
Exploring the Scope for Partial Order Reduction

Jaco Geldenhuys1, Henri Hansen2, and Antti Valmari2

1 Computer Science Division, Department of Mathematical Sciences
Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

jaco@cs.sun.ac.za
2 Department of Software Systems, Tampere University of Technology

PO Box 553, FI-33101 Tampere, Finland
{henri.hansen,antti.valmari}@tut.fi

Abstract. Partial order reduction methods combat state explosion by
exploring only a part of the full state space. In each state a subset of en-
abled transitions is selected using well-established criteria. Typically such
criteria are based on an upper approximation of dependencies between
transitions. An additional heuristic is needed to ensure that currently dis-
abled transitions stay disabled in the discarded execution paths. Usually
rather coarse approximations and heuristics have been used, together
with fast, simple algorithms that do not fully exploit the information
available. More powerful approximations, heuristics, and algorithms had
been suggested early on, but little is known whether their use pays off.
We approach this question, not by trying alternative methods, but by
investigating how much room the popular methods leave for better re-
duction. We do this via a series of experiments that mimic the ultimate
reduction obtainable under certain conditions.

1 Introduction

Partial order reduction is a widely-used and particularly effective approach to
combat the state explosion problem. Broadly speaking, partial order reduction
rules out a part of the state space as unnecessary for verifying a given property.
This is achieved by exploiting the commutativity of transitions that arises from
their concurrent execution or other reasons. The term “partial order reduction”
is somewhat inaccurate, but it is used for historical reasons.

There are several approaches to partial order reduction. For the purpose of
this paper, we consider methods that for each state expand some subset of en-
abled transitions. Such methods are highly similar; the sets of transitions that
are expanded are called either stubborn sets [12], ample sets [11], or persistent
sets [4]. The methods differ slightly in the way they are defined, and each method
has a number of different formulations. Nonetheless, the key ideas in all of them
are more or less equivalent [13].

In this paper we use the ample set method as presented in [1] as the starting
point of our investigation. It is easy to implement, and its primitive operations
are fast but, in return, it wastes some reduction power. We investigate experi-
mentally how much potential there is for better reduction. We are interested in

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 39–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 J. Geldenhuys, H. Hansen, and A. Valmari

the ultimate results that would be obtainable by an ideal method that is based
on partial order principles.

We restrict our attention to reductions that preserve deadlocks. More sophis-
ticated verification questions use additional rules such as visibility of transitions
and various cycle closing conditions. We postpone them for future work, because
they introduce more complications than can be discussed in this paper.

The concept of dependency between transitions refers to situations where two
transitions may interfere with each other. Dependency is central in the calcula-
tion of ample sets, and some approximation that overapproximates dependency
is used. We explore how much additional reduction in the resulting state space
is to be gained from using a more accurate dependency relation. Analysis of
dependency could be taken further by engaging in dynamic analysis as in [3,10],
where the notion of dependency is refined during the generation of state spaces.

There is even more variability in the treatment of disabled transitions that
are dependent on transitions in the ample set. The correctness of the methods
requires that they remain disabled until a transition in the ample set occurs. This
can be ensured using different heuristics, some more complicated and presumably
also more powerful than others. In this paper we use a rather straightforward
precedence heuristic and leave the allegedly stronger ones for future work.

In addition to the issues above, there is the question of calculating ample
sets. The basic algorithm considers only subsets that are local to a single pro-
cess. If no suitable process is found, it gives up and returns the set of all enabled
transitions. However, a more sophisticated algorithm can often do better in this
situation. How much further reduction is gained from using the more sophisti-
cated algorithm, is also a matter of investigation here.

Section 2 defines the formal model of concurrent systems that is used through-
out the paper. Section 3 describes exactly how ample sets and the transition
dependency and precedence we employ are calculated. In Section 4 we compare
experimental results from using the different algorithms for ample sets and dif-
ferent versions of dependencies and precedences, and conclusions are presented
in Section 5.

2 Mathematical Background

In the first part of this section we present a formal description of our model of
computation. This is not mere formality for its own sake. Although the formal-
ization is detailed, its purpose is to make it possible to describe the computation
of ample sets in a precise manner.

2.1 Model of Computation

Our model of computation has three components: a set of variables, a set of
transitions, and a set of processes.

Definition 1. Let V = (v1, v2, . . . , vn) be an ordered set of variables. The values
of variable vi are taken from some finite domain Xi. Let X = X1×X2×· · ·×Xn.

