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Abstract
Delete-free planning (DFPlan) underlies many popular relax-
ation (h+) based heuristics used in state-of-the-art planners,
and a number of recent planning domains are naturally delete-
free. This has led to increased interest in efficient meth-
ods for cost-optimal DFPlan. To aid in the solution of DF-
Plan problems, we introduce a new analysis technique, called
domination-free reachability (DFR). DFR is an improved ver-
sion of the well known notion of reachability in graphs that
filters out nodes that are not useful for optimal planning. We
explain how to compute DFR, and present three new pruning
techniques that use it. Combined with a recent decomposition
technique these pruning methods lead to effective pruning in
delete-free planning.

Introduction
Heuristic search is currently the preferred method for solv-
ing satisficing and optimal planning problems. Among
alternative methods for generating heuristic functions,
relaxation-based heuristic functions are extremely popu-
lar, effective, and influential (Hoffmann and Nebel 2001;
Helmert and Domshlak 2009). These methods estimate min-
imal distance-to-goal of a state in the delete-free problem
generated from a given instance by removing all delete-
effects. Computing this value, known as h+, is NP-
hard (Bylander 1994). Effective approximations exist (Hoff-
mann and Nebel 2001; Helmert and Domshlak 2009), yet
efforts continue to improve these techniques in order to
provide even better heuristic estimates (Pommerening and
Helmert 2012; Haslum, Slaney, and Thiébaux 2012; Gefen
and Brafman 2012), as well as to handle naturally delete-
free domains more effectively (Gefen and Brafman 2011;
Porco, Machado, and Bonet 2011; Gallo et al. 1993).

In this paper we investigate improved pruning techniques
for delete-free planning (DFPlan). Our pruning techniques
rely on a new construction, domination-free reachability
(DFR) that seeks to improve the standard notion of reach-
ability for optimal planning. Reachability and reachability
analysis, whether forwards or backwards, underlies some
fundamental techniques in planning. DFR attempts to pro-
vide a more refined notion of reachability, one that filters
out ”useless” nodes in the context of optimal planning. A
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node is useless in optimal planning if it is not part of some
optimal plan from the initial state to the goal. Obviously,
computing whether a node is part of an optimal plan is a
difficult problem, and DFR which is a practical, polynomial
time technique cannot compute this. What DFR provides is
an approximation of this concept, whose practical utility is
shown in our empirical evaluation.

The DFR technique operates on a faithful graphical de-
piction of a DFPlan problem, called the relaxed causal
graph (Keyder, Richter, and Helmert 2010; Gefen and Braf-
man 2012). The nodes of this graph correspond to facts and
actions. Given special source node (that corresponds to the
initial state) and a target node (goal state) DFR seeks to find
all nodes that are part of at least one minimal plan from the
initial state to the goal. A plan π for G is minimal if no other
plan for G is a strict subset of the set of actions in π. That is,
we can not remove any action from π without loosing its le-
gality or its ability to achieve G. Finding the set of all nodes
which are part of a minimal plan is NP-hard, and the DFR is
an over-approximation of it that is often much smaller than
the set obtained using standard reachability.

We focus on the notion of minimal plans because of the
results of (Gefen and Brafman 2012) (GB). GB show that,
given a set of landmarks suitably ordered, an optimal plan
can be generated by generating minimal plans between these
landmarks. This implies that one can decompose the plan-
ning problem into multiple simpler search problems in each
of which we seek to achieve a landmark, and where one
needs only consider minimal plans. The DFR helps us make
the search for each such minimal plan more efficient because
it allows us to prune nodes that are guaranteed to not belong
to any minimal plan.

In the first part of this paper, we define the notion of DFR,
show how to compute it, and demonstrate its soundness with
respect to minimal plans. In the second part of the paper, we
show how to use the DFR to prune A* search for an opti-
mal plan. We discuss three methods. The first, the simplest,
the most obvious, and the most effective simply prunes ac-
tions that are not part of the (backwards) DFR of the goal.
The second technique is a simpler variant of the notion of
disjoint-path commitment introduced by GB. Intuitively, if
a1 and a2 are two actions that achieve the goal then a min-
imal plan will include only one of them. If we can identify
that our current plan is a prefix of a minimal plan targeting
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a1, due to minimality, we can commit to a1, and prune ac-
tions that are only part of a minimal plan targeting a2. The
DFR algorithm, which provides a sound estimate of ”being
in a minimal plan” allows us to operationalize this intuition.
Finally, in the last pruning method we describe, we use the
DFR algorithm to provide an upper bound on the cost of a
minimal plan because we know that the true minimal plan
is a subset of the set computed by DFR. This bound can
be used for standard bound-based pruning. We conclude the
paper with an empirical evaluation of these pruning methods
and a short discussion.

Delete-Free Planning Tasks
A delete-free STRIPS planning task, or DF task for short, is a
4-tuple (P,A, I,G). P is a finite set of propositions. A state
s is represented by the set of propositions that are true in it.
I ⊆ P is the initial state. G ⊆ P is the set of propositions
that must be true at any goal state. A is the set of actions,
where a ∈ A has the form: a = �pre(a), add(a)� denoting
its preconditions and add effects. An action a is applicable
in a state s ⊆ P iff pre(a) ⊆ s. Applying a in s transforms
the system to the state s ∪ add(a). We use a(s) to denote
the resulting state. When a is not applicable in s then a(s)
is undefined. We do not consider actions with conditional
effects. Therefore, there is always an optimal plan with only
one instance of each action, as a second instance of an action
has no effect on the state.

