Combining the Expressivity of UCPOP with the
Efficiency of Graphplan

B. Cenk Gazen and Craig A. Knoblock

Information Sciences Institute and

Department of Computer Science

University of Southern California
Marina del Rey, CA 90292

Abstract. There has been a great deal of recent work on new ap-
proaches to efficiently generating plans in systems such as Graphplan
and SATplan. However, these systems only provide an impoverished rep-
resentation language compared to other planners; such as UCPOP; ADL,
or Prodigy. This makes it difficult to represent planning problems using
these new planners. This paper addresses this problem by providing a
completely automated set of transformations for converting a UCPOP
domain representation into a Graphplan representation. The set of trans-
formations extends the Graphplan representation language to include
disjunctions, negations, universal quantification, conditional effects, and
axioms. We tested the resulting planner on the 18 test domains and 41
problems that come with the UCPOP 4.0 distribution. Graphplan with
the new preprocessor is able to solve every problem in the test set and
on the hard problems (i.e., those that require more than one second of
CPU time) it can solve them significantly faster than UCPOP. While
UCPOP was unable to solve 7 of the test problems within a search limit
of 100,000 nodes (which requires 414 to 980 CPU seconds), Graphplan
with the preprocessor solved them all in under 15 CPU seconds (includ-
ing the preprocessing time).

1 Introduction

One of the important issues in planning is how to define domains and problems.
There is a trade-off between the expressiveness and manageability of a formal
domain definition language. On one hand, a practical language should be as high-
level as possible so that the domain engineer can represent planning problems
easily, accurately and naturally. On the other, the more complex the language,
the harder it is for the planner to solve the problems.

Some of the planners that support a high-level language are ADL [1], Prod-
igy [2] and UCPOP [3]. UCPOP is a partial order planner that supports a
very expressive domain definition language. The characteristic features of such a
language are negations, conditional effects, disjunctive preconditions, universal
and existential quantification, axioms, and facts. Given these constructs, it is
usually possible to find a natural representation for a given domain.

Graphplan [4] is a graph algorithmic planner that runs much faster than
traditional planners but supports a minimal language for defining domains and
problems. In Graphplan, a domain is represented by a set of operators, each of
which 1s defined by a list of parameters, a list of propositions as preconditions,
and a list of add and delete effects. A problem is represented by a typed set of
objects, a list of propositions as initial conditions, and a list of propositions as
the goal. For most domains, this language is awkward to use, although once the
domain is defined in this language, problems can be solved much faster than it
is possible with UCPOP.

One approach to support a more expressive language is to extend the ‘Plan-
ning Graph’ of Graphplan [5]. Another is to develop a preprocessor that trans-
lates domains from an expressive representation language into a simpler one.
Advantages of the second approach are that it is conceptually simple and that
it is not necessarily specific to one planner. On the other hand, it cannot handle
some language constructs as efficiently as a high-level planner can.

In this paper, we present a set of algorithms that transform a UCPOP domain
and problem into an equivalent Graphplan domain and problem, although the
same methods can be used with other fast planners, notably SATplan [6], that are
based on simple representations. The goal is to make the best of both planners.
UCPOP supports a rich set of domain definition language features, but is much
slower compared to Graphplan, which only supports a minimal language.

The preprocessor takes as input a UCPOP domain and problem, and gener-
ates an equivalent pair in Graphplan’s language by applying rewriting rules step
by step. The result of each step is an equivalent representation of the domain
where some of the language constructs have been replaced with simpler ones.

2 Rewriting UCPOP domains as Graphplan domains

In UCPOP, domains are defined by operators, axioms, facts, and safety con-
straints [7]. Problems are defined by a list of initial conditions and a goal expres-
sion. UCPOP operators are represented by a list of parameters, a precondition
expression, and an effect expression. The last two are arbitrarily nested first-
order logic expressions, although some semantically meaningless (in a planning
problem) expressions are not allowed. The restriction follows from the fact that
operators should have deterministic effects. The expressions can be formed us-
ing negations, conjunctions, disjunctions, implications, and quantification. When
used in effect expressions, implications have different semantics and are called
conditional effects. The semantics are different because the antecedent of a con-
ditional effect is evaluated with respect to the set of propositions that hold
before the operator is applied, whereas the consequent refers to the resulting
set. Quantifications can be either universal or existential.