Exploring the Scope for Partial Order Reduction 41

– An evaluation e ∈ X associates a value with each variable.
– A guard g:X → B is a total function that maps each evaluation to a Boolean

value. B = {true, false}.
– An assignment a:X → X is a total function that maps one evaluation to

another. ��
Each process is described fully by its transitions and a designated variable called
a program counter. A transition is a pair of the form (g, a) where g is a guard and
a is an assignment. A transition is enabled in states where its guard evaluates as
true. If the transition fires (i.e., is executed), it changes the values of variables
as described by its assignment component. In almost all cases, the guard checks
that the program counter has an appropriate value, and the assignment changes
the value of the program counter.

Definition 2. A process over variables V is a pair (Σ, pc), where Σ is a set
of transitions, and pc ∈ V is a variable called the program counter. For each
transition (g, a) in Σ there is a value x such that the guard g is of the form
(pc = x) ∧ ϕ. ��
For e ∈ X , we write pc(e) to denote the value of the program counter at e.

Definition 3. Let V be an ordered set of variables over the finite domain X and
let P = {P1, P2, . . . , Pk} be a set of processes over V , such that Pi = (Σi, pci).
We assume all the pci are different. Let ê be an evaluation. The state space of P
from ê is M = (S, ê, Σ,Δ), where ê ∈ X is the initial state, Σ = Σ1 ∪ . . . ∪Σk,
and S and Δ are the smallest sets such that S ⊆ X, Δ ⊆ S×Σ×S, ê ∈ S, and if
t = (g, a) ∈ Σ and s ∈ S and g(s) = true, then a(s) ∈ S and (s, t, a(s)) ∈ Δ. ��
We say that S is the set of states and ê is the initial state. The elements of Σ
above are referred to as structural transitions, while the elements of Δ are called
semantic transitions. From now on, when we write just “transition”, we are re-
ferring to the structural ones. This convention agrees with Petri net terminology
and disagrees with process algebra and Kripke structure terminology.

The following notation is used throughout the paper:

Definition 4. Let M = (S, ê, Σ,Δ) be the state space of P from ê, and let s be
some state of M .

– The enabled transitions of s are en(s) = {t ∈ Σ | ∃s′ ∈ S: (s, t, s′) ∈ Δ}.
– We write s−→t when t ∈ en(s).
– We write s−→t s′ when (s, t, s′) ∈ Δ.
– We write s−−−−→t1t2t3··· , when ∃s1, s2, . . . ∈ S : s−→t1 s1−→t2 s2−→t3 . . .
– The local transitions of process Pi in state s are current i(s) = {(g, a) ∈ Σi |

∃e ∈ X : pci(s) = pci(e) ∧ g(e) = true}.
– The enabled local transitions of Pi are en i(s) = current i(s) ∩ en(s).
– The disabled local transitions of Pi are dis i(s) = current i(s) \ en(s). ��

Lastly, we need to know which other variables are involved in which transitions.
These relationships are only defined in the context of a state space.

42 J. Geldenhuys, H. Hansen, and A. Valmari

Definition 5. Let V = (v1, v2, . . . , vn) be an ordered set of variables, let P be a
set of processes over V , and let M = (S, ê, Σ,Δ) be the state space of P from ê.
Given evaluations e, e′ ∈ X, for 1 ≤ i ≤ n:

– ei denotes the value of vi in e, and
– δ(e, e′) = {i | ei �= e′i} is the set of indices on which e and e′ disagree.

If t = (g, a) ∈ Σ, then

– the test set of t is Ts(t) = {vi | ∃e, e′ ∈ X : δ(e, e′) = {i} ∧ g(e) �= g(e′)},
– the write set of t is Wr(t) = {vi | ∃e ∈ X : ei �= a(e)i},
– the read set of t is Rd(t) = {vi | ∃e, e′ ∈ X : δ(e, e′) = {i} ∧ ∃j: vj ∈ Wr(t) ∧
a(e)j �= a(e′)j}, and

– the variable set of t is Vr(t) = Ts(t) ∪ Rd(t) ∪Wr(t). ��
The test, write, and read sets are conservative syntactic estimates of those vari-
ables that may be involved in the different aspects of a transition’s execution.
Variables with disjoint variable sets are clearly independent, but an even finer
condition will be given in Section 3.1..