A solution to a DF task is a plan π = (a1, . . . , ak) such
that G ⊆ ak(· · · (a1(I)) · · · ). That is, it is a sequence of
actions that transforms the initial state into a state satisfying
the goal conditions.

Landmarks play an important role in the work of GB: they
are used to decompose the problem. A fact landmark for a
state s is a proposition that holds at some point in every plan
from state s to the goal (Hoffmann, Porteous, and Sebastia
2004). An action landmark for a state s is an action that
must be part of any plan from s to the goal. A disjunctive
action landmark for a state s is a set of actions, at least one
of which must be part of every plan from state s to the goal
(Helmert and Domshlak 2009).

A plan π for G is minimal if no other plan for G contains
a strict subset of the actions in π. Clearly, any optimal plan
must be minimal, unless zero-cost actions exist, in which
case it must have a sub-plan which is minimal. Therefore,
when seeking an optimal plan for G, we can prune any plan
that is not minimal without sacrificing optimality.

The following Lemma underlies the decomposition tech-
nique of GB.

Lemma 1 (Gefen & Brafman, 2012). Let L be a set of fact
landmarks for a DFPlan problem Π = (P,A, I,G), such
that G ⊆ L. Then, if there is a solution to Π, there ex-
ists an ordering l1, . . . , lk of L and a minimal plan π for Π
such that π = π1, . . . ,πk, where πi is a minimal plan for
(P,A,πi−1(· · · (π1(I)) · · · ), li).

Building on existing efficient algorithms for landmark de-
tection (Keyder, Richter, and Helmert 2010), GB provide
an efficient procedure for generating a landmark ordering
as needed in Lemma 1. Thus, instead of planning for G,

one can incrementally plan for each of the landmarks, keep-
ing around minimal plans only. Although this method may
prune some optimal plans, it is guaranteed to leave some op-
timal plans intact.

For the first part of the paper, we will focus on the task
of finding one of the component minimal plans πi. This
could be a plan to reach l1 from I , or a plan to reach lk from
πk−1(· · · (π1(I)) · · · ). The reader can simply think of it as
reaching G� from some initial state I �.

The Relaxed Causal And/Or graph
We can capture the structure of delete-free problems using
a directed And/Or graph known as the relaxed causal graph
(RCG) (Keyder, Richter, and Helmert 2010; Gefen and Braf-
man 2012). An And/Or graph is a directed graph with two
types of nodes: And nodes and Or nodes. The RCG G as-
sociates an And node with each action and an Or node with
each fact. There is an edge from (the node for) fact p to ac-
tion a if p ∈ pre(a), and an edge from a to p if p ∈ add(a).
In addition, there are two special Or nodes and two special
And nodes: s the start node (Or), is attached to a special
And node i via a special initial state edge, (s, i), and t (Or)
is attached to a special And node g via a special goal edge,
(g, t). There is an edge from s to every action with no pre-
conditions. There is an edge from s to i and an edge from i to
every initial state fact. There is an edge from every goal fact
to g, and an edge from g to t. See Figure 1 for an example.
To keep the generality of planning terms for the RCG we
define the following: pre(i) = s, pre(a) = s for every ac-
tion a without a precondition, add(i) = {initial state facts},
pre(g) = {goal facts}, add(g) = t.

A subgraph J = �V J , EJ� of G is a DF plan (aka, justifi-
cation subgraph) iff the following holds:

1. It contains s and t.

2. For every And node a ∈ V J , it contains all incoming
edges and the Or nodes from which they originate.

3. For every Or node p ∈ V J \ {s}, it contains at least one
incoming edge and the node it originates from.

4. J is acyclic.

These conditions ensure that there is an action achieving
each proposition (as well as t) and that each action has all
its preconditions satisfied. The acyclicity ensures the plan is
well founded.

Domination-Free Reachability
Forwards and backwards reachability analysis is one of the
central methods used in planning. In particular, structured
reachability analysis underlies popular techniques such as
planning graphs (Blum and Furst 1997).

In this section, we define the notion of domination-free
reachability (DFR) in an RCG. The DFR set for a node v,
dfr(v). Ideally, we would have liked dfr(v) to contain only
fact nodes n that are part of a minimal plan from s to v.
Unfortunately, this would be too hard to compute:

Lemma 2. Finding the set of all nodes which are part of a
minimal plan is NP-hard.
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Figure 1: An RCG. Facts in white, actions in grey, G1 and G2 are the goal and hence fact landmarks, g is a special goal action. Dom(2) = {s, 1, 2}, Dom(3) =

{s, 1, 2, 3}, Dom(22) = {s, 11, 22}, Dom(33) = {s, 11, 22, 33}. dfr(s) = {s}, dfr(1) = {s, 1}, dfr(2) = {s, 1, 2}, dfr(3) = {s, 1, 2, 3}, dfr(4) =

{s, 1, 2, 3, 4}, dfr(11) = {s, 11, 44, 66}, dfr(22) = {s, 11, 22, 44, 66}, dfr(33), dfr(44), dfr(66) = {s, 11, 22, 33, 44, 66}

Proof. The hardness of this problem comes from the fact
that a minimal plan is a generalization of the concept of
a simple path in control flow graphs. (imagine a plan-
ning problem that can be represented using only a directed
graph). The question of whether there exist a simple path
from s to t with x as an obligatory node is equivalent to the
2-disjoint paths problem (Perl and Shiloach 1978) which is
known to be NP-complete.