An axiom is a rule that allows the planner to deduce a proposition from the
current set of valid propositions. UCPOP supports a restricted form of axioms,
where an axiom can only deduce a single proposition. A fact is an arbitrary piece
of code that is executed during planning. In UCPOP, they can only appear in

the preconditions of operators. Safety constraints are conditions that the planner
must maintain throughout the plan.

Although both are based on the STRIPS representation [8], Graphplan has a
very restrictive language as compared to UCPOP. A Graphplan domain defini-
tion consists of a list of operators. Each operator has a list of parameters, a list
of preconditions, a list of ‘add’ effects and a list of ‘delete’ effects. The last three
lists are assumed to be conjunctions. The precondition list contains propositions
that need to hold before the operator can be applied. The application of an op-
erator results in the propositions in the ‘add’ list to be added to the current set
of valid propositions, whereas those propositions in the ‘delete’ list are removed
from the same set. The restrictiveness of Graphplan’s language comes from the
fact that both preconditions and effects are lists and not arbitrary expressions.

Interestingly, this lack of expressive power in the domain definition language
does not place an inherent limitation on the types of problems that Graph-
plan can solve. The preprocessor we have developed can automatically transform
UCPOP domains into Graphplan domains. The current implementation handles
all the UCPOP features except facts and safety constraints. We are working on
extending the preprocessor to support facts, but safety constraints are better
supported explicitly by a planner than with preprocessing.

In our preprocessing approach, we make two assumptions about the domains.
First, we assume that objects are not created dynamically. This means that a
list of all objects in the domain is available to the preprocessor. Second, we
assume that all objects have types. However, this is not a limiting assumption
as it is always possible to assign the same type (e.g., object) to every object
in the domain. It i1s also possible to have multi-typed objects. For example, a
plane can be typed both as a vehicle and a flying-object. If type information is
available, our preprocessor can generate a smaller domain, which in turn makes
Graphplan run more efficiently.

The preprocessor is structured as six layers (Figure 1). Each layer processes
some specific language construct and generates output that is input to the next
layer. The top layer accepts the domain definition from the user while the bottom
layer creates the domain in Graphplan’s language.

]

conditional effects=>
antecedents to preconditions

[domaj nin UCPOP's Ianguage)
]

initial conditions & goals => operators]
¥ digjunctive preconditions =>
multiple operators
axioms => operators ¥
quanYifi as=> negations => new ‘not’ predicates
conjunctions & digjunctions]

‘ (domai nin Graphplan's Ianguageg

Fig. 1. Preprocessing Layers

2.1 Initial Conditions and Goals

Since initial conditions and goals can contain high-level language constructs, the
first step is to convert them into operators. In general, this makes it unnecessary
to make special case versions of the algorithms to process the initial conditions
and goals.

Given: initial condition expression i; goal expression ¢; list of operators [,

let 0,5+ be a new operator with precondition (init-problem) and
effect (and ¢ (not (init-problem)))
let 04041 be a new operator with precondition g and effect (goal-achieved)
add 0;p4 and 0g0a1 to
set the new initial condition to be (init-problem)
set the new goal to be (goal-achieved)

For example, the following problem definition:

(problem blocks :inits (forall (block ?x) (clear ?x))
:goal (or (on a table) (exists (block ?x) (clear ?x))))

would be transformed into:

(problem blocks :inits (init-problem)
:goal (goal-achieved))
(operator init-operator :precondition (init-problem)
:effect (and (forall (block ?x) (clear ?x)) (not (init-problem))))
(operator goal-operator :precondition (or (on a table) (exists (block ?x) (clear ?x)))
:effect (goal-achieved))

Creating these kinds of operators is a standard planning technique. However,
it introduces two extraneous steps when introduced in preprocessing, and these
steps need to be removed from the final plan or simply ignored. On the other
hand, Graphplan’s efficiency is not affected in any significant way as the only
operator that is applicable at the first step 1s the ‘init-operator’. After its ap-
plication, the second level of propositions of the planning graph is exactly the
same as 1t would be in the first level if the initial conditions were stated directly.
A ‘symmetric’ argument holds for the ‘goal-operator’.

2.2 Axioms

UCPOP restricts axioms to asserting a single proposition. Such axioms can be
easily converted into ‘deduce’ operators. Since any deduced proposition may
lose its validity after each step, it is necessary to find the operators that modify
the propositions from which the axiom is derived, and to add an effect which
negates the deduced proposition to these operators. This forces the axiom to
be re-evaluated in a latter step if the deduced proposition is needed for another
operator.

