
Combining the Expressivity of UCPOP with theE�ciency of GraphplanB. Cenk Gazen and Craig A. KnoblockInformation Sciences Institute andDepartment of Computer ScienceUniversity of Southern CaliforniaMarina del Rey, CA 90292Abstract. There has been a great deal of recent work on new ap-proaches to e�ciently generating plans in systems such as Graphplanand SATplan. However, these systems only provide an impoverished rep-resentation language compared to other planners, such as UCPOP, ADL,or Prodigy. This makes it di�cult to represent planning problems usingthese new planners. This paper addresses this problem by providing acompletely automated set of transformations for converting a UCPOPdomain representation into a Graphplan representation. The set of trans-formations extends the Graphplan representation language to includedisjunctions, negations, universal quanti�cation, conditional e�ects, andaxioms. We tested the resulting planner on the 18 test domains and 41problems that come with the UCPOP 4.0 distribution. Graphplan withthe new preprocessor is able to solve every problem in the test set andon the hard problems (i.e., those that require more than one second ofCPU time) it can solve them signi�cantly faster than UCPOP. WhileUCPOP was unable to solve 7 of the test problems within a search limitof 100,000 nodes (which requires 414 to 980 CPU seconds), Graphplanwith the preprocessor solved them all in under 15 CPU seconds (includ-ing the preprocessing time).1 IntroductionOne of the important issues in planning is how to de�ne domains and problems.There is a trade-o� between the expressiveness and manageability of a formaldomain de�nition language. On one hand, a practical language should be as high-level as possible so that the domain engineer can represent planning problemseasily, accurately and naturally. On the other, the more complex the language,the harder it is for the planner to solve the problems.Some of the planners that support a high-level language are ADL [1], Prod-igy [2] and UCPOP [3]. UCPOP is a partial order planner that supports avery expressive domain de�nition language. The characteristic features of such alanguage are negations, conditional e�ects, disjunctive preconditions, universaland existential quanti�cation, axioms, and facts. Given these constructs, it isusually possible to �nd a natural representation for a given domain.



Graphplan [4] is a graph algorithmic planner that runs much faster thantraditional planners but supports a minimal language for de�ning domains andproblems. In Graphplan, a domain is represented by a set of operators, each ofwhich is de�ned by a list of parameters, a list of propositions as preconditions,and a list of add and delete e�ects. A problem is represented by a typed set ofobjects, a list of propositions as initial conditions, and a list of propositions asthe goal. For most domains, this language is awkward to use, although once thedomain is de�ned in this language, problems can be solved much faster than itis possible with UCPOP.One approach to support a more expressive language is to extend the `Plan-ning Graph' of Graphplan [5]. Another is to develop a preprocessor that trans-lates domains from an expressive representation language into a simpler one.Advantages of the second approach are that it is conceptually simple and thatit is not necessarily speci�c to one planner. On the other hand, it cannot handlesome language constructs as e�ciently as a high-level planner can.In this paper, we present a set of algorithms that transform a UCPOP domainand problem into an equivalent Graphplan domain and problem, although thesamemethods can be used with other fast planners, notably SATplan [6], that arebased on simple representations. The goal is to make the best of both planners.UCPOP supports a rich set of domain de�nition language features, but is muchslower compared to Graphplan, which only supports a minimal language.The preprocessor takes as input a UCPOP domain and problem, and gener-ates an equivalent pair in Graphplan's language by applying rewriting rules stepby step. The result of each step is an equivalent representation of the domainwhere some of the language constructs have been replaced with simpler ones.2 Rewriting UCPOP domains as Graphplan domainsIn UCPOP, domains are de�ned by operators, axioms, facts, and safety con-straints [7]. Problems are de�ned by a list of initial conditions and a goal expres-sion. UCPOP operators are represented by a list of parameters, a preconditionexpression, and an e�ect expression. The last two are arbitrarily nested �rst-order logic expressions, although some semantically meaningless (in a planningproblem) expressions are not allowed. The restriction follows from the fact thatoperators should have deterministic e�ects. The expressions can be formed us-ing negations, conjunctions, disjunctions, implications, and quanti�cation. Whenused in e�ect expressions, implications have di�erent semantics and are calledconditional e�ects. The semantics are di�erent because the antecedent of a con-ditional e�ect is evaluated with respect to the set of propositions that holdbefore the operator is applied, whereas the consequent refers to the resultingset. Quanti�cations can be either universal or existential.An axiom is a rule that allows the planner to deduce a proposition from thecurrent set of valid propositions. UCPOP supports a restricted form of axioms,where an axiom can only deduce a single proposition. A fact is an arbitrary pieceof code that is executed during planning. In UCPOP, they can only appear in



