, T, TorF}. The ini-
tial state in a reachability analysis starts with each variable
assigned either T or F according to its value (true or false) in
the state being evaluated. Sentences are evaluated in this do-
main using a modified interpretation of the logical connec-
tives. In particular: ¬TorF = TorF , TorF ∧ T = TorF ,
TorF ∧ F = F , TorF ∨ F = TorF etc. and a sentence is
satisfied if its final value is T or TorF . T , F and TorF are
equivalent to {true}, {false} and {true, false}, respectively,
with the operator used to combine values (corresponding to
disjunction in the original relaxation) being set union.

These examples serve to motivate the following defini-
tions, which generalise the ideas. We introduce the notion of
an abstraction of each value domain, such as {T, F, TorF}
discussed above. We also rely on an abstraction of the the-
ory used in a PMT model: for the {T, F, TorF} domain
the extended definition of the logical connectives is the ab-
stracted theory. Finally, we require an operator, which we

69

call the folding operator, to combine prior abstract values
with new ones during the updating of variables, which is the
role played by disjunction in the delete relaxation and union
for the domain {{true}, {false}, {true, false}}. The penul-
timate part of Definition 5.1 makes the abstraction a relax-
ation, while the last part ensures that the the folding opera-
tion provides the necessary monotonicity in the reachability
analysis defined in Definition 5.2.

Definition 5.1 — Domain Abstraction Given a planning
problem modulo T , P = 〈S,A, I,G〉, where S is a set of
valuations for variables 〈v1, ..., vn〉, a domain abstraction
of P is an abstracted state space, A(S) = A(Dv1) × ... ×
A(Dvn

), where:
• A(Dvi

) is a type called the abstraction of Dvi
and there

is an associated function abstract :: Dvi
→ A(Dvi

)

• for s ∈ S, abstract(s) is defined to be the result of ap-
plying abstract to each value assigned by s

• the abstract initial state is the valuation abstract(I)

• A(T) is an abstraction of T that defines the behaviours of
the functions, predicates and constants from T interpreted
over the types A(Dv1

), ...,A(Dvn
)

• for any sentence, S, and state, s ∈ S, such that T, s |= S,
A(T), abstract(s) |= S
• each A(Dvi

) has an associated folding operator, ⊕, such
that, for any x, y ∈ A(Dvi

), any sentence S and any state
s ∈ A(S), if A(T), s[vi = x] |= S or A(T), s[vi = y] |=
S then A(T), s[vi = x⊕ y] |= S.

Definition 5.2 — Reachability Analysis A Reachabil-
ity Analysis for a domain abstraction of a planning problem
modulo T is a sequence of abstract states, s0, ..., sk, where
s0 is the abstract initial state and, for each i = 1, ..., k,
si = apply(

⋃
As.t.si−1,A(T)|=PreA

EffA, si−1), where:
apply(es, s) = doEach(es, s, s)
doEach({e} ∪ es, s′, s) = doEach(es,doOne(e, s′, s), s)
doOne(v := x, s′, s) = s′[v = s′[v]⊕ evaluate(x, s)]

MetricFF (Hoffmann 2003) illustrates how Definition 5.1
can be applied to the reals, R, which are associated, in Met-
ricFF, with the type of real intervals: {[a, b]|a, b ∈ R, a ≤
b}. The abstracted theory is used to check sentences that
contain inequalities between reals by testing whether any
values in the intervals being compared satisfy the compar-
isons. Intervals are folded by taking the smallest enclos-
ing interval. MetricFF uses this abstraction to construct the
reachable abstracted states, but then constructs a heuristic
by building a relaxed plan, which is a more informed heuris-
tic than hmax, although inadmissible. LPRPG (Coles et al.
2008a) uses a similar abstraction, but modifies the way in
which effects are combined in Definition 5.2, using a Linear
Program to calculate interval bounds from the constraints
in the action preconditions and effects, while preserving the
necessary monotonicity condition.

To implement domain abstractions in PMTPlan, each type
must be linked to an abstract domain which conforms to the
following interface:
evaluate :: expression -> state -> constant
satisfies:: expression -> state -> boolean
fold :: constant -> constant -> constant

The link between a type and its abstraction also requires
an implementation of the abstract function. It is be-
cause of the way that abstractions are handled that we sep-
arate satisfies and evaluate, since their implementa-
tions can differ in handling particular types.