Given: axiom a; list of operators [,

let 0 be a new operator
set the precondition of o to context(a) where

context(a) is an expression that must be true before the axiom can be applied
set the effect of o to implies(a) where

implies(a) is the single deduced proposition, with predicate p of n arguments
for each op in [,

if effect(op) contains any predicate in context(a)

add (forall (vy v ... vs) (not (p vy v2 ... vy))) to effect(op)

add o to {,

For example,

(axiom is-clear :context (or (eq ?x Table) (not (exists (obj ?b) (on ?b ?x))))
simplies (clear ?x))
(operator put-on :parameters (obj ?x) (obj ?y) (obj 7d)
:precondition (and (on ?x ?d) (clear ?x) (clear ?y))
:effect (and (on ?x ?y) (not (on ?x ?d))))

would be transformed into:

(operator deduce-is-clear :parameters (obj ?x)
:precondition (or (eq ?x Table)
(not (exists (obj ?b) (on ?b ?x))))
-effect (clear ?x))
(operator put-on :parameters (obj ?x) (obj ?y) (obj 7d)
:precondition (and (on ?x ?d) (clear ?x) (clear ?y))
:effect (and (forall (?v1) (not (clear ?v1)))
(and (on ?x ?y) (not (on ?x ?d)))))

Having axioms in a language makes the operator definitions cleaner and less
error-prone by allowing the deducible effects that are repeated in many operators
to be stated in a single axiom. In a way, preprocessing undoes that, and although
the resulting domain is not as compact, its correctness is preserved. Since a
conservative approach 1s followed in invalidating the deduced propositions, in
the worst case an axiom may need to be asserted after each step. For example,
the ‘put-on’ operator above does not have to assert (not (clear 7x)) because 7x
1s still clear after this action, but because i1t does, the axiom needs to be applied
to re-assert (clear 7x) if another action requires (clear 7x) later.

2.3 Quantifiers

In this layer, universal quantifiers are expanded into conjunctions and existential
quantifiers into disjunctions. Because dynamic creation of objects is not allowed
and all the objects are explicitly declared, the expansion is straightforward. The
preprocessor rewrites the quantified expression as a conjunction or disjunction of
expressions. Each of these expressions is generated by instantiating the quantified
variable with each of the objects that the variable can denote.

Given: a list of objects [,; and a quantified expression (¢ (t v) €) where
q € {forall, exists}; t is a type; v is the quantified variable; ¢ is an expression

for each ob € [, s.t. type(ob) = ¢

e; = instantiate v with ob in e
if existential(q)

replace (q (¢t v)) with (or ey €2 ... €,)
else // universal(q)

replace (¢ (¢t v) e) with (and ey €2 ... €,)

Given the object definition ‘(block a) (block b) (block ¢)’, the preprocessor

will expand the expressions on the left into those on the right:

(forall (block ?x) (clear ?x)) (and (clear a) (clear b) (clear c))
(exists (block ?x) (clear ?x)) (or (clear a) (clear b) (clear c))

The expansion of quantifiers over all the objects is where the static domain
assumption is necessary. Since it is assumed that a list of all the objects in the
domain 1s available to the preprocessor, the expansion can be done easily. Our
second assumption that all objects are typed is also useful at this layer, because
the expansion is done only over the objects that have the corresponding type. In
the worst case, where a quantified variable can range over all the objects in the
domain (i.e., all objects have the same type), the expansion contains as many
terms as there are objects. After the expansion, a domain in which only a few
objects belong to each type will be more compact than an equivalent domain
where all the objects have the same type. In practice, expansion of quantified
expressions proved to be an acceptable preprocessing technique because most
quantified variables can be restricted to range over a small number of objects.

2.4 Conditional Effects

Conditional effects are translated into simpler expressions by moving the an-
tecedents into the preconditions. By definition, the consequent of a conditional
effect is asserted only when the antecedent holds before the operator is applied.
An equivalent way to represent such an operator is to use two operators: one
with the antecedent in the preconditions and the consequent in the effects, and
another with the negation of the antecedent in the preconditions and the conse-
quent removed from the effects (Figure 2).

precondition: p
effect: (and (when ante cons) other-effects)

precondition: (and p ante) precondition: (and p (not ante))
effect: (and (cons other-effects)) | | effect: (other-effects)

Fig. 2. Transforming Conditional Effects

More generally, an operator can have multiple conditional effects, which may
appear either as separate conjuncts or as nested conditional effects. An example

of the former is (and (when p q) (when r s)), and an example of the latter
is (when p (when ¢ r)). Both cases are handled by applying the expansion of
Figure 2 recursively to the resulting operators until all the conditional effects
are eliminated.