the preconditions of operators. Safety constraints are conditions that the plannermust maintain throughout the plan.Although both are based on the STRIPS representation [8], Graphplan has avery restrictive language as compared to UCPOP. A Graphplan domain de�ni-tion consists of a list of operators. Each operator has a list of parameters, a listof preconditions, a list of `add' e�ects and a list of `delete' e�ects. The last threelists are assumed to be conjunctions. The precondition list contains propositionsthat need to hold before the operator can be applied. The application of an op-erator results in the propositions in the `add' list to be added to the current setof valid propositions, whereas those propositions in the `delete' list are removedfrom the same set. The restrictiveness of Graphplan's language comes from thefact that both preconditions and e�ects are lists and not arbitrary expressions.Interestingly, this lack of expressive power in the domain de�nition languagedoes not place an inherent limitation on the types of problems that Graph-plan can solve. The preprocessor we have developed can automatically transformUCPOP domains into Graphplan domains. The current implementation handlesall the UCPOP features except facts and safety constraints. We are working onextending the preprocessor to support facts, but safety constraints are bettersupported explicitly by a planner than with preprocessing.In our preprocessing approach, we make two assumptions about the domains.First, we assume that objects are not created dynamically. This means that alist of all objects in the domain is available to the preprocessor. Second, weassume that all objects have types. However, this is not a limiting assumptionas it is always possible to assign the same type (e.g., object) to every objectin the domain. It is also possible to have multi-typed objects. For example, aplane can be typed both as a vehicle and a 
ying-object. If type information isavailable, our preprocessor can generate a smaller domain, which in turn makesGraphplan run more e�ciently.The preprocessor is structured as six layers (Figure 1). Each layer processessome speci�c language construct and generates output that is input to the nextlayer. The top layer accepts the domain de�nition from the user while the bottomlayer creates the domain in Graphplan's language.
quantifiers =>

conjunctions & disjunctions

domain in UCPOP’s language

initial conditions & goals => operators

axioms => operators

conditional effects =>
antecedents to preconditions

disjunctive preconditions =>
multiple operators

negations => new ‘not’ predicates

domain in Graphplan’s languageFig. 1. Preprocessing Layers



2.1 Initial Conditions and GoalsSince initial conditions and goals can contain high-level language constructs, the�rst step is to convert them into operators. In general, this makes it unnecessaryto make special case versions of the algorithms to process the initial conditionsand goals.Given: initial condition expression i; goal expression g; list of operators lolet oinit be a new operator with precondition (init-problem) ande�ect (and i (not (init-problem)))let ogoal be a new operator with precondition g and e�ect (goal-achieved)add oinit and ogoal to loset the new initial condition to be (init-problem)set the new goal to be (goal-achieved)For example, the following problem de�nition:(problem blocks :inits (forall (block ?x) (clear ?x)):goal (or (on a table) (exists (block ?x) (clear ?x))))would be transformed into:(problem blocks :inits (init-problem):goal (goal-achieved))(operator init-operator :precondition (init-problem):e�ect (and (forall (block ?x) (clear ?x)) (not (init-problem))))(operator goal-operator :precondition (or (on a table) (exists (block ?x) (clear ?x))):e�ect (goal-achieved))Creating these kinds of operators is a standard planning technique. However,it introduces two extraneous steps when introduced in preprocessing, and thesesteps need to be removed from the �nal plan or simply ignored. On the otherhand, Graphplan's e�ciency is not a�ected in any signi�cant way as the onlyoperator that is applicable at the �rst step is the `init-operator'. After its ap-plication, the second level of propositions of the planning graph is exactly thesame as it would be in the �rst level if the initial conditions were stated directly.A `symmetric' argument holds for the `goal-operator'.2.2 AxiomsUCPOP restricts axioms to asserting a single proposition. Such axioms can beeasily converted into `deduce' operators. Since any deduced proposition maylose its validity after each step, it is necessary to �nd the operators that modifythe propositions from which the axiom is derived, and to add an e�ect whichnegates the deduced proposition to these operators. This forces the axiom tobe re-evaluated in a latter step if the deduced proposition is needed for anotheroperator.