5.2 Domain Abstractions
In PMTPlan we exploit several domain abstractions. The
simplest is the identity abstraction, which leaves the space
unchanged. We explain why this is useful shortly. A second
abstraction is the enumerated abstraction, in which a type,
T , is associated with the abstract type P(T), the powerset of
T , and the folding operator is set union. The enumerated ab-
straction was described above for the boolean type, but can
also be used for infinite types such as integers, enumerating
the (finite) set of values reachable at each abstract state in a
reachability analysis. The enumerated abstraction can work
well when the goals are reachable after relatively few steps,
but the cost of maintaining sets of reachable values in infinite
types becomes prohibitive for long reachability analyses.

A third abstraction, which combats the problem of man-
aging sets of reachable values in the enumerated abstrac-
tion, is the finite abstraction in which a special limit value
is added to the powerset of a finite subset of values of the
original type. We call the finite subset the basis. The limit
value is used to represent any set that includes values outside
the basis. Thus, natural numbers can be abstracted with the
finite abstraction: {{0}, {1}, {0, 1}, large}, where large is
used to represent any set containing values other than 0 or 1.
One advantage of finite abstractions is that the choice of the
basis can be made to compromise between informedness of
the reachability analysis and the computational cost of con-
structing it. Finally, a bounds abstraction uses an abstract
value space that represents bounds on the range of possible
values of the base type: the interval abstraction for numbers
used in MetricFF is one example, but it can be generalised
to work with sets, multisets and other ordered infinite types.

PMTPlan actually uses two abstractions: one, the plan-
level abstraction, for the space in which a plan is sought
and another, the heuristic abstraction, for the reachability
analysis. In problems with infinite types, the use of a plan-
level finite abstraction can demonstrate unsolvability, aid-
ing identification of dead-end states. In general, we use the
identity abstraction at the plan-level, only switching to a fi-
nite abstraction if the reachability analysis extends beyond a
threshold size without yielding a value.

5.3 Automatic Domain Abstraction
Although the use of domain abstractions offers a general
way to handle arbitrary new types in PMT, it relies on pro-
vision of appropriate abstract types (and folding operators)
to accompany new types added to the modelling framework.
We have devised a way to avoid this by automatically con-
structing finite abstractions. The approach we use is to sam-
ple the values in a type by probing the reachable state space
around the initial state, until a set of values is constructed
for each of the types that supports the goals. The probing
is driven by selecting actions to maximise the number of
new values visited. We maximise the log of the size of the

70

new sets of values to avoid quickly growing subsets of infi-
nite types dominating our probes. Once the goals have been
reached (in the abstracted theory) we use the subsets of val-
ues constructed for each of the types as the basis of a finite
abstraction for each of them. The probes need only be con-
structed once, at the start of planning, and the constructed
enumerated abstractions then used throughout.

We also construct a heuristic that is often more informed,
though inadmissible, by using the finite set of sampled val-
ues found by the probing technique to restrict reachable
values assigned to variables in a reachability analysis us-
ing an enumerated abstraction. Restricting the reachable
values to a set, R, changes the value returned by doOne
in Definition 5.2 to be doOne(v := x, s′, s) = s′[v =
(s′[v]⊕evaluate(x, s))∩R]. Using the restriction can cause
some actions to fail to be applicable that are applicable in
the unrestricted abstraction. States that appear to be dead-
ends under this restricted abstraction are assigned a very
large value, but kept in the search space, to avoid incom-
pleteness. Another source of inadmissibility is that actions
can be delayed in application compared with the unrestricted
case. The restricted abstraction is often more informed, ap-
parently because it reduces spurious interactions between
values that are reachable along quite different trajectories,
artificially supporting action applications.

6 Experiments
We now provide some analysis of the performance of PMT-
Plan. We use three problems, illustrating the use of sets and
the power of our approach in handling domains with num-
bers. The problems are Jugs-and-Water (McDermott 2000),
which we use to illustrate the power of our heuristic in han-
dling number-based problems, the Dump-trucks domain we
outlined in Section 4 and a new problem called the Story-
tellers domain.

Table 2 shows our performance on Jugs-and-Water prob-
lems, compared with MetricFF, as the number of jugs grows,
both in terms of nodes evaluated and absolute time to solve
the problem; empty entries were not solved within 30 min-
utes and 4Gb (memory is most often the limiting factor for
the unsolved problems). In this problem we are using our
automatically constructed enumerated abstractions with the
identity as the base abstraction. The automatic enumeration
works well in this domain, identifying the useful reachable
values in the integer domain and allowing our hmax to be
more informed than the relaxed plan in the interval abstrac-
tion space used in MetricFF.