This expansion generates an exponential number (in terms of the number of
conditional effects) of operators, but in some cases it can avoid the problem by
partially evaluating the antecedent and replacing the operator with a simplified
one which does not have the conditional effect. Depending on the outcome of
the evaluation, the consequent can be added to or removed from the effects.

Given: an operator o with precondition p and effect (and €1 €3 ... €y)

if for some 1, e; is a conditional effect (when a; ¢;)
if can-partially-evaluate(a;)
if a; evaluates to true
replace e; with ¢; in the effect
else // a; evaluates to false
remove ¢; from the effect
recursively apply algorithm to o
else // partial evaluation is not applicable
recursively apply algorithm to the operator with precondition
(and p a;) and effect (and €1 €3 ... €1 ¢ €41 ... €p)
recursively apply algorithm to the operator with precondition
(and p (not a;)) and effect (and €1 €3 ... €51 €541 ... €p)
else // no conditional effects in the effect
add o to the set of operators
Here are example operators:
(operator move-briefcase
:parameters (location ?x) (location ?y)
:precondition (at ?x)
:effect (and (not (at ?x)) (at ?y)
(when (money-in) (and (not (money-at ?x)) (money-at ?y)))))
(operator deduce-table-clear
:effect (and (when (eq a table) (clear a)) // after expansion of (forall (obj ?x) ...)
(when (eq b table) (clear b)) // over obj = {a, b, table}
(when (eq table table) (clear table))))
And how they would be rewritten:

(operator move-briefcase-1 :parameters (location ?x) (location ?y)
:precondition (and (at ?x) (money-in))
:effect (and (not (at ?x)) (at ?y)
(not (money-at ?x)) (money-at ?y)))
(operator move-briefcase-2 :parameters (location ?x) (location ?y)
:precondition (and (at ?x) (not (money-in)))
:effect (and (not (at ?x)) (at ?y)))
(operator deduce-table-clear :effect (clear Table)))

An expansion of the ‘deduce-table-clear’ operator would result in 23 opera-
tors, but with partial evaluation only one operator is created. The partial evalua-
tion technique requires the preprocessor to determine the static predicates of the

domain. As a first approximation, this can be done by finding those predicates
that do not appear in the effects of any operator.

In some cases, although an antecedent contains only static predicates, the
arguments of the predicates are parameters of the operator. Since the parameters
are not bound during preprocessing, the truth value of the antecedent cannot be
determined. Our solution is to expand the operators by instantiating over those
parameters that appear in the antecedent. The antecedents in the following
operator cannot be evaluated because 7Tboxy i1s not bound.

(operator push-box
:parameters (?boxx ?boxy ?roomx)
:precondition ...
ceffect ... (when (neq box1 ?boxy) ...) (when (neq box2 ?boxy) ...) ...)

The preprocessor instantiates 7bhoxy and creates multiple operators, so that par-
tial evaluation is possible. One of the new operators is:

(operator push-box-box1
:parameters (?boxx ?roomx)
:precondition ...
ceffect ... (when (neq boxl box1) ...) (when (neq box2 box1) ...) ...)

At worst, this technique generates (# of objects)(# of parameters) ohepators, but
this number is certainly much smaller than 2# ©f obiects T fact, Graphplan needs
to do the expansion internally (for uninstantiated parameters) to build the plan-
ning graph, so it can still work efficiently.

However, partial evaluation is not always possible, in which case the number
of operators created from a single operator is 27, where n is the number of
conditional effects of that operator. Although n is generally a small number, it
can get large when conditional effects are combined with universal quantifiers:

(forall (block ?x) (when (not (painted ?x)) (color ?x blue)))

The previous preprocessing layer would generate as many conditional effects as
there are blocks, and removing them would create 2#° Plocks gperators. Although
this 1s a significant theoretical limitation of the preprocessing approach, the
problem does not occur often. In fact, in all the test domains, all occurrences of
universally quantified conditional expressions could be expanded by using partial
evaluation.

