
Challenging Human Supremacy in Skat

Stefan Edelkamp
King’s College London, UK
stefan.edelkamp@kcl.ac.uk

Abstract

After impressive successes in deterministic and fully-
observable board games to significantly outclass humans,
game playing research shifts towards non-deterministic and
imperfect information card games, where humans are still
persistently better. In this paper we devise a player that chal-
lenges human supremacy in Skat. We provide a complete
player for playing selected variants of the game, with effec-
tive solutions for bidding and Skat putting, eliciting knowl-
edge extracted from several million games. For trick play we
combine expert rules with engineered tree exploration for op-
timal open card play. For dealing with uncertainty especially
in Ouvert games we search the belief space.

Introduction

Many known fully-observable deterministic combinatorial
games are either solved (Gasser 1995; Schaeffer et al. 2005;
Allis 1998) or computers significantly outperform human
play (Campbell, A. J. Hoane, and Hsu 2002). One recent
progress in Go exploited the prediction of the next move
with a deep neural network that was trained on a wider selec-
tion of expert games (Silver and et al. 2016). Deep Mind’s
AlphaZero, which takes the rules of the games and, then,
applies reinforcement learning mainly via self-playing mil-
lions of games, has reached world-class play both in Shogi,
and Chess (Silver et al. 2017). In contrast, card games with
randomness (in the deal) and imperfect information (due to
hidden cards) are still a major challenge to AI game playing
technology. One recent exception is Heads-Up Limit (Texas)
Hold’em Poker (Bowling et al. 2017).

For trick-based card games, however, the situation is un-
satisfactory. After early advances in playing Bridge (Gins-
berg 1999), research progress has slowed down consider-
ably, even though computer programs are under continuous
development. In Skat (Grandmontagne 2005; Harmel 2016;
Lasker 1938; Kinback 2007; Quambusch 1990; Schettler
and Kirsch bach 1988; Schubert 1887; Wergin 1975), an in-
ternational three-player card game using a deck of 32 cards,
with a deal of 10 cards for each player and 2 left-overs form-
ing the so-called skat, there is more recent research activity.
Work on an efficient open card solver (Kupferschmid and

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Helmert 2006) went into an expert-level Skat player (Long
2011). Symmetries and refined search algorithms have been
studied by (Furtak 2013). For world-class play of Skat, how-
ever, there still is a gap. We present an AI that —in the long
run— is expected to outperform world-class human play. As
a first result on this research avenue, we present a player for
the Nullspiel, which is particularly interesting, as existing
Skat programs play weak. We also contribute initially results
for playing Trump, especially Grand. We compile the infor-
mation of millions of games in a clever way, and use a com-
bination of expert rules, aggregated statistical information
on winning probabilities and information gain, as well as
high-performance exploration algorithms. We indicate that
an AI can outperform human play.

The paper is structured as follows. First, we explain the
rules of Skat. Next, we shed light on the bidding and skat
putting process, exploiting expert wisdom acquired over the
years in the form of a database with millions of played
games. We walk through the stages and the versions of the
game, which lead to different player proposals. We rely
on statistical information and expert rules, engineered and
novel search algorithms. The exploration is enriched with
knowledge moves (e.g., to reduce the amount of uncertainty
in the remaining cards). Experimental results show that our
program can surpass human play.

The Game of Skat

The rules of Skat go back to Hempel around 1848. Compet-
itive Skat is defined by the International Skat Player Associ-
ation (www.ispaworld.info), The game is played with three
players. A full deck has 8 cards (A, T, K, Q, J, 9, 8, and 7) in
all four suits (♣, ♠, ♥, ♦). After shuffling, each player re-
ceives 10 cards, while the skat consists of two cards. There
are four phases of the Skat game: the bidding stage, taking
and putting the skat, and the actual play for tricks. The de-
clarer, who won the bidding, is playing for a win against the
remaining two opponents. She is allowed to strengthen her
hand by taking the skat and putting it (can be the same ones).