2.2 Ample Sets, Dependency and Precedence

It is important to distinguish which transitions may interfere with one another
and to this end we define the following:

Definition 6. Let M = (S, ê, Σ,Δ) be the state space of P from ê, and S′ ⊆ S.
A dependency relation D ⊆ Σ×Σ for S′ is a symmetric, reflexive relation such
that (t1, t2) �∈ D implies that for all states s ∈ S′, the following are true:

1. If s−→t1 s′ and s−→t2 , then s′−→t2 (independent transitions do not disable one
another).

2. If s−−→t1t2 s′ and s−−→t2t1 s′′ then s′ = s′′ (the final state is independent of the
transition order).

Given D and T ⊆ Σ, we write dep(T) = {t | ∃t′ ∈ T : (t, t′) ∈ D}. ��
The definition implies that if D is a dependency relation, D′ is symmetric, and
D ⊆ D′, then D′ is also a dependency relation. If S′ = S in this definition, we
get the usual notion of dependency. We shall, however, also use other S′.

Here we use the definition of ample sets from [1], modified to accommodate
S′ instead of S.

Definition 7. Let M = (S, ê, Σ,Δ) be the state space of P from ê, let S′ ⊆ S
and let D be a dependency relation for S′. A set ample(s) ⊆ Σ of transitions is
an ample set for state s ∈ S′ if and only if the following hold:

A0 ample(s) = ∅ if and only if en(s) = ∅.
A1 For every path of the state space that begins at s, no transition that is not

in ample(s) and is dependent on a transition in ample(s), can occur without
some transition in ample(s) occurring first.

Exploring the Scope for Partial Order Reduction 43

Because condition A1 talks about future transitions, some of which may not be
enabled in the current state, we need information about not only those transi-
tions that are currently enabled, but also those that may become enabled in the
future.

Definition 8. Let M = (S, ê, Σ,Δ) be the state space of P from ê, and S′ ⊆ S.
A precedence relation R ⊆ Σ×Σ for S′ is such that if there is some state s ∈ S′

such that ¬s−→t2 and s−−→t1t2 , then (t1, t2) ∈ R.
Given R and T ⊆ Σ, we write pre(T) = {t | ∃t′ ∈ T : (t, t′) ∈ R}. ��

The definition implies that if R is a precedence relation and R ⊆ R′, then R′ is
also a precedence relation. The precedence relation makes it possible to detect
all the transitions that can enable a given transition. It is a coarse heuristic. A
finer heuristic, commonly used in the stubborn set method, takes advantage of
the fact that if the guard of t is of the form ϕ∧ψ where ϕ evaluates to true and
ψ evaluates to false in the current state, then it would suffice to only consider
those transitions which may affect ψ.

3 The Calculation of D, R, and Ample Sets

3.1 Calculating D and R

In Section 2.1 we carefully make a distinction between structural and semantic
transitions, and between the description of a model (its variables and processes)
and the state space it generates. This difference plays an important role when it
comes to the calculation of the D and R relations.

Specifically, the static (structural) description of a model is almost always
available and can be used to calculate an overapproximation of the smallest
possible D and R. The full state space, on the other hand, is seldom available for
realistic models; the purpose of partial order methods is to avoid its construction!

In this paper we consider three versions of D/R. The first, which we refer to
as Ds/Rs, is based on the static model description and is calculated as follows:
Let M = (S, ê, Σ,Δ) be a state space, and t1, t2 ∈ Σ.

– (t1, t2) ∈ Ds if and only if Wr(t1) ∩ Vr(t2) �= ∅ or Wr(t2) ∩ Vr(t1) �= ∅.
– (t1, t2) ∈ Rs if and only if Wr(t1) ∩Ts(t2) �= ∅.

It is easy to see that these dependency and precedence relations are not the
smallest possible. For example, consider the two transitions

ta : true −→ x := (x+ 1) mod 5
tb : true −→ x := (x+ 2) mod 5

(Here we use Dijkstra’s guarded command notation to describe the guards and
assignments of the transitions.) If ta and tb belong to two different processes,
they are clearly independent: they cannot disable each other and the order in
which they execute has no effect on the final state. Nevertheless, according to

44 J. Geldenhuys, H. Hansen, and A. Valmari

the rules above (ta, tb) ∈ Ds because each transition reads a variable (x) that is
written to by the other.

The second version of the relations is called Df/Rf , and is based on the full
state space:

– (t1, t2) ∈ Df if and only if for some state s ∈ S where s−→t1 s1 and s−→t2 s2,
either ¬s1−→t2 or s1−→t2 s′ ∧ ¬s2−→t1 s′.

– (t1, t2) ∈ Rf if and only if for some state s ∈ S, both ¬s−→t2 and s−−→t1t2 .

The third and final version of the relations, Dd/Rd, is based on the full state
space and the current state:

– (t1, t2) ∈ Dd(s) if and only if for some state s′ ∈ S reachable from s and
where s′−→t1 s1 and s′−→t2 s2, either ¬s1−→t2 or s1−→t2 s′′ ∧ ¬s2−→t1 s′′.