Instead, dfr(v) conservatively approximates (= is a su-
perset of) the set of fact nodes that can be part of a minimal
plan from the start node s to v. That is, all nodes in dfr(v)
lie on some path from s to v, but not all fact nodes on such
paths necessarily belong to dfr(v). That is, some nodes that
would be obtained by standard reachability analysis for v are
not part of dfr(v). Hence, domination-free reachability is a
filtered form of reachability that can prune certain nodes that
are not part of a minimal plan.

To the best of our knowledge, it is the first effective variant
of reachability geared towards optimal planning. We will
define the notion of DFR, an algorithm to compute it, and
demonstrate it through an example. We will show that it is
an over-approximation, i.e., that it can contain nodes that are
not part of a minimal plan, but that it can be much smaller
than the standard set of reachable nodes.

Domination
Our procedure is based on the notion of domination used in
control flow graphs: “Vertex v dominates vertex w in flow
graph (G; s) if v �= w and every path from s (start node)
to w contains v” (Tarjan 1974). We adapt the idea of dom-
ination to And/Or graphs as follows: a fact v dominates a
fact w in the RCG G if every DF plan from s to w contains
v. Intuitively, one can understand this as saying that every
plan from the current state that achieves w achieves v, as
well. Slightly departing from the definition in control-flow
graphs, our definition also implies that v dominates itself.

Landmarks are often used in planning to refer to goal
dominators, but also, sometimes, to dominators in gen-
eral. We will use the original ”dominators” term because
it comes with less baggage, it is more appropriate linguisti-
cally for our setting, and it is related to the graph-theoretic

ideas that motivate us. We use Dom(x) (called the Dom
set of x) to denote all fact nodes that dominate fact x in
the RCG, including x itself. This set could also be re-
ferred to as landmarks for x. For a set X , we define
Dom(X) =

�
x∈X Dom(x). The process used to find land-

marks in (Keyder, Richter, and Helmert 2010) computes the
Dom sets naturally.

We use the notion of domination to refine the notion of
reachability. To do so, we must formalize the notion of a
path in the RCG. We borrow the following paths definitions
from directed-hypergraphs (Gallo et al. 1993): A path p =
(v0, a1, v1, a2, v2, . . . , ak, vk) in the RCG is a sequence of
facts and actions, where v0 is the origin node, vk is a target
node and for every 1 ≤ i ≤ k, vi−1 ∈ pre(ai) and vi ∈
add(ai). A simple path is a path in which no action appears
twice. A simple path will be elementary if no fact appears
twice.

To better illustrate the advantage of DFR we define
reach(v), which captures the standard notion of reachabil-
ity. reach(v) is the set of action nodes that are part of some
RCG path from the start node s to v. This set can be obtained
by a backwards traversal of the RCG (treated as a regular di-
rected graph) that starts at v and collects nodes along this
traversal. Alternatively, one can do a forward traversal start-
ing at s. These procedures can collect action nodes that are
not part of a minimal plan to v.

For example, in Figure 1 reach(1) = reach(2) =
reach(3) = reach(4) = {a1, a2, a3, a4, a5}. In contrast
to these sets, we can see that the only minimal plan from s
to 2 will contain action nodes a1, a2 and fact nodes s, 1, 2.
Indeed, node 3 is dominated by node 2.

If we can identify this fact, we can ignore node 3 when
exploring the space of possible minimal plans from s to 2.
This will be done (to some extent) by the DFR algorithm
below.

DFR Algoritm
Algorithm 1, described above takes the RCG graph for the

initial state (G(I)) at its input, and its output are the DFR
sets for each fact node. It iteratively propagates information
forward, and can be understood as reachability analysis with
filtration.
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Algorithm 1 Domination-Free-Reachability

1: DFR(G(I)) {G(I) is initial state RCG}
2: for each v ∈ V do dfr(v) ← {v}
3: Q ← {s}, R ← {s} {s is the start node}
4: while Q �= ∅ do
5: Select and remove v ∈ Q
6: for all a ∈ consumers(v) do
7: if pre(a) ⊆ R then
8: for all ef ∈ add(a) do
9: R ← R ∪ {ef}

10: if ef /∈ Dom(pre(a)) then
11: if add(a) �⊆ dfr(ef) do Q ← Q ∪ {ef}
12: dfr(ef) ← dfr(ef) ∪ add(a)
13: for all pc ∈ pre(a) do
14: for all r ∈ dfr(pc) do
15: if ef /∈ Dom(r) and r /∈ dfr(ef) then
16: dfr(ef) ← dfr(ef) ∪ {r}
17: Q ← Q ∪ {ef}
18: end if
19: end for
20: end for
21: end if
22: end for
23: end if
24: end for
25: end while

Let dfrA(v) = {a| pre(a)∪add(a) ⊆ dfr(v)} be the set
of actions which their related fact nodes are in the dfr(v).
Then, for each v ∈ V, dfrA(v) ⊆ reach(v). For example,
in Figure 1 dfr(1) = {s, 1} and dfr(2) = {s, 1, 2}, show-
ing the superiority of the DFR sets over regular reachability.
Unfortunately, a formal characterization of dfr(v) is non-
trivial – we discuss it in a longer version of this paper which
is in preparation. Roughly speaking, dfr(v) holds all facts
which are part of a minimal plan to v. These are nodes that
can reach v (or can be reached while achieving v) but which
satisfy the additional constraint that they are not dominated
by v. There are two exceptions: (1) v itself is dominated by
v, and yet it is part of dfr(v). (2) Nodes that appear together
with v in the add effect of some action.