For a strong Skat AI, especially for the early stages of the
games like bidding, most interestingly is approximating the
probability P t

w(h) of winning a given hand h in a game of
type t (Gößl 2019). The games being played and bid for are
Trump, which includes Grand and Suit (♣, ♠, ♥, or ♦), as
well as Nullspiel, a trick-avoiding variant of the game.

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

52

Nullspiel

There are four variants of the Nullspiel: Null (bidding value
23), Null Hand (35), Null Ouvert (NO, 46), and NO Hand
(59), where Ouvert forces the declarer to show all her cards
prior to the play, and Hand prohibits the declarer to take the
skat. The declarer that wins the bidding, must lose all tricks.
In this variant according to the expert judgment (see www.
skatfuchs.eu for a list of studied programs) most computer
card game progams play badly.

In the Nullspiel the ordering of cards is A, K, Q, J, T, 9, 8,
and 7. If the declarer gets any trick, he loses. To the contrary,
she wins by certain if her hand is safe.

Definition 1 (Safe Card) A declarer’s card c is safe, if all
gaps g in its suit with value lower than c are supported by at
least the matching number of cards below g, with a special
case for the declarer’s turn in the first trick, where an extra
support card is needed. The declarer’s hand h is safe if all
cards c in h are safe.

Refined definitions of a safe hand include the cards in the
skat, and accommodate the cards that have being played.

Strategies for the declarer and her opponents depend on
the position of the players within the trick and dominate ex-
pert play. Playing agreements like Shortest Suit – Smallest
Card First indicate the fundamental importance of collab-
oration between the two opponents for maximizing the ex-
change of information. Such hidden rules are difficult for an
AI to learn automatically, especially given that for several of
such simple rules, there are exceptions in world-class play.

There are other subtleties on knowledge elicitation given
that there only two possible outcomes of the Nullspiel. One
immediate consequence is that longer play often is a safer
way to win the game of the opponents. In case a suit has to
be obeyed, the card distribution in this suit is crucial, and, if
not, dropping card strategies play an important role.

For each of the suits s in a hand h we determine the proba-
bility of winning Pw(h, s), using a multinomial distribution
(refined with the winning probabilities found in the expert
games). The probabilities are stored in tables, and the win-
ning probabilities Pw(s) among all the suits are multiplied
as an estimate for the overall winning probability Pw(h).

Trump Games

Card values in Trump games are added for the tricks made
and the skat put, with a usual split at 60 of the 120 possible
points. Other contracts (90, 119) are possible. The bidding
value depends on the distribution of Js: As the multiplier of
the color value (12 = ♣, 11 = ♠, T = ♥, or 9 = ♦) or 24
(Grand), 1 is added to the number of consecutive Js in the
order ♣, ♠, ♥, and ♦; or the number of consecutive Js in
the joint hands of the opponents.

Definition 2 (Standing Card) A declarer’s non-trump card
c is standing in a suit s, if c cannot be beaten by all other
cards in s still being present in the game. The declarer’s
hand h is standing if all non-trump cards c in h are standing.

We implemented a more refined definition of standing
cards that depends on the distribution of the Js, the position

in the trick, and that takes the possible distribution of oppo-
nent cards and the experience in expert games into account.
To estimate the number of tricks possible, we, thus, intro-
duce fractional values for standing cards and the concept
of virtual standing cards that are likely to become standing
cards during play.

Bidding

In case of no jump bids, the usual bidding stage follows
a predefined order of calling numbers corresponding to
the value of the game (18, 20, 22, 23, 24, 27, 30, 33, 35, . . .).
The final bidding value indicates in which suits the players
are strong, so that we maintain a table of the at most two
games fitting the final bid. In opponent play this information
often determines the choice of the first card to be played.

Different computer bidding strategies have been pro-
posed; in the literature, among others we find neural net-
works (Kupferschmid and Helmert 2006), nearest neighbor
search (Keller and Kupferschmid 2008), and statistical anal-
yses of human games together with single-agent game tree
search (Long 2011).