Given: axiom a; list of operators lolet o be a new operatorset the precondition of o to context(a) wherecontext(a) is an expression that must be true before the axiom can be appliedset the e�ect of o to implies(a) whereimplies(a) is the single deduced proposition, with predicate p of n argumentsfor each op in loif e�ect(op) contains any predicate in context(a)add (forall (v1 v2 : : : vn) (not (p v1 v2 : : : vn))) to e�ect(op)add o to loFor example,(axiom is-clear :context (or (eq ?x Table) (not (exists (obj ?b) (on ?b ?x)))):implies (clear ?x))(operator put-on :parameters (obj ?x) (obj ?y) (obj ?d):precondition (and (on ?x ?d) (clear ?x) (clear ?y)):e�ect (and (on ?x ?y) (not (on ?x ?d))))would be transformed into:(operator deduce-is-clear :parameters (obj ?x):precondition (or (eq ?x Table)(not (exists (obj ?b) (on ?b ?x)))):e�ect (clear ?x))(operator put-on :parameters (obj ?x) (obj ?y) (obj ?d):precondition (and (on ?x ?d) (clear ?x) (clear ?y)):e�ect (and (forall (?v1) (not (clear ?v1)))(and (on ?x ?y) (not (on ?x ?d)))))Having axioms in a language makes the operator de�nitions cleaner and lesserror-prone by allowing the deducible e�ects that are repeated in many operatorsto be stated in a single axiom. In a way, preprocessing undoes that, and althoughthe resulting domain is not as compact, its correctness is preserved. Since aconservative approach is followed in invalidating the deduced propositions, inthe worst case an axiom may need to be asserted after each step. For example,the `put-on' operator above does not have to assert (not (clear ?x)) because ?xis still clear after this action, but because it does, the axiom needs to be appliedto re-assert (clear ?x) if another action requires (clear ?x) later.2.3 Quanti�ersIn this layer, universal quanti�ers are expanded into conjunctions and existentialquanti�ers into disjunctions. Because dynamic creation of objects is not allowedand all the objects are explicitly declared, the expansion is straightforward. Thepreprocessor rewrites the quanti�ed expression as a conjunction or disjunction ofexpressions. Each of these expressions is generated by instantiating the quanti�edvariable with each of the objects that the variable can denote.



Given: a list of objects lob and a quanti�ed expression (q (t v) e) whereq 2 fforall; existsg; t is a type; v is the quanti�ed variable; e is an expressionfor each ob 2 lob s.t. type(ob) = tei = instantiate v with ob in eif existential(q)replace (q (t v) e) with (or e1 e2 : : : en)else // universal(q)replace (q (t v) e) with (and e1 e2 : : : en)Given the object de�nition `(block a) (block b) (block c)', the preprocessorwill expand the expressions on the left into those on the right:(forall (block ?x) (clear ?x)) (and (clear a) (clear b) (clear c))(exists (block ?x) (clear ?x)) (or (clear a) (clear b) (clear c))The expansion of quanti�ers over all the objects is where the static domainassumption is necessary. Since it is assumed that a list of all the objects in thedomain is available to the preprocessor, the expansion can be done easily. Oursecond assumption that all objects are typed is also useful at this layer, becausethe expansion is done only over the objects that have the corresponding type. Inthe worst case, where a quanti�ed variable can range over all the objects in thedomain (i.e., all objects have the same type), the expansion contains as manyterms as there are objects. After the expansion, a domain in which only a fewobjects belong to each type will be more compact than an equivalent domainwhere all the objects have the same type. In practice, expansion of quanti�edexpressions proved to be an acceptable preprocessing technique because mostquanti�ed variables can be restricted to range over a small number of objects.2.4 Conditional E�ectsConditional e�ects are translated into simpler expressions by moving the an-tecedents into the preconditions. By de�nition, the consequent of a conditionale�ect is asserted only when the antecedent holds before the operator is applied.An equivalent way to represent such an operator is to use two operators: onewith the antecedent in the preconditions and the consequent in the e�ects, andanother with the negation of the antecedent in the preconditions and the conse-quent removed from the e�ects (Figure 2).
precondition: p
effect: (and (when ante cons) other-effects)