Technically, the algorithm works as follows: For every Or
node v, we initialize dfr(v) to v, since any node reaches it-
self as long as there is a plan that achieves it. Two other
sets are Q – our propagation set, and R – the reachability
set. Both are initialized with the initial state node s. Now,
we start the iterative process (l. 4): To propagate informa-
tion forward, we remove a fact node v from Q and go over
all actions that can consume v (v is one of their precondi-
tion) (l. 6). For each such action a, if all of a’s preconditions
were already reached (l. 7), we can try to use a to propa-
gate information to its effect nodes. Therefore, we iterate
over a’s effect nodes ef (l. 8) as follows: First, we update
the reachability set R with ef – the node we just reached
(l. 9). Now, our first filtration is based on the fact that in-
formation should be propagated to ef only if ef does not
dominate a (i.e., any of its preconditions). Otherwise, any
plan that achieves ef using a (ef is already true before ap-
plying a) is not minimal (l. 10). If ef does not dominate a,

we would like to add add(a) to dfr(ef), since they can be
achieved simultaneously with ef (l. 11,12). Finally, we can
go over all DFR sets of the preconditions pc of a. For each
node r ∈ dfr(pc), as long as ef does not dominate r, we
can propagate r to dfr(ef) (l. 13–16). When we propagate
new information we update Q so the new information can be
propagated further (l. 11 & 17).

Let us examine an example using Figure 1. The RCG in
Figure 1 holds two similar sub-graphs: one that is composed
of nodes 1, 2, 3, 4 and the other 11, 22, 33, 44, 66. The
fact landmarks are nodes 1, 2, 11, 22, G1, G2. A back-
ward procedure that collect actions starting at fact node 1
will collect actions a1, a2, a3, a4, a5. Two of these actions
are applicable in the initial state (a1, a4). On the other hand
dfr(1) = {s, 1}, and therefore only action a1 is in dfrA(1)
(since node 1 is a fact landmark and a1 is the only action
that can achieve it in a minimal plan, we can conclude it is
an action landmark). This outcome results from the fact that
node 1 is a dominator of 3, and therefore a5 cannot propa-
gate information into node 1.

Unfortunately, the DFR algorithm is not perfect as can be
seen using node 11. Action a55 cannot propagate informa-
tion to node 11, but it will propagate information to node
66. Action a77 will propagate nodes 44,66 to node 11 and
so dfr(11) = {s, 11, 44, 66}. With node 44 in dfr(11) also
actions a44, a55 will be part of dfr(11) although there is no
minimal plan to 11 with those actions.

Correctness
The following Lemma ensures the correctness of DFR sets
as a super-set of minimal plans for some fact node.
Lemma 3. Let dfr(G�) be the DFR set computed using Al-
gorithm 1 for DFPlan problem Π = (P,A, I �, G�). If for
some action a, pre(a) ∪ add(a) �⊆ dfr(G�) then there is no
minimal plan for G� that contains action a.

Proof. Paths in the RCG are the channels for information
propagation in Reachability/DFR algorithms. Every plan
(justification graph) can be seen as a union (of actions) of,
not necessarily disjoint, simple paths. The number of ac-
tions in each simple path that is contained in some plan π
must be ≤ the length of the plan. Therefore, the length of
simple paths can serve as a lower bound to the length of a
minimal plan.

Notice, that if π is a minimal plan, then for any simple
path p “extracted” from π that preserves the order of π, we
have that for any actions ai, aj ∈ p where aj appear after ai,
aj cannot dominate ai. This follows from the definition of a
minimal plan. We now prove by induction on the length of
simple paths that the DFR sets include all fact nodes which
are part of a minimal plan.
(i) Our induction assumption is that when we covered all
paths of length i, if there is a minimal plan with length ≤ i
to x that includes a, then pre(a) ∪ add(a) ⊆ dfr(x).
(ii) The base case, i = 0, is immediate since dfr(s) includes
s and only s.
(iii) Assuming the induction hypothesis holds for length i we
show it holds at length i + 1. Let us look at some fact node
x. Let us assume there is a minimal plan πx of length i + 1
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to x that ends with ax. A minimal plan to x must end with
an action where x ∈ add(ax), moreover it can’t achieve x
before. If we remove ax from πx we may get a plan which
is not minimal but is composed of paths with length ≤ i.
We shall now look at two scenarios, one in which some ac-
tion e is not an achiever of x (x is not an effect of e), and the
second one where it is:
(1) Let us look at some action e which is not an achiever of
x (ef in line 8). If pre(e), add(e) ∈ dfr(pc) where pc is
a precondition of ax (an achiever of x) and x is not a dom-
inator of pre(ax) (line 10) then we would try to propagate
pre(e), add(e) (r ∈ dfr(pc)) to x (line 13–16). If x dom-
inate y ∈ pre(e) (line 15) then each plan that uses e must
reach x before applying e and therefore it is not minimal. x
can dominate y ∈ add(e) without dominate the precondi-
tions of e if it appears with y in all add effects of actions that
achieve y (Lemma 4), but this contradicts the fact that e is
not an achiever of x.
(2) If e = ax is an achiever of x and x does not dominate
pre(e) (ef in line 10), then in the DFR algorithm add(e)
will be added to dfr(x) (line 12), and since each precon-
dition of e will propagate itself to x, since they are not
dominated by x (line 13–16) we get that pre(e), add(e) ∈
dfr(x).