– (t1, t2) ∈ Rd(s) if and only if for some state s′ ∈ S reachable from s, both
¬s′−→t2 and s′−−→t1t2 .

Note that the definition of ample sets in Definition 7 is only sensitive to what
happens in the current state and its subsequent states. It is therefore correct
to restrict Dd and Rd to the part of the state space that is reachable from the
current state. Here we make use of the S′ in Definitions 6 and 8: for Dd(s) and
Rd(s), we let S′ be the set of all those states that are reachable from s.
Ds/Rs are based on structural transitions, whereas both Dd/Rd and Df/Rf

are defined with respect to semantic transitions. While in practice the latter two
versions may be expensive to calculate in full, they provide some idea of the
limits of partial order reduction.

3.2 Calculating Ample Sets

It is reasonable to always consider all the current transitions in a given process as
dependent, and therefore the smallest possible sets that are eligible as ample sets
are the sets en i(s) of enabled local transitions in each process. A conservative
estimate of when such a set can be selected is based on the following sufficient
condition [1]:

Proposition 1. eni(s) is an ample set if for each process Pj �= Pi we have

1. pre(dis i(s)) ∩Σj = ∅, and
2. dep(en i(s)) ∩Σj = ∅. ��

A straightforward method for using this information tests the en i sets one by
one. If either of the conditions fails to hold, the set is discarded and we consider
the next candidate. If no suitable candidate is found, the set en(s) is used as an
ample set. This approach is shown in Figure 1, and it is also roughly how partial
order reduction is implemented in SPIN [7].

As it stands, the algorithm returns the first valid ample set it encounters. This
is somewhat arbitrary, since it depends on the order in which the processes are
examined, which, in turn, often depends on their order of declaration. This may

Exploring the Scope for Partial Order Reduction 45

ample1(s)
1 for i ∈ {1, . . . , k} such that eni(s) �= ∅ do
2 A← true
3 for j �= i do
4 if pre(disi(s)) ∩Σj �= ∅ or dep(eni(s)) ∩Σj �= ∅ then
5 A← false
6 break
7 if A then return eni(s)
8 return en(s)

Fig. 1. Ample set selection from [2]

give the user some control over the selection of ample sets, but it is doubtful
whether such control is ever exercised and whether it is effective. Instead, we
refer to this default version in Figure 1 as first choice, and we consider two
alternative approaches:

– Minimum choice: The algorithm is modified to compute all the valid ample
sets of the form eni(s) (it merely records the set index in line 7), and returns
the smallest set (or one of the smallest sets) in line 8, reverting to en(s) if
no en i(s) qualifies.

– Random choice: As for minimum choice, the algorithm computes all valid
ample sets of the form eni(s) and then randomly picks one of these to return
in line 8, reverting to en(s) if necessary.

On the surface, random choice seems just as arbitrary as first choice. However, in
Section 4 the same partial order reduction run is repeated many times with the
random choice approach. This allows us to measure experimentally how sensitive
the reduction is to the choice of ample set.

3.3 Using SCCs for Ample Sets

One drawback of the approach in the previous section is that the ample set
contains the enabled transitions of either all or exactly one of the processes. It
is easy to imagine a scenario of four processes P1 . . . P4 where en1 and en2 are
mutually dependent, and en3 and en4 are mutually dependent, and all other
pairings are independent. In this scenario it is possible to choose ample = en1 ∪
en2 or ample = en3 ∪ en4, but this is never done.

In [12] an algorithm that constructs a graph whose maximal strongly con-
nected components (SCCs) are used as candidates for ample is presented.

Definition 9. Let M = (S, ê, Σ,Δ) be the state space of P from ê, D be a
dependency relation, R be a precedence relation, and s ∈ S a state of M .

– For two processes Pi and Pj, if one or both of the conditions in Proposition 1
are violated, then Pj is a conflicting process for Pi in state s.

46 J. Geldenhuys, H. Hansen, and A. Valmari

ample2(s)
1 E ← ∅
2 for i ∈ {1, . . . , k} do
3 A← true
4 for j �= i do
5 if pre(disi(s)) ∩Σj �= ∅ or dep(eni(s)) ∩Σj �= ∅ then
6 A← false
7 E ← E ∪ {(i, j)}
8 if A ∧ en i(s) �= ∅ then return en i(s)
9 return enH(s) where H is some SCC of Gs = ({1, . . . , k}, E)

that satisfies the conditions of Proposition 2

Fig. 2. Ample set selection using a conflict graph

– Gs = (W,E) is a conflict graph for state s such that the vertices are process
indices: W = {1, . . . , k} and (i, j) ∈ E if and only if Pj is a conflicting
process for Pi in state s.