2.5 Disjunctions

A disjunction in the precondition of an operator is eliminated by creating mul-
tiple operators such that each new operator has one of the disjuncts in its pre-
condition and the exact same effect as the original operator (Figure 3).

Given: an operator o with precondition (or p1 pa ... py) and effect e

for each p in {p1 p2 ... pn}
let 0; be a new operator with precondition p and effect e

add o; to the set of operators
remove o from the set of operators

recondition: (or expr-1 expr-2 ...
gffect: eff-exp(r P P)
\j ;.-.n.-h"'-—s

precondition: expr-1| [precondition: expr-2]:
effect: eff-expr effect: eff-expr :

Fig. 3. Transforming Disjunctions

In the example below, the first operator, ‘move’, will be transformed into the
next two operators, ‘move-1’ and ‘move-2’.
(operator move :parameters (location ?x) (location ?y)
:precondition (or (and (at ?x) (adj ?x ?y)) (and (at ?x) (adj ?y ?x)))
:effect (and (at ?y) (not (at ?x))))
(operator move-1 :parameters (location ?x) (location ?y)
:precondition (and (at ?x) (adj ?x ?y))
:effect (and (at ?y) (not (at ?x))))
(operator move-2 :parameters (location ?x) (location ?y)
:precondition (and (at ?x) (adj ?y ?x))
:effect (and (at ?y) (not (at ?x))))

Unlike universally quantified conditional effects, we are not faced with an
exponential blow-up problem for existentially quantified preconditions. This is
because the number of operators generated for such an operator is proportional
only to the number of disjuncts in the precondition of the operator.

2.6 Negations

Graphplan supports negated propositions in the effects through the use of ‘delete’
lists. However, negations are not allowed in the preconditions. As suggested in the
Graphplan package, it is possible to work around this restriction by introducing
a new predicate not-p when it is necessary to use the negation of p in the
preconditions. Of course, the effects of all the operators need to be modified
to keep p and not-p consistent. The ‘normal’ operators and the ‘init-operator’
require different processing. When ‘normal’ operators assert p, the preprocessor
modifies the effects to also delete not-p. Similarly, when they assert the negation
of p, that effect is changed to assert ‘not-p’ and delete p. The algorithm below
processes the ‘normal’ operators.

Given: a list of operators [,

for each p that appears as (not p) in some precondition(o) s.t. 0 € [,
create a new predicate not-p
for each 0 € [, s.t. 0 is not the ‘init-operator’
if (p ...) € effect(o), add (del (not-p ...)) to effect(o)
if (not (p ...)) € effect(o)
replace it with (not-p ...)
add (del (p ...)) to effect(o)
if (not (p ...)) € precondition(0), replace it with (not-p ...)
replace all other negated effects (not (p ...)) with (del (p ...))

The next algorithm modifies the ‘init-operator’ to initialize the world such
that 1t 1s consistent and ‘closed’ for all the predicates. By default, the initial con-
ditions are always consistent and closed for predicates that do not have negated
predicates introduced by the algorithm above. However, this is not true for those
that do have negated predicates. When the truth of some proposition is asserted
by two predicates p and not-p, the initial conditions must contain either one
or the other. Since the initial conditions do not contain propositions with the
latter predicate initially, the algorithm must add such propositions to the effect
expression of the ‘init-operator’.

Given: the init-operator 0;,,i;; a list of predicates that have negated predicates /,

for each p in [,
for each inst (p argy args ... arg,) of p
if inst ¢ effect(ons1) // effect(osns1) are the initial conditions
add (not-p argy args ... argy,) to effect(oinit)
For example, assuming ‘at’ appears as (not (at ...)) in some precondition, the
first domain below would be transformed into the second:
(problem p :objects (location bank) (location home) (location office)
iinits (at office)
(operator go :parameters (location ?x) (location ?y)
:precondition (at ?x)
:effect (and (not (at ?x)) (at ?y)))
(problem p :objects (location bank) (location home) (location office)
sinits (not-at home) (not-at bank) (at office)
(operator go :parameters (location ?x) (location ?y)
:precondition (at ?x)
:effect (not-at ?x) (del (at ?x)) (del (not-at ?y)) (at ?y))
This transformation can result in a huge set of initial conditions because
the number of possible instantiations of a single predicate is proportional to
(# of objects)(# of parameters) Tp practice, this is not a problem because the

number of parameters of any predicate is usually a small number.