6.1 The Dump-trucks Domain
The Dump-trucks domain uses sets and numbers. The com-
plications in representing different goals for the domain in
PDDL were discussed in Section 4. For brevity we consider
only a simple collection of problems, with just two locations
and two trucks, initially one at each location, together with
varying numbers of packages all, initially, at one location.
The goals are:

(> (cardinality (union (in T1) (in T2))) 5)
(< (cardinality (in T1)) (cardinality (in T2)))

As can be seen in Table 3, PMTPlan scales better than Met-
ricFF on these problems. It is also clear in these results that

PMTPlan MetricFF

Jugs Nodes Time Nodes Time

02 34 2.47 18 0.01
04 24 2.44 136 0.00
06 97 6.94 582 0.03
08 116 8.20 2516 0.19
10 198 10.89 10564 1.17
12 270 15.79 28740 4.79
14 484 26.58 73558 18.00
16 507 37.07 186206 64.51
18 323 36.26
20 529 58.70
22 568 91.41
24 524 104.10
26 1995 392.32
28 395 108.66
30 707 201.68

Table 2: Jugs and Water with increasing numbers of jugs.

PMTPlan MetricFF

Packages Nodes Time Nodes Time

10 1247 11.44 54658 1.07
12 1855 16.78 84759 2.83
15 10933 52.60 271705 47.90
17 20247 156.83 551430 215.14
20 49414 1095.77

Table 3: Dump-trucks problems with increasing numbers of
packages.

MetricFF can evaluate nodes far faster than PMTPlan and
that the benefit of using the direct representation of sets de-
pends on the size and structure of the problems being solved.

6.2 The Storytellers Domain
In the Storytellers domain a set of storytellers tell their sto-
ries to a collection of different audiences. The storytellers
know different (possibly intersecting) sets of stories. The
audiences begin having heard none of the stories. Entertain-
ing an audience leaves it having heard all the stories a sto-
ryteller knows. A storyteller might tell stories an audience
has already heard, adding nothing to the stories the audience
knows. A PMT encoding of this domain is as follows:
(define (domain storytellers)
(:types storyteller audiences stories)
(:modules integer set)
(:functions (known ?t - storyteller) - set of stories

(heard ?a - audience) - set of stories
(story-set) - set of stories)

(:action entertain
:parameters (?t - storyteller ?a - audience)
:precondition (true)
:effect ((heard ?a) := (union (heard ?a) (known ?t)))))

Our goals require set equality, set cardinality and expres-
sions involving the stories heard by the audiences collec-
tively: any equivalent PDDL model must be able to express
these goals. The number of stories could be large (at least up
to 20). A propositional encoding of all story subsets is ruled
out, since 220 subset objects are required and 240 facts to
encode the subset relation. Therefore, some other encoding
must be used. Another problem in using PDDL arises from
the fact that numbers and quantification need to be used in
concert. In order to perform set-union in PDDL, it is natu-
ral to use quantification. Reasoning about the cardinalities
of sets is difficult using this model, as counters cannot be
incremented within a PDDL forall structure, so it is im-
possible to update the size of a set in a single action. With
neither a purely propositional model nor the ability to update

71

numbers in iterative structures, dummy actions are required
to emulate the desired behaviour. Thus, we arrive at the fol-
lowing PDDL model:
(define (domain storytellers)
(:requirements :fluents :adl)
(:types storyteller audience - person story)
(:predicates (knows ?t - storyteller ?s - story)

(heard ?a - audience ?s - story)
(entertaining ?t - storyteller ?a - audience)
(heard2 ?s - story))

(:functions (num-stories ?a - audience))

(:action start
:parameters (?t - storyteller ?a - audience)
:precondition

(not (exists (?aa - audience ?tt - storyteller)
(entertaining ?tt ?aa)))

:effect (entertaining ?t ?a))

(:action switch
:parameters
(?ot ?nt - storyteller ?oa ?na - audience)

:precondition
(and (not (exists (?s - story)

(and (knows ?ot ?s)
(not (heard ?oa ?s)))))

(entertaining ?ot ?oa))
:effect (and (not (entertaining ?ot ?oa))

(entertaining ?nt ?na)))

(:action entertain
:parameters (?t - storyteller ?a - audience ?s - story)
:precondition (and (not (heard ?a ?s))

(knows ?t ?s)
(entertaining ?t ?a))

:effect (and (heard ?a ?sa)
(heard2 ?s)
(increase (num-stories ?a) 1)))

In this model, storytellers tell stories one-by-one, so the car-
dinalities of the sets of stories heard by audiences can be
incremented as each story is told. Once committed, a story-
teller must tell all possible stories unknown to the audience.
This is achieved by the first precondition of the switch ac-
tion that switches which storyteller is entertaining an audi-
ence: the condition specifies that a new storyteller-audience
pair can be selected only if no stories known to the current
storyteller have not been heard by the audience.