– If H is an SCC of the conflict graph Gs, then enH(s) = ∪i∈Hen i(s). ��
Then we have the following:

Proposition 2. Let M = (S, ê, Σ,Δ) be the state space of P from ê, s ∈ S be
some state of M , and Gs be the conflict graph for state s. If H is an SCC of Gs

such that

1. enH(s) �= ∅, and
2. for all SCCs H ′ �= H that are reachable from H, enH′ (s) = ∅,

then enH(s) is an ample set for state s. ��
This gives us the correctness of the algorithm in Figure 2.

To see how this approach can improve upon ample1, consider the model of
the philosophers’ banquet, shown in Figure 3. The whole system consists of two
completely independent copies of the classic four dining philosophers system,
as illustrated in Figure 3(b). (The details of a single philosopher are shown in
Figure 3(a).)

No reduction is possible with ample1, because each eni(s) set of each philoso-
pher contains transitions that are dependent on the transitions of the philosopher
to the left or right, and is therefore invalid according to Proposition 1. On the
other hand, ample2 is able to select an ample set ∪i∈Table1eni(s). The full sys-
tem has 6400 states and 33920 transitions, which ample2 reduces to 95 states
and 152 transitions; as mentioned, ample1 does not reduce the state space at
all.

As in the case of ample1, we shall consider three versions of ample2:

– First choice: The algorithm as it stands.
– Minimum choice: The algorithm modified to compute all valid enH , and to

return the smallest such candidate.
– Random choice: The algorithm modified to compute all valid enH , and to

return a random candidate.

Exploring the Scope for Partial Order Reduction 47

(a)

���
� �

� �

think
� �

� �

hasL

� �

� �

hasR
� �

� �

done

�
fL = 0→
fL := 1

�

fR = 0→
fR := 1

�
fL := 0

�

fR := 0

(b)

� �

� 	

�

�
� �

�

�
� �

�

�
� �

�

�
� �

Table 1

� �

� 	

�

�
� �

�

�
� �

�

�
� �

�

�
� �

Table 2

Fig. 3. Model of the philosophers’ banquet. (a) Details of a single philosopher; fL

and fR refer to a philosopher’s left and right forks. (b) A banquet consisting of two
independent copies of the classic dining philosophers model.

4 Experimental Results

The previous section presented three different versions of the D and R relations,
two different algorithms (ample1 and ample2) that use the relations to compute
potential ample sets, and three different ways (first , minimum, and random) of
choosing an actual ample set.

Each of the 18 combinations of techniques are evaluated by applying them
to models taken from the BEEM repository [8]. The full repository contains
300 variants of 57 basic models, and covers a range of genres: protocols, mutual
exclusion and leader election algorithms, hardware control, scheduling and plan-
ning, and others. Since the experiments are long-running, only the 114 smallest
models were chosen, but with at least one variant for each basic model. The sizes
of the models range from 80 to 124 704 states, and 212 to 399 138 transitions.

For each model, the original model source code is converted to a C program
that generates the full state space and writes the resulting graph (without detailed
state contents) to a file. The Ds/Rs and Df/Rf relations are also computed and
stored along with the graphs. In all cases the full state space is identical to those
described on the BEEM website.

All the numbers in the tables that follow refer to the percentage of states in the
full state space explored by a method. This provides some measure of savings
with respect to memory consumption, independent of specific data structures
and architecture. The overhead costs involved in calculating ample sets make it
hard to give a similarly independent measure for computation time.

4.1 Conflict Graph in the Static Case

The first question we address is whether the use of the conflict graph makes
any difference. Algorithm ample2 never fares worse than algorithm ample1;
Table 1(a) shows those cases where it fares better. For all but a small number
of models its impact is negligible.

48 J. Geldenhuys, H. Hansen, and A. Valmari

Table 1. Comparison of ample1 and ample2 algorithms in the static case. (a) In-
stances where ample1 and ample2 differ. (b) Further instances where ample1 or
ample2 or both achieve reduction.