precondition: (and p ante)
effect: (and (cons other-effects))

precondition: (and p (not ante))
effect: (other-effects)Fig. 2. Transforming Conditional E�ectsMore generally, an operator can have multiple conditional e�ects, which mayappear either as separate conjuncts or as nested conditional e�ects. An example



of the former is (and (when p q) (when r s)), and an example of the latteris (when p (when q r)). Both cases are handled by applying the expansion ofFigure 2 recursively to the resulting operators until all the conditional e�ectsare eliminated.This expansion generates an exponential number (in terms of the number ofconditional e�ects) of operators, but in some cases it can avoid the problem bypartially evaluating the antecedent and replacing the operator with a simpli�edone which does not have the conditional e�ect. Depending on the outcome ofthe evaluation, the consequent can be added to or removed from the e�ects.Given: an operator o with precondition p and e�ect (and e1 e2 : : : en)if for some i, ei is a conditional e�ect (when ai ci)if can-partially-evaluate(ai)if ai evaluates to truereplace ei with ci in the e�ectelse // ai evaluates to falseremove ei from the e�ectrecursively apply algorithm to oelse // partial evaluation is not applicablerecursively apply algorithm to the operator with precondition(and p ai) and e�ect (and e1 e2 : : : ei�1 ci ei+1 : : : en)recursively apply algorithm to the operator with precondition(and p (not ai)) and e�ect (and e1 e2 : : : ei�1 ei+1 : : : en)else // no conditional e�ects in the e�ectadd o to the set of operatorsHere are example operators:(operator move-briefcase:parameters (location ?x) (location ?y):precondition (at ?x):e�ect (and (not (at ?x)) (at ?y)(when (money-in) (and (not (money-at ?x)) (money-at ?y)))))(operator deduce-table-clear:e�ect (and (when (eq a table) (clear a)) // after expansion of (forall (obj ?x) ...)(when (eq b table) (clear b)) // over obj = fa, b, tableg(when (eq table table) (clear table))))And how they would be rewritten:(operator move-briefcase-1 :parameters (location ?x) (location ?y):precondition (and (at ?x) (money-in)):e�ect (and (not (at ?x)) (at ?y)(not (money-at ?x)) (money-at ?y)))(operator move-briefcase-2 :parameters (location ?x) (location ?y):precondition (and (at ?x) (not (money-in))):e�ect (and (not (at ?x)) (at ?y)))(operator deduce-table-clear :e�ect (clear Table)))An expansion of the `deduce-table-clear' operator would result in 23 opera-tors, but with partial evaluation only one operator is created. The partial evalua-tion technique requires the preprocessor to determine the static predicates of the



domain. As a �rst approximation, this can be done by �nding those predicatesthat do not appear in the e�ects of any operator.In some cases, although an antecedent contains only static predicates, thearguments of the predicates are parameters of the operator. Since the parametersare not bound during preprocessing, the truth value of the antecedent cannot bedetermined. Our solution is to expand the operators by instantiating over thoseparameters that appear in the antecedent. The antecedents in the followingoperator cannot be evaluated because ?boxy is not bound.(operator push-box:parameters (?boxx ?boxy ?roomx):precondition : : ::e�ect : : : (when (neq box1 ?boxy) : : :) (when (neq box2 ?boxy) : : :) : : :)The preprocessor instantiates ?boxy and creates multiple operators, so that par-tial evaluation is possible. One of the new operators is:(operator push-box-box1:parameters (?boxx ?roomx):precondition : : ::e�ect : : : (when (neq box1 box1) : : :) (when (neq box2 box1) : : :) : : :)At worst, this technique generates (# of objects)(# of parameters) operators, butthis number is certainly much smaller than 2# of objects. In fact, Graphplan needsto do the expansion internally (for uninstantiated parameters) to build the plan-ning graph, so it can still work e�ciently.However, partial evaluation is not always possible, in which case the numberof operators created from a single operator is 2n, where n is the number ofconditional e�ects of that operator. Although n is generally a small number, itcan get large when conditional e�ects are combined with universal quanti�ers:(forall (block ?x) (when (not (painted ?x)) (color ?x blue)))The previous preprocessing layer would generate as many conditional e�ects asthere are blocks, and removing them would create 2#of blocks operators. Althoughthis is a signi�cant theoretical limitation of the preprocessing approach, theproblem does not occur often. In fact, in all the test domains, all occurrences ofuniversally quanti�ed conditional expressions could be expanded by using partialevaluation.2.5 DisjunctionsA disjunction in the precondition of an operator is eliminated by creating mul-tiple operators such that each new operator has one of the disjuncts in its pre-condition and the exact same e�ect as the original operator (Figure 3).Given: an operator o with precondition (or p1 p2 : : : pn) and e�ect efor each p in fp1 p2 : : : pnglet oi be a new operator with precondition p and e�ect eadd oi to the set of operatorsremove o from the set of operators