3 Results

We ran the preprocessor+Graphplan pair on all the problems that come with
the UCPOP 4.0 package. The preprocessor was implemented in about 600 lines
of Lisp code. Both the preprocessor and UCPOP were run in Lucid Common
Lisp on a Sun Ultra I workstation. Graphplan was originally written in C and
its executable was run on the same machine.

Table 1 shows a comparison of the running times. UCPOP was able to find
a solution faster than the preprocessor+Graphplan pair in only 13 problems
among 41, but even that figure is misleading because all of those 13 problems
are ‘trivial’ in the sense that the solutions are found in under one second. In fact,
for 9 of them, both planners find solutions in less than 0.1 seconds. Moreover,
UCPOP is much slower on harder problems even in domains where it did better
than Graphplan on trivial problems of the same domain.

Two domains that caused trouble were the ‘office-world’ and the ‘strips-
world’. For the ‘office-world’” domain, there was not much we could do because
in that domain objects are created dynamically and our static-world assumption
does not hold. The ‘strips-world” domain presented a number problems. First
the domain contained a fact, which the preprocessor was not ready to handle.
Fortunately, the fact was not a necessary part of the domain and the planning
problems could be stated without using facts. The resulting simpler domain was
still not solvable by UCPOP, but it was also not easy to preprocess because of
the universally quantified conditional effects. Here is a typical operator from the
‘strips-world’ domain:

(operator push-box

:parameters (?boxx ?boxy ?roomx)

:precondition ...

:effect (and (forall (?1) (and (when (neq 71 ?boxx) (not (next-to robot ?1)))
(when (neq 71 ?boxy) (not (next-to ?boxx ?71)))
(when (and (neq ?1 robot) (neq ?1 ?boxy))

(not (next-to 71 ?boxx)))))
(next-to ?boxy ?boxx) (next-to ?boxx ?boxy) (next-to robot ?boxx)))

The effects assert that all ‘next-to’ propositions (with the exception of three)
that refer to the robot or to either of the parameters Tboxx or Tboxy do not
hold after this operator is applied. The three exceptions are those that appear in
the last line. Expanding this operator without partial evaluation would generate
236 operators because there are 12 objects that ?1 can denote and there are 3
conditional effects for each instantiation. Fortunately, all the antecedents involve
static predicates, so partial evaluation is possible. Both problems of this domain
are solved in about 10 seconds, whereas UCPOP fails after almost 1000 seconds
with a search limit of 100,000 nodes. In this particular domain, preprocessing
time dominates the planning time because a lot of partial evaluation needs to
be done by the preprocessor, but the resulting domain is relatively simple for
Graphplan.

Finally, it is also important to compare the quality of solutions generated by
the planners. Since Graphplan always finds the plan with the least number of
steps, its solutions are guaranteed to have equal or fewer steps than UCPOP’s. In
the set of problems we have experimented with, Graphplan’s solutions are exactly
the same as UCPOP’s except in ‘uget-paid’ where UCPOP adds an extra step.
The quality of Graphplan’s solutions does not really show up because most of
the test problems are simple and UCPOP fails to return a solution for the more
difficult ones.

4 Discussion

Automated translation from a high-level domain definition language into a sim-
pler one makes it possible to use simple but fast planners in complicated domains.
Graphplan is one example of such a planner, but the same approach will also
work with SATplan, which in some domains can perform an order of magnitude
better than Graphplan. In fact, a similar rewriting approach [6] is followed to

Table 1. Comparison of UCPOP and Preprocessor+Graphplan

| DOMAIN || PROBLEM |UCPOP (s)|Prepr0cessor (s)|Pre.—|—GP (s)|
blocks-world-domain || suss.-anomaly 0.04 - 0.04
tower-invert3 0.06 - 0.05

tower-invert4 0.43 - 0.18

road-operators road-test 0.02 - 0.01
hanoi-domain hanoi-3 80.13 - 0.13
hanoi-4 423 (NS) - 1.54

ferry-domain test-ferry 0.49 - 0.03
molgen-domain rat-insulin 0.83 0.01 0.28
robot-domain r-testl 0.02 0.02 0.04
r-test2 9.76 0.01 0.07