At the end of the run of algorithm DFR we will propa-
gate information for all possible minimal plans (and possibly
more).

Lemma 4. Let v, x be some facts in a DFPlan problem.
Let Ax ⊆ A be a set of actions that achieve fact x (i.e. if
ax ∈ Ax then x ∈ add(ax)). If v dominates x, then: (i) It
also dominates some precondition of each ax ∈ Ax, or (ii)
In every minimal plan to x where v does not dominate some
precondition of ax ∈ Ax (the action that achieves x in that
plan) it appears with x in the add effect i.e. x, v ∈ ax.

Proof. If v dominates x ∈ add(ax), every plan that achieves
x must also achieve v. If v must be achieved before x, i.e.
before some action ax that achieves x is being applied then
v must dominate some precondition of ax. If there are plans
where v is not achieved before x, then it must be achieved
simultaneously with x, i.e. x, v ∈ add(ax).

Pruning Using DFR
What follows are three pruning methods that strongly uti-
lize the DFR algorithm. These methods can be applied to
any DFPlan problem, but they are even more effective when
combined with the decomposition method of GB. The rea-
son for this is that GB’s decomposition yields multiple plan-
ning problems, each with a shorter solution, and our pruning
methods are more effective the closer the goal is to the initial
state.

Basic DFR Pruning
The simplest and empirically most powerful pruning method
is based on Lemma 3. Given a planning problem with ini-
tial state I � and goal state G�, prune any action a such that
pre(a)∪ add(a) �⊆ dfr(G�). Lemma 3 guarantees that such
actions are not part of a minimal plan to G�.

Path-Commitment using DFR
One of the two pruning methods introduced by GB is called
disjoint-path commitment. There, the last action alast ap-
plied during A* search towards some goal l, is used to prune
actions that are not part of a minimal plan containing alast.
To use this method, one must be able to recognize that cer-
tain actions belong to different, disjoint minimal plans that
lead to l. GB use the following sound approximation to ap-
ply this idea in practice: (i) At preprocess time, define a set
of labels – one for each action achieving l. Using a back-
wards traversal from l, propagate these labels backwards.
Intuitively, one now identifies different path to the goal with
their last action. Let lbl(a) be the set of labels reached to ac-
tion a. Intuitively, these labels mark the different path to l to
which a belongs. (ii) Then, during search, as long as alast
did not achieve a fact landmark, one can safely prune any
action a where lbl(a) ∩ lbl(alast) = ∅ – that is, the labels
of that action are disjoint from the labels of the last action
applied.

We will show how to use the DFR sets to obtain an im-
proved version of GB’s disjoint path commitment. It re-
places GB backwards label propagation – essentially back-
wards reachability – with the use of DFR sets. As these sets
provide a better form of reachability for minimal plans, the
resulting method is more powerful. The basic idea is simple:
First, associate every action in dfr(G�) with one or more
preconditions of the actions that achieve the current goal, or
landmark. We do so by ”reverse” computing DFR sets of
these actions.

Next, imagine we have only two actions ap, aq with pre-
conditions p, q respectively, which achieve G�. If the action
alast that was last applied belongs to the DFR set of precon-
dition p, but not of q, then any minimal plan containing alast
must achieve the goal via ap. It would be redundant (non-
minimal) for such a plan to contain aq as well. Moreover,
we can ignore any other action that is not part of a minimal
plan containing ap after applying alast.

Note that the above intuitions are correct provided that the
last action applied, alast does not achieve some landmark l.
Our discussion below is under this assumption.

We start formulating the ideas above using the follow-
ing two observations: Let πi = (a1, . . . , ak) be a mini-
mal sub-path to l, where ak achieves l. (1) We know that
a1, . . . , ak ∈ dfrA(l) because all actions of a minimal plan
must be in dfrA(l). (2) We know that a1, . . . , ak−1 ∈
dfrA(x1) ∨ · · · ∨ dfrA(xt), xi ∈ pre(ak), because the first
k− 1 actions must be in the dfrA sets of one of ak’s precon-
ditions.