effect: eff-expr
precondition: (or expr-1 expr-2 ...)

precondition: expr-1
effect: eff-expr effect: eff-expr

precondition: expr-2Fig. 3. Transforming DisjunctionsIn the example below, the �rst operator, `move', will be transformed into thenext two operators, `move-1' and `move-2'.(operator move :parameters (location ?x) (location ?y):precondition (or (and (at ?x) (adj ?x ?y)) (and (at ?x) (adj ?y ?x))):e�ect (and (at ?y) (not (at ?x))))(operator move-1 :parameters (location ?x) (location ?y):precondition (and (at ?x) (adj ?x ?y)):e�ect (and (at ?y) (not (at ?x))))(operator move-2 :parameters (location ?x) (location ?y):precondition (and (at ?x) (adj ?y ?x)):e�ect (and (at ?y) (not (at ?x))))Unlike universally quanti�ed conditional e�ects, we are not faced with anexponential blow-up problem for existentially quanti�ed preconditions. This isbecause the number of operators generated for such an operator is proportionalonly to the number of disjuncts in the precondition of the operator.2.6 NegationsGraphplan supports negated propositions in the e�ects through the use of `delete'lists. However, negations are not allowed in the preconditions. As suggested in theGraphplan package, it is possible to work around this restriction by introducinga new predicate not-p when it is necessary to use the negation of p in thepreconditions. Of course, the e�ects of all the operators need to be modi�edto keep p and not-p consistent. The `normal' operators and the `init-operator'require di�erent processing. When `normal' operators assert p, the preprocessormodi�es the e�ects to also delete not-p. Similarly, when they assert the negationof p, that e�ect is changed to assert `not-p' and delete p. The algorithm belowprocesses the `normal' operators.Given: a list of operators lofor each p that appears as (not p) in some precondition(o) s.t. o 2 locreate a new predicate not-pfor each o 2 lo s.t. o is not the `init-operator'if (p : : :) 2 e�ect(o), add (del (not-p : : :)) to e�ect(o)if (not (p : : :)) 2 e�ect(o)replace it with (not-p : : :)add (del (p : : :)) to e�ect(o)if (not (p : : :)) 2 precondition(o), replace it with (not-p : : :)replace all other negated e�ects (not (p : : :)) with (del (p : : :))



The next algorithm modi�es the `init-operator' to initialize the world suchthat it is consistent and `closed' for all the predicates. By default, the initial con-ditions are always consistent and closed for predicates that do not have negatedpredicates introduced by the algorithm above. However, this is not true for thosethat do have negated predicates. When the truth of some proposition is assertedby two predicates p and not-p, the initial conditions must contain either oneor the other. Since the initial conditions do not contain propositions with thelatter predicate initially, the algorithm must add such propositions to the e�ectexpression of the `init-operator'.Given: the init-operator oinit; a list of predicates that have negated predicates lpfor each p in lpfor each inst (p arg1 arg2 : : : argn) of pif inst =2 e�ect(oinit) // e�ect(oinit) are the initial conditionsadd (not-p arg1 arg2 : : : argn) to e�ect(oinit)For example, assuming `at' appears as (not (at : : :)) in some precondition, the�rst domain below would be transformed into the second:(problem p :objects (location bank) (location home) (location o�ce):inits (at o�ce)(operator go :parameters (location ?x) (location ?y):precondition (at ?x):e�ect (and (not (at ?x)) (at ?y)))(problem p :objects (location bank) (location home) (location o�ce):inits (not-at home) (not-at bank) (at o�ce)(operator go :parameters (location ?x) (location ?y):precondition (at ?x):e�ect (not-at ?x) (del (at ?x)) (del (not-at ?y)) (at ?y))This transformation can result in a huge set of initial conditions becausethe number of possible instantiations of a single predicate is proportional to(# of objects)(# of parameters). In practice, this is not a problem because thenumber of parameters of any predicate is usually a small number.3 ResultsWe ran the preprocessor+Graphplan pair on all the problems that come withthe UCPOP 4.0 package. The preprocessor was implemented in about 600 linesof Lisp code. Both the preprocessor and UCPOP were run in Lucid CommonLisp on a Sun Ultra I workstation. Graphplan was originally written in C andits executable was run on the same machine.Table 1 shows a comparison of the running times. UCPOP was able to �nda solution faster than the preprocessor+Graphplan pair in only 13 problemsamong 41, but even that �gure is misleading because all of those 13 problemsare `trivial' in the sense that the solutions are found in under one second. In fact,for 9 of them, both planners �nd solutions in less than 0.1 seconds. Moreover,UCPOP is much slower on harder problems even in domains where it did betterthan Graphplan on trivial problems of the same domain.