(a)

ample1 ample2
Model Ds/Rs Ds/Rs

phils3 100.00 32.37
trgate2 100.00 54.77
trgate3 100.00 55.61
trgate1 100.00 59.12
phils1 100.00 60.00
bopdp1 100.00 95.74
elev21 100.00 96.30

(b)

ample1 ample2
Model Ds/Rs Ds/Rs

mcs4 5.88 5.88
anders4 46.47 46.47
anders2 61.55 61.55
peters1 62.25 62.25
mcs2 65.06 65.06
szyman1 69.46 69.46
ldrfil2 76.57 76.57
peters2 82.42 82.42
ldrfil4 82.71 82.71
mcs1 89.30 89.30
ldrfil3 96.39 96.39
krebs2 97.60 97.60

This is partly due to the fact that the Ds/Rs relations are crude overap-
proximations of the true dependency between transitions, that do not provide
much information for either ample1 or ample2 to exploit. Table 1(b) shows all
further models for which any reduction at all was achieved. For the remaining
92 models both ample1 and ample2 explored the entire state space.

In all tables the rows are ordered according to the reduction reported in the
rightmost column. In some tables we omit results for the same model with a
different parameterization, due to lack of space.

4.2 The Static v. Full Calculation of D/R

With the exception of the msc4 model, the results in Tables 1(a) and (b) could
be seen as disappointing. On the other hand, they demonstrate what can be
achieved with very basic static analysis.

The question that arises is how much can be gained by refining the D/R
relations. There are essentially two ways of achieving this.

Firstly, a more sophisticated analysis of the structural transition guards and
assignments can eliminate unnecessary dependencies between some transitions.
Such an analysis may include, for example, the kind of reasoning employed to
conclude that transitions ta and tb in Section 3.1 are independent of one another.
This is what Godefroid and Pirottin call refined dependency [5].

Secondly, some dependencies can be computed on-the-fly. For example, in mod-
els of concurrency with asynchronous communication, the emptiness or fullness of
a bounded-length communication channel affects the dependency of some opera-
tions on the channel. Godefroid and Pirottin refer to this approach as conditional

Exploring the Scope for Partial Order Reduction 49

Table 2. Comparison of static and full D/R relations

ample2 ample1 ample2
Model Ds/Rs Df/Rf Df/Rf

cycsch1 100.00 1.19 1.19
mcs4 5.88 4.13 4.13
fwtree1 100.00 6.25 6.25
phils3 32.37 29.63 10.84
mcs1 89.30 18.35 18.35
anders4 46.47 22.78 22.78
iprot2 100.00 26.16 25.97
mcs2 65.06 34.45 34.45
phils1 60.00 60.00 47.50
fwlink2 100.00 51.37 50.66
krebs1 100.00 90.06 51.09
ldrelc3 100.00 54.26 54.26
teleph2 100.00 59.55 59.55
ldrelc1 100.00 60.52 60.52
szyman1 69.46 62.98 62.98
prodcl2 100.00 63.12 63.12
at1 100.00 65.71 65.35
szyman2 72.22 65.76 65.76
ldrfil2 76.57 65.94 65.94
lamp1 100.00 66.24 66.24
prots2 100.00 72.51 67.69
collsn1 100.00 68.46 68.46
drphls1 100.00 68.54 68.54

ample2 ample1 ample2
Model Ds/Rs Df/Rf Df/Rf

prots3 100.00 72.45 70.75
peters2 82.42 71.54 71.54
drphls2 100.00 72.25 72.25
collsn2 100.00 73.94 73.94
prodcl1 100.00 74.08 74.08
teleph1 100.00 75.16 75.16
lamp3 100.00 75.18 75.18
fwlink1 100.00 81.61 78.83
pgmprt4 100.00 80.82 80.82
ldrfil3 96.39 83.20 83.20
bopdp2 95.35 85.81 84.78
fischr1 100.00 87.38 87.38
bakery3 100.00 87.51 87.51
exit2 100.00 100.00 87.78
brp21 100.00 87.96 87.96
pubsub1 100.00 94.48 88.97
fwtree2 100.00 98.93 89.43
pgmprt2 100.00 89.49 89.49
brp2 100.00 99.51 96.46
extinc2 100.00 98.95 96.87
cycsch2 100.00 100.00 98.55
synaps2 100.00 100.00 99.75
plc1 100.00 99.95 99.95

dependency [5], and a related technique is briefly described by Peled [9] and more
fully by Holzmann [6].

Both these approaches are subsumed by Df/Rf as defined in Section 3.1. In
other words, the full versions of the D and R relations supply an upper bound
to the reduction that can be achieved with refined and conditional dependency.
Table 2 compares the ample2 algorithm for the static D/R, and the ample1
and ample2 algorithms for the full D/R.

As the table shows, a significant reduction can be achieved for some models,
even when using ample1. Nevertheless, the SCC approach is able to exploit the
improved dependency relations even further.