Notice, that if we knew the identity of ak, we could prune
all actions that are not in the DFR sets of one of ak’s pre-
conditions. We usually cannot know who is ak – it must
belong to the set of achievers of l – but using alast we can
sometimes find a smaller set than ach(l). Since we assumed
that alast does not achieve a fact landmark, it is one of the
actions a1, . . . , ak−1, as in the observations above. Let us
assume the index of alast is aj (j ≤ k − 1). We can use
alast to identify which actions in ach(l) could be in a mini-
mal plan with alast. That is, we can find which actions can
act as ak. Since we know what the possible ak’s are, we can
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prune actions that cannot be aj+1 in such a plan.
To use these ideas we do the following: (i) Let dfrb(v) =

{x|v ∈ dfr(x)}. That is, it is the set of facts x such that
v can appear in a minimal plan that reaches them. (ii) Let
dfrb(a) =

�
v∈pre(a)∪eff(a) dfrb(v). dfrb(a) is the set of

facts such that a can be part of a minimal plan that reaches
them. (iii) Let PRE(l) = {f |f ∈ pre(a) ∧ a ∈ ach(l)},
i.e., all preconditions of actions that achieve l. (iv) We can
now define cmt(alast, l) = dfrb(alast) ∩ PRE(l). This is
a set of fact commitments for l given alast. At least one of
these facts must be achieved in any minimal plan for l that
includes alast. That is, it is similar to a disjunctive landmark
focused on minimal plans for l that include alast.

Let us examine Figure 1 again, and assume our next land-
mark to achieve is G1 and that alast = a1.dfrb(a1) =
{s, 1, 2, 3, 4, G1, G2, t}, PRE(G1) = {2, 22}. Therefore
cmt(a1, G1) = {2}. We can notice three things: (1) We
eventually must be able to apply action a99 (2) We must
achieve node 2 (which is in cmt(a1, G1)) (3) We also need
to achieve node 22 (which is not in cmt(a1, G1)). Since, we
must achieve node 2, we can focus our search on this node
until it is achieved and then turn our focus to node 22. We
now formulate this observation

During A* search we divide the commitment set
cmt(alast, l) into two sets. The first set cmt1(alast, l) com-
posed of the facts in the commitment set still unachieved.
cmt2(alast, l) is composed of achieved facts (facts in the
state). The second set must be strengthened as follows:
cmt∗2(alast, l) = {x|x ∈ pre(a)∧ pre(a)∩ cmt2 �= ∅∧a ∈
ach(l)}. That is, we add to this set all preconditions of ac-
tions that uses facts from cmt2 and achieve l. The reason
this strengthening is necessary is because that cmt2 could
hold only part of the preconditions of some action in ach(l)
(as in the example above). If that precondition is already in
the current state (like node 2) we will still need to achieve the
rest of the preconditions (node 22). Now, during search, if
alast did not achieve a fact landmark, and action a /∈ ach(l),
we can safely prune a, if there is no fact y in cmt1 or cmt∗2
where a ∈ dfrA(y). For example, if now alast = a2, then
cmt1 will be empty, cmt2 = {2} and cmt∗2 = {2, 22}, forc-
ing us to turn our focus to node 22.

Let us now look at another example from Figure 1. If
we will remove from the RCG in Figure 1 action a99 and
fact node G1, we will get an RCG with only one fact land-
mark G2 (besides s). Now (using the mentioned RCG),
let us assume the last action taken was a1 which did not
achieve a fact landmark. dfrb(a1) = {s, 1, 2, 3, 4, G2, t},
PRE(G2) = {2, 22}. Therefore cmt(a1, G2) = {2}. So,
we can prune any action that is not part of dfrA(2). Notice,
that if a8 would have another precondition besides node 2,
we could miss it based on dfrb(a1) alone. In that case, We
could safely prune until node 2 is in state, then we would
have to strengthen cmt2 to ”see” the other precondition.

Sub-goal Bounds
Our third and last pruning technique uses the DFR differ-
ently. Let us assume we have some upper bound u on the
cost of the entire plan to G. We’d like to get an upper
bound on the cost of achieving G�, our current landmark.

We do so by first estimating the state s(G�) reached when
G� is achieved. Then using an admissible heuristic to ob-
tain a lower bound d on the cost of achieving the final goal
G from s(G�). Now, u − d is an upper bound on the cost
of achieving G�. We use the dfr(G�) as our estimate of the
state s(G�). This is justified because we know that all facts
achieved on route to G� using some minimal plan are in-
cluded in dfr(G�). This gives us a ”quick and dirty” method
of generating an upper bound on the cost of achieving G�

which requires only a single computation of the heuristic
function (very cheap) and a single computation of dfr(G�),
which is computed anyway during preprocessing.

An upper bound u on plan cost provides a simple (well
known) method for pruning during A∗ search. Any state s
such that f(s) = g(s) + h(s) > u can be pruned (assuming
an admissible h value). Our main observation here is that
this idea can be used at each stage implemented in the GB
framework, since their decomposition approach reduced the
problem of searching for a single plan to one of searching
for many (simpler) plans (see Lemma 1).

Unlike the first two pruning methods discussed so far,
which would work for any I �, G�, the bounds generation
method takes a slightly more global perspective, and will
generate the upper bounds for all the relevant subproblems
obtained in GB’s decomposition at preprocessing time.

First, we get an upper bound on the cost of the entire
plan. To get an upper bound on plan cost, one can use
hadd, hmax (Bonet and Geffner 2001) to guide the selection
for a satisficing plan, much like in FF (Hoffmann and Nebel
2001). A stronger technique will be to use algorithms de-
scribed in (Keyder and Geffner 2009). The cost of this plan
is an upper bound u. Next, recall that GB’s decomposition
method generates a sequence L = (l1, l2, . . . , lk) of ordered
landmarks (see Lemma 1). Using this sequence, we create
a sequence of partial assignments that an optimal plan must
reach. These partial assignments are supersets for minimal
plans, specifically, the plan to l1 must reside in dfr(l1).