Two domains that caused trouble were the `o�ce-world' and the `strips-world'. For the `o�ce-world' domain, there was not much we could do becausein that domain objects are created dynamically and our static-world assumptiondoes not hold. The `strips-world' domain presented a number problems. Firstthe domain contained a fact, which the preprocessor was not ready to handle.Fortunately, the fact was not a necessary part of the domain and the planningproblems could be stated without using facts. The resulting simpler domain wasstill not solvable by UCPOP, but it was also not easy to preprocess because ofthe universally quanti�ed conditional e�ects. Here is a typical operator from the`strips-world' domain:(operator push-box:parameters (?boxx ?boxy ?roomx):precondition : : ::e�ect (and (forall (?1) (and (when (neq ?1 ?boxx) (not (next-to robot ?1)))(when (neq ?1 ?boxy) (not (next-to ?boxx ?1)))(when (and (neq ?1 robot) (neq ?1 ?boxy))(not (next-to ?1 ?boxx)))))(next-to ?boxy ?boxx) (next-to ?boxx ?boxy) (next-to robot ?boxx)))The e�ects assert that all `next-to' propositions (with the exception of three)that refer to the robot or to either of the parameters ?boxx or ?boxy do nothold after this operator is applied. The three exceptions are those that appear inthe last line. Expanding this operator without partial evaluation would generate236 operators because there are 12 objects that ?1 can denote and there are 3conditional e�ects for each instantiation. Fortunately, all the antecedents involvestatic predicates, so partial evaluation is possible. Both problems of this domainare solved in about 10 seconds, whereas UCPOP fails after almost 1000 secondswith a search limit of 100,000 nodes. In this particular domain, preprocessingtime dominates the planning time because a lot of partial evaluation needs tobe done by the preprocessor, but the resulting domain is relatively simple forGraphplan.Finally, it is also important to compare the quality of solutions generated bythe planners. Since Graphplan always �nds the plan with the least number ofsteps, its solutions are guaranteed to have equal or fewer steps than UCPOP's. Inthe set of problems we have experimented with, Graphplan's solutions are exactlythe same as UCPOP's except in `uget-paid' where UCPOP adds an extra step.The quality of Graphplan's solutions does not really show up because most ofthe test problems are simple and UCPOP fails to return a solution for the moredi�cult ones.4 DiscussionAutomated translation from a high-level domain de�nition language into a sim-pler one makes it possible to use simple but fast planners in complicated domains.Graphplan is one example of such a planner, but the same approach will alsowork with SATplan, which in some domains can perform an order of magnitudebetter than Graphplan. In fact, a similar rewriting approach [6] is followed to