These results lead to a further question: given the choice of improving D or
improving R, which of the two relations should be refined, if possible? To answer
this question, we combined the static version of D with the full version of R,
and vice versa. The results of these experiments are shown in Table 3.

Only for the four topmost models in the table does the Ds/Rf combination
make a greater impact than the Df/Rs combination. In all other cases, a more
accurate version of D leads to greater reduction.

50 J. Geldenhuys, H. Hansen, and A. Valmari

Table 3. Combinations of static/full D/R

ample2 ample2 ample2 ample2
Model Ds/Rs Ds/Rf Df/Rs Df/Rf

fwtree1 100.00 9.19 100.00 6.25
bopdp2 95.35 93.24 95.11 84.78
bopdp1 95.74 93.42 95.33 86.88
exit2 100.00 87.78 100.00 87.78

phils3 32.37 32.37 10.84 10.84
mcs1 89.30 89.30 20.11 18.35
anders4 46.47 46.47 22.78 22.78
iprot2 100.00 100.00 27.40 25.97
iprot1 100.00 100.00 30.82 28.94
mcs2 65.06 65.06 38.28 34.45
brp1 100.00 100.00 99.15 96.98
brp2 100.00 100.00 99.51 96.46
plc1 100.00 100.00 99.97 99.95

Table 4. Comparison of the full and dynamic D/R relations

ample2 ample2
Model Df/Rf Dd/Rd

mcs2 34.45 22.73
fwtree2 89.43 28.51
ldrflt1 88.70 50.62
cycsch2 98.55 53.73
prots3 70.75 70.18
pubsub1 88.97 88.10
needhm1 100.00 89.54
bakery1 94.42 93.63
bakery2 100.00 98.87
gear1 100.00 99.40

4.3 Dynamic Version of D/R

The effect of using the dynamic version of D/R is compared to the full version in
Table 4. For the majority of the 114 models, little further reduction is achieved,
and only a couple of models (mcs2, fwtree2, ldrflt1, cycsch2, and needhm1)
exhibit significant reduction (more than 10%). Of course, the use of Df/Rf

already reduces the state space for many models, and there is less “room” for
additional reduction. Furthermore, if the state space of a system is strongly
connected, the Df and Dd relations are identical, as are Rf and Rd.

Exploring the Scope for Partial Order Reduction 51

Table 5. Comparison of the first, minimum, and random choice

ample2, Df/Rf

Model 1st min random

fwtree1 6.25 6.25 6.25 6.99
mcs1 18.35 18.35 18.05. . .18.37
iprot2 25.97 25.98 27.48. . .29.61
iprot1 28.94 28.96 29.78. . .34.00
mcs2 34.45 34.45 34.38. . .34.87
fwlink2 50.66 50.68 50.66. . .50.68
ldrelc3 54.26 54.28 54.12. . .54.21
ldrelc1 60.52 60.55 60.27. . .60.57
szyman1 62.98 62.98 63.12. . .63.33
prodcl2 63.12 63.12 63.30. . .64.06
ldrelc2 64.38 64.05 64.07. . .64.20
krebs2 65.17 65.17 65.18. . .65.22
at1 65.35 65.35 65.35. . .65.38
krebs1 51.09 47.95 57.92. . .65.51

ample2, Df/Rf

Model 1st min random

ldrflt2 65.94 65.94 65.86. . .65.99
szyman2 65.76 65.76 66.05. . .66.22
drphls1 68.54 68.54 68.54. . .68.55
prots2 67.69 68.25 68.99. . .69.52
drphls2 72.25 72.25 72.30. . .72.36
at2 72.73 72.73 72.73. . .72.75
prots3 70.75 72.31 71.28. . .73.09
prodcl1 74.08 74.08 74.40. . .75.45
prots1 78.77 78.11 78.27. . .79.51
pgmprt4 80.82 80.82 80.87. . .80.92
fwlink4 82.06 82.06 82.45. . .82.73
collsn2 73.94 73.94 83.09. . .85.50
exit2 87.78 87.10 87.84. . .88.01
fischr1 87.38 87.38 86.75. . .88.17

ample2, Dd/Rd

Model 1st min random

mcs2 22.73 22.87 23.08. . .24.43
fwtree2 28.51 28.76 31.54. . .35.35
ldrflt1 50.62 50.28 50.24. . .52.17
cycsch2 53.73 57.42 54.09. . .55.15
prots3 70.18 72.31 71.67. . .72.91
prots1 78.77 78.11 78.44. . .79.42

ample2, Dd/Rd

Model 1st min random

teleph1 75.78 70.00 77.42. . .82.97
pubsub1 88.10 88.10 87.41. . .88.10
needhm1 89.54 89.54 89.34. . .91.15
bakery1 93.63 93.63 93.63. . .94.02
bakery2 98.87 98.87 98.95. . .99.48
gear1 99.40 99.55 99.44. . .99.70