Since in DFPlan propositions achieved remain true for-
ever, as long as we keep the landmark ordering, a minimal
plan to {l1, l2} must lead to a state in which the achieved
propositions are a subset of dfr(l1) ∪ dfr(l2). More gener-
ally, the superset of any state achieving lj is dfr(l1) ∪ · · · ∪
dfr(lj).

Using an admissible heuristic function h, we now get
the following respective bounds on the cost of reaching
each of the landmarks: Let B = (u − h(dfr(l1)), u −
h(dfr(l1) ∪ dfr(l2)), . . . , u − h(dfr(l1) ∪ · · · ∪ dfr(lk))),
where h(dfr(v)) is an admissible heuristic of state s =
{x|x ∈ dfr(v)} to the goal. This computation needs to be
carried out once only, before search commences.

During search, for each current state s, each applicable
action a, and next landmark to achieve li, we can ask: is
g(s) + cost(a) ≤ B(i)? If the answer is no, we can prune
a. If all actions applicable at s are pruned, s is a dead-end
for optimal planning.

Empirical Results
We implemented the ideas described in the previous sections
in the Fast Downward framework (Helmert 2006). The DFR
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algorithm was implemented to run once at preprocess time.
The Q set in the algorithm was implemented as a queue.
Pruning itself is done while in search, with respect to the
next fact landmark to achieve. We implemented two vari-
ants: DFR1 uses the first pruning method only (basic DFR
pruning). DFR2 uses all three pruning methods. We evalu-
ated their performance in the context of heuristic search (us-
ing A∗) using LM-Cut and compare to the results in the GB
paper in Table 1,2. Domains used are delete-free versions of
IPC problems. The time limit is 0.5/5/30 minutes per prob-
lem. We compare LM-Cut alone to GB + LM-Cut, DFR1
+ LM-Cut and DFR2 + LM-Cut. The overall performance
(coverage, time scores, expansion scores) shows that prun-
ing in general has an advantage over LM-Cut alone in almost
all of the domains. There are some domains where the GB
method is better than the basic pruning (DFR1), like logis-
tics98 and satellite. For the satellite domain this can be the
result of the path-commitment based pruning, since, DFR2
is better than the GB method in this domain. For logistics98,
the GB method is better than DFR2 so this is probably due
to minimization of disjunctive action landmark that is done
in the GB method for which we have no parallel technique
(although it is theoretically possible). We show DFR2 with
all three pruning methods because our experiments showed
that the contribution of sub-goal bounds is minor. Still, we
believe it to be an interesting general technique that could be
enhanced using stronger heuristics.

We also tried our pruning procedure on the seed-set prob-
lems with zero-cost actions. Zero-cost actions are challeng-
ing to existing solvers which cannot solve any instance of
this problem (Gefen and Brafman 2011). Pruning, in this
case, is not sufficient to overcome this method. However,
when we augment pruning with a simple procedure that ap-
plies all applicable zero-cost actions, then pruning+blind-
search+zero-cost-procedure solves all the seed-set prob-
lems.

Summary and Related Work
Using the graph-theoretic notion of domination, we were
able to construct a new simple domination-free reachabil-
ity method for delete-free planning and use it within the de-
composition framework of GB to obtain better performance
than the more complicated pruning techniques of (Gefen and
Brafman 2012). In addition, we leveraged the decompo-
sition to introduce a bounds-based pruning method. Our
method was shown to be more effective in solving delete-
free planning problems. The increased coverage is not large
– we solve 16 more problems than GB – yet in the context
of optimal planning, this is considered non-trivial progress.
Perhaps more importantly, our work is based on a new con-
struction that improves upon one of the more fundamental
tools in the analysis of planning problems – that of reacha-
bility – and we are not aware of any similar such construct
in the literature.

The DFR algorithm shares some similarity with the first
achiever analysis (Haslum, Slaney, and Thiébaux 2012;
Pommerening and Helmert 2012) which removes all oper-
ators that are not first achievers of any variable (Richter,
Helmert, and Westphal 2008). Such actions can not be part