Table 1. Comparison of UCPOP and Preprocessor+GraphplanDOMAIN PROBLEM UCPOP (s) Preprocessor (s) Pre.+GP (s)blocks-world-domain suss.-anomaly 0.04 - 0.04tower-invert3 0.06 - 0.05tower-invert4 0.43 - 0.18road-operators road-test 0.02 - 0.01hanoi-domain hanoi-3 80.13 - 0.13hanoi-4 423 (NS) - 1.54ferry-domain test-ferry 0.49 - 0.03molgen-domain rat-insulin 0.83 0.01 0.28robot-domain r-test1 0.02 0.02 0.04r-test2 9.76 0.01 0.07monkey-domain monkey-test1 0.14 - 0.07monkey-test2 0.82 - 0.17monkey-test3 253.87 - 0.51briefcase-world get-paid 0.01 - 0.02get-paid2 0.05 0.01 0.05get-paid3 0.25 0.01 0.13get-paid4 0.13 - 0.12init-
at-tire �xit 524 (NS) 0.01 0.24�x1 0.01 0.01 0.04�x2 0.02 - 0.02�x3 0.66 0.01 0.07�x4 0.03 0.01 0.02�x5 0.01 0.01 0.02ho-world ho-demo 0.02 0.03 0.05fridge-domain �xa 0.42 0.02 0.54�xb 408 (NS) 0.02 1.45mcd-blocksworld mcd-suss.-ano. 0.07 0.01 0.08mcd-tower-invert 414 (NS) 0.02 1.02mcd-bw-axiom mcd-sussman 0.03 - 0.03mcd-tower 0.07 - 0.05uni-bw uget-paid 0.01 0.03 0.06uget-paid2 0.06 0.02 0.08uget-paid3 1.46 0.03 0.32uget-paid4 0.13 0.03 0.33sched-world-domain2 sched-test1a 0.01 0.13 0.15sched-test2a 0.01 0.25 0.28prodigy-bw prodigy-sussman 0.36 - 0.04prodigy-p22 695 (NS) 0.01 1.51strips-world move-boxes 980 (NS) 9.29 10.21move-boxes-1 961 (NS) 9.30 13.31init-
at-tire2 �xit2 18.15 0.01 0.19AVERAGE� 10.84 0.47 0.82NS : No solution within the set search limit, which was 100,000 nodes.- : `0', i.e., less than the minimum value the timer could show.� : Average only for the solved problems.



encode planning problems into SAT. The input language for the SAT encodingalgorithms is similar to the output from our preprocessor. By combining the two,SATplan can be used to solve problems de�ned in the language of UCPOP.From a theoretical point of view, the expansion of conditional e�ects is aserious limitation of the preprocessing approach because the number of opera-tors generated by the transformation is exponential in terms of the number ofconditional e�ects. However, preprocessing is still a practical technique in that,for most problems, the exponential blow-up can be avoided by partial evaluationor object typing or both. Also, it is possible to avoid the problem altogether byusing a planner, such as IPP [5], that can handle conditional e�ects e�ciently.One interesting improvement to the preprocessor is to eliminate some of theoperators from a domain by looking at the problem at hand. This can be donesimilar to the way Graphplan builds planning graphs except by starting from thegoals instead of from the initial conditions. When some operators are eliminated,it might also be possible to determine that more predicates are in fact static,thus making room for more partial evaluation than is possible initially. Althoughin trivial domains this optimization will not help much, in larger domains suchan approach can reduce the set of operators for many problems.Another extension is preprocessing facts. The same backward chaining algo-rithm that is used to �nd the relevant operators can also be used to determinethe facts that are relevant to the problem being solved. The relevant facts canthen be added to the initial conditions as normal propositions.References1. Edwin P.D. Pednault. ADL: Exploring the middle ground between STRIPS andthe situation calculus. In Proc. 1st. Int. Conf. On Principles of Knowledge Repre-sentation and Reasoning, 1989.2. Steven Minton, Craig A. Knoblock, D. Koukka, Yolanda Gil, Robert L. Joseph, andJaime G. Carbonell. Prodigy 2.0: The manual and the tutorial. Technical report,Department of Computer Science, Carnegie Mellon University, 1989.3. Daniel S. Weld. An introduction to least commitment planning. AI Magazine, 15(4),1994.4. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph anal-ysis. Arti�cal Intelligence, 90(1-2):281{300, 1997.5. Jana Koehler, Bernhard Nebel, J�org Ho�man, and Yannis Dimopoulos. Extendingplanning graphs to an ADL subset. In Proc. ECP-97, Toulouse, France, 1997.6. Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,and stochastic search. In Proc. AAAI-96, Portland, OR, 1996.7. A. Barrett, Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden, ScottPenberthy, Ying Sun, and Daniel Weld. UCPOP user's manual, version 4.0. Techni-cal report, Department of Computer Science and Engineering, University of Wash-ington, 1995.8. Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the applicationof theorem proving to problem solving. Arti�cial Intelligence, 2(3/4):189{208, 1971.