4.4 First, Minimum, and Random Choice

Lastly, Table 5 shows the results of experiments in which a different choice of
valid ample sets is exercised. In the case of Df/Rf , the choice of first, minimum,
and random ample sets produces no effect for either the ample1 or ample2
approaches. This may be explained by the fact that the choices are so limited
that it does not matter which ample set is selected.

In the case of the full and dynamic versions of D/R, however, some variation
can be observed. For six models, selecting the SCC with the smallest number
of enabled transitions produces an improvement in the reduction; their names
are shown in italics. Note, however, that this strategy does not consistently
improve the reduction and that the same model behaved differently in the full
and dynamic versions. The improvement is largest for teleph1 (−5.78%) and
for krebs1 (−3.14%); for the other models it is less than 1%. For 12 models
the minimum choice leads to losses of reduction, although these are generally
smaller than the improvements.

The situation is somewhat similar when a valid SCC is chosen at random.
Each experiment was repeated 50 times for Df/Rf and 20 times for Dd/Rd to

52 J. Geldenhuys, H. Hansen, and A. Valmari

produce the results in Table 5. In the case of Df/Rf , this strategy produces a
range of 7.59% for the krebs1 model, and for Dd/Rd a range of 5.55% for the
teleph1 model. All other ranges are smaller than 5% for the remaining models
shown, and zero for the rest.

The relatively small ranges seem to indicate that in the majority of cases, re-
duction is not overtly sensitive to the choice of ample set. However, this does not
rule out the possibility that more advanced, systematic heuristics for choosing
an ample set could produce significant savings.

5 Discussion

The use of partial order reduction is widespread, and many improvements to the
basic techniques have been proposed. Before such proposals are pursued, it is
worthwhile to try to determine whether any significant improvement is possible
at all. This paper has attempted to partially address this question. We have

– presented empirical lower bounds for partial order reduction based on a
rough approximation of the dependency relation between transitions;

– presented empirical upper bounds based on information derived from the full
state space;

– demonstrated that it is possible to improve reduction using a relatively sim-
ple technique such as a conflict graph that exploits information about tran-
sition dependency more fully than the standard technique; and

– shown that, given a choice of ample sets, choosing the smallest set, or a
random set does not lead to significantly greater reduction in any of our
experiments.

It is important to point out that it is unlikely that the upper bounds we present
here are achievable. We have left the effect of the cycle-closing conditions and
visibility for future work. Both tend to reduce the effect of partial order reduc-
tion. Generally speaking, the reduction does not appear to be as significant as
reported elsewhere.

References

1. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Software Tools for Technology Transfer 2(3), 279–287
(1999)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

3. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd Annual ACM
Symposium on Principles of Programming Languages, January 2005, pp. 110–121
(2005)

4. Godefroid, P.: Partial-order Methods for the Verification of Concurrent Systems: an
Approach to the State-explosion Problem. LNCS, vol. 1032. Springer, Heidelberg
(1996)

Exploring the Scope for Partial Order Reduction 53

5. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS,
vol. 697, pp. 438–449. Springer, Heidelberg (1993)

6. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2004)

7. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Hogrefe, D.,
Leue, S. (eds.) Proceedings of the 7th IFIP TC6/WG6.1 International Conference
on Formal Description Techniques (FORTE 1994), June 1994, pp. 197–211 (1994)

8. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007), http://anna.fi.muni.cz/models/

9. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

10. Peled, D., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Methods in System Design 19(3), 275–289 (2001)

11. Peled, D.A.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

12. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System
Design 1(1), 297–322 (1992)

13. Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Generation.
PhD thesis, Digital Systems Laboratory, Helsinki University of Technology (May
1998)

http://anna.fi.muni.cz/models/

	Exploring the Scope for Partial Order Reduction
	Introduction
	Mathematical Background
	Model of Computation
	Ample Sets, Dependency and Precedence

	The Calculation of D, R, and Ample Sets
	Calculating D and R
	Calculating Ample Sets
	Using SCCs for Ample Sets

	Experimental Results
	Conflict Graph in the Static Case
	The Static v. Full Calculation of D/R
	Dynamic Version of D/R
	First, Minimum, and Random Choice

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