We compare PMTPlan using the PMT model described
above and MetricFF using the PDDL model described above,
with counting and dummy actions. We consider two dif-
ferent goals with the same basic problems: saturation and
equality. Both of these goals require the audiences to hear at
least half of the stories, but the saturation problems require
all of the stories to have been heard by at least one of the
audiences, while the equality problems require that the au-
diences all hear the same stories. We use problems with two
audiences and five storytellers and vary the number of sto-
ries. Tables 4 and 5 show the performances of the planners.

MetricFF performs better on the saturate instances than
it does on the equality instances because it can avoid ex-
plicitly dealing with sets. The audiences accumulate sto-
ries monotonically, so the problem only really concerns the
simple counter to track whether all of the stories have been
heard by all the audiences. When reasoning about whether
two audiences have heard the same stories it is impossible
to avoid explicit reasoning over sets using the model shown
above. The data shows that the PDDL approach is infeasible
for larger instances, while PMTPlan performs equally well
across these problems, both saturate and equality (the plans
are very similar for all of these problem instances because
the problem encoding deals with the sets of stories directly).

PMTPlan MetricFF

Stories Nodes Time Nodes Time

10 20 0.67 18 0.00
12 11 0.57 26 0.01
14 8 0.60 33 0.01
16 14 0.68 59 0.02
18 28 0.68 32 0.00
20 22 0.68 105 0.02
30 26 0.81 53 0.01
40 21 0.83 2218 0.17
50 23 0.83 46872 6.48
60 34 0.99 701345 208.40
70 38 0.98
80 31 0.97
90 22 0.85
100 25 0.82

Table 4: Storytellers Saturate Problems

PMTPlan MetricFF

Stories Nodes Time Nodes Time

5 13 0.71 14 0.01
6 12 0.64 14 0.13
7 4 0.55 33 2.56
8 8 0.70 24 48.04
9 4 0.62
10 4 0.57
12 2 0.61
14 11 0.72
16 4 0.66
18 4 0.61
20 4 0.59

Table 5: Storytellers Equality Problems

7 Conclusions
As planning research becomes more relevant to application,
demands on expressive power in the modelling language
grow. SAT has responded to the same problem by allow-
ing extension with theories in SMT: PMT can play an anal-
ogous role in planning. We have discussed how PMT prob-
lems can be encoded in a language similar to PDDL and
considered what advantages modelling for PMT offers over
modelling in PDDL. We have shown how a planner can
be constructed, using interpretation modules for the theo-
ries exploited in a PMT model. More significantly, we have
also shown how the hmax heuristic can be generalised to
these theories and explained how abstractions that support
the heuristic can be automatically derived using the support-
ing modules. Our planner, PMTPlan, implements a search
guided by this heuristic and we have demonstrated its effec-
tiveness on some benchmark problems that exploit sets.

We recognise the need to develop a formal semantics for
PMT: this is future work. However, we note that PMT
demands a much stronger type-theory than PDDL and that
an important aspect of the semantics will be to differenti-
ate between state-dependent (e.g. connectedness) and state-
independent functions (e.g. arithmetic functions).

We are already engaged in developing additional mod-
ules: we have built domains based on multisets and geomet-
ric reasoning (with path planning) and intend to explore the
effectiveness of the automatic heuristic generation in a wider
range of problems and domains. Planning Modulo Theories
offers new ways to integrate planning and constraint-solving
and we intend to explore how no-goods can be learned from
subsolvers and fed back to the core, analogously to the links
between subsolvers and a central SAT-solver in SMT such

72

as in LP-SAT (Wolfman & Weld 1999).