monkey-domain monkey-test1 0.14 - 0.07
monkey-test2 0.82 - 0.17

monkey-test3 253.87 - 0.51

briefcase-world get-paid 0.01 - 0.02
get-paid2 0.05 0.01 0.05

get-paid3 0.25 0.01 0.13

get-paid4 0.13 - 0.12

init-flat-tire fixit 524 (NS) 0.01 0.24
fix1 0.01 0.01 0.04

fix2 0.02 - 0.02

fix3 0.66 0.01 0.07

fix4 0.03 0.01 0.02

fix5 0.01 0.01 0.02

ho-world ho-demo 0.02 0.03 0.05
fridge-domain fixa 0.42 0.02 0.54
fixb 408 (NS) 0.02 1.45

mcd-blocksworld mcd-suss.-ano. 0.07 0.01 0.08
mcd-tower-invert| 414 (NS) 0.02 1.02

mcd-bw-axiom mcd-sussman 0.03 - 0.03
mcd-tower 0.07 - 0.05

uni-bw uget-paid 0.01 0.03 0.06
uget-paid2 0.06 0.02 0.08

uget-paid3 1.46 0.03 0.32

uget-paid4 0.13 0.03 0.33

sched-world-domain2 sched-testla 0.01 0.13 0.15
sched-test2a 0.01 0.25 0.28

prodigy-bw prodigy-sussman 0.36 - 0.04
prodigy-p22 695 (NS) 0.01 1.51

strips-world move-boxes 980 (NS) 9.29 10.21
move-boxes-1 961 (NS) 9.30 13.31

init-flat-tire2 fixit2 18.15 0.01 0.19

| AVERAGE® | | 10.84] 0.47 0.82

NS : No solution within the set search limit, which was 100,000 nodes.
- ‘0 i.e., less than the minimum value the timer could show.
* . Average only for the solved problems.

encode planning problems into SAT. The input language for the SAT encoding
algorithms is similar to the output from our preprocessor. By combining the two,
SATplan can be used to solve problems defined in the language of UCPOP.

From a theoretical point of view, the expansion of conditional effects 1s a
serious limitation of the preprocessing approach because the number of opera-
tors generated by the transformation is exponential in terms of the number of
conditional effects. However, preprocessing is still a practical technique in that,
for most problems, the exponential blow-up can be avoided by partial evaluation
or object typing or both. Also, it is possible to avoid the problem altogether by
using a planner, such as IPP [5], that can handle conditional effects efficiently.

One interesting improvement to the preprocessor 1s to eliminate some of the
operators from a domain by looking at the problem at hand. This can be done
similar to the way Graphplan builds planning graphs except by starting from the
goals instead of from the initial conditions. When some operators are eliminated,
it might also be possible to determine that more predicates are in fact static,
thus making room for more partial evaluation than is possible initially. Although
in trivial domains this optimization will not help much, in larger domains such
an approach can reduce the set of operators for many problems.

Another extension is preprocessing facts. The same backward chaining algo-
rithm that is used to find the relevant operators can also be used to determine
the facts that are relevant to the problem being solved. The relevant facts can
then be added to the initial conditions as normal propositions.

References

1. Edwin P.D. Pednault. ADL: Exploring the middle ground between STRIPS and
the situation calculus. In Proc. 1st. Int. Conf. On Principles of Knowledge Repre-
sentation and Reasoning, 1989.

2. Steven Minton, Craig A. Knoblock, D. Koukka, Yolanda Gil, Robert L. Joseph, and
Jaime G. Carbonell. Prodigy 2.0: The manual and the tutorial. Technical report,
Department of Computer Science, Carnegie Mellon University, 1989.

3. Daniel S. Weld. An introduction to least commitment planning. Al Magazine, 15(4),
1994.

4. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph anal-
ysis. Artifical Intelligence, 90(1-2):281-300, 1997.

5. Jana Koehler, Bernhard Nebel, Jorg Hoffman, and Yannis Dimopoulos. Extending
planning graphs to an ADL subset. In Proc. FCP-97, Toulouse, France, 1997.

6. Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proc. AAAI-96, Portland, OR, 1996.

7. A. Barrett, Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott
Penberthy, Ying Sun, and Daniel Weld. UCPOP user’s manual, version 4.0. Techni-
cal report, Department of Computer Science and Engineering, University of Wash-
ington, 1995.

8. Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3/4):189-208, 1971.