Domain LM-Cut GB DFR1 + DFR2 +
method LM-Cut LM-Cut

Seconds 30 300 1800 30 300 1800 30 300 1800 10 30 300 1800
airport(50) 26 33 38 40 48 49 29 42 49 23 28 43 48
blocks(35) 35 35 35 35 35 35 35 35 35 35 35 35 35
depot (22) 4 6 7 10 10 12 9 10 10 9 9 10 10
driverlog (20) 13 14 14 13 14 15 14 15 15 13 14 15 15
elevators- 5 7 7 6 7 9 5 7 8 4 5 6 8
opt08-strips (30)
freecell (80) 1 4 6 0 1 1 1 4 6 1 1 4 6
grid (5) 1 1 2 1 1 2 1 2 2 1 1 2 2
gripper (20) 20 20 20 20 20 20 20 20 20 20 20 20 20
logistics00 (28) 23 23 23 28 28 28 28 28 28 28 28 28 28
logistics98 (35) 7 8 8 10 17 17 12 15 16 11 13 16 16
miconic (150) 150 150 150 128 150 150 150 150 150 150 150 150 150
mprime (35) 19 24 27 17 21 24 19 24 27 17 20 25 28
mystery (30) 23 25 26 20 25 26 22 26 26 17 23 26 26
openstacks- 5 6 7 5 7 8 4 5 7 30 30 30 30
opt08-strips (30)
openstacks- 5 5 5 5 5 5 5 5 5 5 5 5 5
strips (30)
parcprinter- 23 23 23 29 29 30 30 30 30 30 30 30 30
08-strips (30)
pathways- 5 5 5 5 7 8 5 5 8 5 5 6 8
-noneng (30)
pegsol-08 24 27 27 24 26 29 25 27 27 18 25 27 27
-strips (30)
pipesworld- 12 15 17 10 13 17 12 15 17 10 12 16 17
notankage (50)
pipesworld- 7 10 10 6 7 9 7 10 10 6 7 10 10
tankage (50)
psr-small (50) 50 50 50 50 50 50 50 50 50 50 50 50 50
rovers (40) 8 12 12 17 20 21 18 20 21 20 21 25 28
satellite (36) 6 6 7 6 8 10 6 7 7 6 7 9 11
scanalyzer- 13 14 15 8 10 14 10 14 15 9 10 14 15
08-strips 30)
sokoban- 19 21 25 22 24 26 20 22 26 17 20 22 26
08-strips 30)
tpp (30) 9 12 13 14 15 16 17 21 21 19 19 21 21
transport- 9 10 12 9 12 12 9 10 12 9 10 10 10
opt08-strips (30)
trucks-strips (30) 6 7 9 24 30 30 30 30 30 30 30 30 30
woodworking- 17 18 19 27 27 28 27 27 29 27 27 27 29
opt08-strips 30)
zenotravel (20) 11 13 13 13 13 13 13 13 13 13 13 13 13
Total (1116) 556 604 632 602 680 714 633 689 720 633 668 725 752

Table 1: Coverage per domain. time limit per problem: 0.5 (30s), 5 (300s),
30 (1800s) minutes (sec.). We add a DFR2 column of 10 seconds to see
where it is tied with 30 minutes of LM-cut alone.

a minimal plan. In fact, Line 10 in the DFR algorithm pre-
vents the propagation of information through actions which
are not first achievers, treating them as if they were not in
the RCG. The DFR algorithm then continues to detect ac-
tions that cannot be part of a minimal plan but still would
not be removed by the first achiever analysis. For example,
in Figure 2 the DFR set of nodes 1, G1 does not contain ac-
tions a2, a3 which will not be part of a minimal plan even
though they are first achievers.

A similar notion to path-commitment in regular planning
was recently introduced by (Karpas and Domshlak 2012).
In this paper causal links are used to infer constraints that
must be satisfied by an optimal plan having some known
prefix. The constraints are used to enhance a heuristic eval-
uation. Therefore, the notion of optimal plan plays a similar
role as the minimal plan in the path-commitment method. It
could be the case that using the notion of optimal plan is too
restrictive, and using minimal plan instead would simplify
this work.

To our knowledge, the work of GB and this paper are the
only work in the literature that focuses on pruning in delete-
free problems using A* search. There are, however, some
other recent works on delete-free planning: (Pommeren-
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Figure 2: An RCG where first achiever analysis would not remove actions (but i).

planner Time score Expansion score
LM-cut 46.58 45.75
GB method + LM-cut 53.05 57.07
DFR1 + LM-cut 54.82 55.59
DFR2 + LM-cut 58.36 58.89

Table 2: time limit per problem: 30 minutes. Scores are average of do-
main score values for each planner. Scores based on (Richter and Helmert
2009). Logarithmically scaled scores between 0 (≥ 300s and ≥ 1000000

expansions resp.) and 100 (≤ 1s and ≤ 100 expansions resp.).

ing and Helmert 2012) share some similarities regarding
upper-bounds, although they don’t use A* search. (Haslum,
Slaney, and Thiébaux 2012) try to solve delete-free prob-
lems by generating minimal disjunctive action landmarks
and then applying minimal-hitting set procedure to find an
optimal plan. There has been also quite a few recent pa-
pers dealing with action pruning: Stratified Planning (SP)
(Chen, Xu, and Yao 2009), Expansion core (EC) (Chen
and Yao 2009), Bounded intention Planning (BIP) (Wolfe
and Russell 2011), Symmetries (Coles and Coles 2010;
Fox and Long 1999; Pochter, Zohar, and Rosenschein 2011).
Of these, the only work we are aware of that is landmark
based is the SAC algorithm (Xu et al. 2011) and its use of
disjunctive action landmarks is closer in spirit to GB.

The DFR sets in this paper are generated at preprocess-
ing time giving them an advantage over the GB method
which is repeatedly applied at run-time. This can be seen
in the fact that even though GB use an extra minimization
step to generate minimal disjunctive action landmark, the
basic DFR method (DFR1) has, in general, a better average
time score, while DFR2 has also a better average expansion
scores. These observations supports our belief that the DFR
set is a strong theoretical concept, and we believe that it can
be used by other methods – any method that can benefit from
the notion of minimal plans rather than (any) plan could po-
tentially benefit from the use of DFR sets.
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