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artif. Intell.
116(1-2):123–191.
Barrett, C.; Stump, A.; and Tinelli, C.
2010. The SMT-LIB Standard: Version 2.0:
http://combination.cs.uiowa.edu/smtlib/.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A Hybrid Ap-
proach to Intricate Motion, Manipulation and Task Planning.
I. J. Robotic Res. 28(1):104–126.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using iterative repair to improve the re-
sponsiveness of planning and scheduling. In Proc. Int. Conf.
AI Planning and Scheduling (AIPS), 300–307.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008a. A
Hybrid Relaxed Planning Graph-LP Heuristic for Numeric
Planning Domains. In Proc. 18th Int. Conf. on Automated
Planning and Scheduling (ICAPS).
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008b.
Planning with problems requiring temporal coordination. In
Proc. 23rd AAAI Conf. on Artificial Intelligence.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009.
Temporal Planning in Domains with Linear Processes. In
Proc. 21st Int. Joint Conf. on AI (IJCAI).
Currie, K., and Tate, A. 1991. O-Plan: The open Planning
Architecture. Artif. Intell. 52(1):49–86.
de Moura, L. M., and Bjørner, N. 2008. Z3: An Efficient
SMT Solver. In Conf. on Tools and Alg. for the Construction
and Analysis of Systems (TACAS).
Do, M. B., and Kambhampati, S. 2003. Sapa: A Multi-
objective Metric Temporal Planner. J. Art. Int. Res. (JAIR)
20:155–194.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009a. Semantic Attachments for Domain-
Independent Planning Systems. In Proc. 19th Int. Conf. on
Automated Planning and Scheduling (ICAPS), 114–121.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B.
2009b. Integrating Symbolic and Geometric Planning for
Mobile Manipulation. In IEEE Int. Workshop on Safety, Se-
curity and Rescue Robotics (SSRR).
Dutertre, B., and de Moura, L. M. 2006. A Fast Linear-
Arithmetic Solver for DPLL(T). In Proc. 18th Int. Conf.
Computer Aided Verification (CAV), 81–94.
Dvorak, F., and Barták, R. 2010. Integrating Time and Re-
sources into Planning. In Proc. 22nd Int. Conf. on Tools with
Artificial Intelligence (ICTAI), 71–78.
Fox, M., and Long, D. 2003. PDDL2.1: An extension of
PDDL for expressing temporal planning domains. J. Art.
Int. Res. (JAIR) 20:61–124.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. J. Art. Int. Res. (JAIR)
27:235–297.

Geffner, H. 2000. Functional Strips: a more flexible lan-
guage for planning and problem solving. In Minker, J., ed.,
Logic-Based Artificial Intelligence. Kluwer. chapter 9, 187–
212.
Golden, K. 1998. Leap Before You Look: Information Gath-
ering in the PUCCINI Planner. In Proc. Int. Conf. on AI
Planning and Scheduling (AIPS), 70–77.
Gupta, S. K.; Nau, D. S.; and Regli, W. C. 1998. IMACS: A
case study in real-world planning. IEEE Expert and Intelli-
gent Systems 13(3):49–60.
Haslum, P., and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. In Proc. Int. Conf. on AI Planning
and Scheduling (AIPS), 140–149. AAAI Press.
Hoffmann, J.; Weber, I.; Scicluna, J.; Kaczmarek, T.; and
Ankolekar, A. 2008. Combining Scalability and Expres-
sivity in the Automatic Composition of Semantic Web Ser-
vices. In Proc. 8th Int. Conf. on Web Engineering (ICWE).
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables. J.
Art. Int. Res. (JAIR) 20:291–341.
Hoffmann, J. 2008. Towards Efficient Belief Update for
Planning-Based Web Service Composition. In Proc. 18th
European Conf. on AI (ECAI), 558–562.
Maris, F., and Régnier, P. 2008. TLP-GP: New Results on
Temporally-Expressive Planning Benchmarks. In Proc. 20th
IEEE Int. Conf. on Tools with AI (ICTAI).
McCarthy, J. 1963. Situations, Actions and Causal Laws.
Technical report, Stanford University. Reprinted in Semantic
Information Processing (M. Minksy ed.), MIT Press, 1968,
pp 410–417.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine 2(2):35–55.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical orderd planner. In Proc. Int.
Joint Conf. on Artificial Intelligence (IJCAI).
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solving
SAT and SAT Modulo Theories: From an abstract Davis–
Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53(6):937–977.
Reddy, S. Y.; Iatauro, M. J.; Kürklü, E.; Boyce, M. E.;
Frank, J. D.; and Jónsson, A. K. 2008. Planning and moni-
toring solar array operations on the ISS. In Proc. Scheduling
and Planning App. Workshop (SPARK), ICAPS.
Rintanen, J. 2011. Heuristics for Planning with SAT and
Expressive Action Definitions. In Proc. of 21st Int. Conf. on
Automated Planning and Scheduling (ICAPS).
Shin, J., and Davis, E. 2005. Processes and Continuous
Change in a SAT-based Planner. Art. Int. (AIJ) 166:194–
253.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Art. Int. (AIJ) 168(1-2):38–69.
Wolfman, S., and Weld, D. 1999. The LPSAT System and
its Application to Resource Planning. In Proc. 16th Int. Joint
Conf. on Artificial Intelligence (IJCAI).

73