For computer bidding we use our rather accurate knowl-
edge on winning probabilities P t

w(h). In contrast to clas-
sical learning and game-theoretical approaches, we exploit
flat statistical knowledge on the individual strength of the
cards in hand that we have extracted from millions of expert
games. We estimate probabilities P t

w(h) to win a game t and
determine the expected payoff of the game t (Gößl 2019),
which for the bidding stage is maximized.

Given 3
(

32
10,10,10,2

)
= 8259 883 225 513 920 different

Skat deals (including the turn) storing a lookup table for
P t
w(h) in memory clearly is infeasible and, even more im-

portantly, for many million expert games, way too sparse
to retrieve robust values for each game. Note the concep-
tual difference in P t

w prior and posterior to skat taking. Be-
fore the skat is taken, the maximal bidding value is deter-
mined via computing the average payoff over all possible(
22
2

)
= 231 skats. For putting we take the maximum over all(

12
2

)
= 66 options to select the two cards for the skat.

The complete bidding strategy is more complex and ex-
ceeds the scope of the paper. For example, strong players
that announce the bid, often drop out one step before calling
the actual value, not to be forced to play in case of a tie.

Nullspiel

We follow the suggestion of Emanuel Lasker (1929) (the
only German Chess world champion!), and combine statis-
tics on winning probabilities in each suit as follows

Pw(h) =
∏

s∈{♣,♠,♥,♦}
Pw(h, s).

There are different probability tables Pw(h, s) for different
variants of the Nullspiel. In each suit, we have eight cards
and 28 = 256 selections of cards that form a pattern. As the
binary representation of the position in the vector and the
pattern are identical, given the bitvector for a given hand,
we can extract the probability value Pw(h, s) in time O(1)
by bit masking, bit shifting and bit reversal operations.

53

Trump Games

For Trump games we used hash functions to store similar
hands in a smaller table (with several 10K entries). Such
functions can be thought of selecting a set of features that
generate equivalence classes of hands.

For example, in Grand games we identified the following
winning features to be sufficient (in some cases, like bidding
values and points put in skat, we cluster the set of possible
values into a smaller set):

1. value put in the skat, we group the values into 5 classes;
2. trump quality encoding distribution in J: 10 classes;
3. number of As and Ts, as two independent features;
4. estimated number of lost cards based on standing ones.
5. position on table (who’s turn it is);
6. bidding value, we group the values into 4 classes

For Suit games, we identified 9 features: trump count,
number of trump high cards (As+Ts), encoding of Js, non-
trump As and Ts, missing suits, position of player, encoded
skat and bidding value. If we denote f1, . . . , fl for the l fea-
tures, based on expert games we built a probability table

Pw(h) = hash(f1(h), . . . , fl(h)).

Statistical evidence has been collected that the chosen fea-
tures are indeed relevant (Gößl 2019). Choosing Pw(h) for
weakly supported feature combinations is a learning prob-
lem, which we resolve via returning a neighbor entry. We
also tried to learn Pw(h) with multivariable linear regres-
sion, but the predictions were often off by 20% and more.

Skat Putting

Once the skat has been taken by the declarer, there are(
12
2

)
= 66 options for putting it. We derived a strategy to

select a skat that optimizes the dropping gain.

Definition 3 (Dropping Gain) The dropping gain is the
change in the winning probability when removing a card
from the hand. If h is the hand before the drop and h′ is
reduced hand after the card drop in suit s, then we have

drop(h, h′) = Pw(h, s)− Pw(h
′, s).

In other words, for the choice of skat cards, we prefer the
ones that improve the winning probability the most.

While for Ouvert games this is the default, for closed
games we allow exceptions: because of dropping opportu-
nities, we may afford to keep a higher-risk single card in
one suit to favor more secure suits.

As a refinement for the skat putting strategy described
above, we keep three different tables depending on whether
0, 1, or 2 cards of a given suit are put into the skat.

Nullspiel

We validated that the deviation of the predicted winning
probabilities in this bidding and skat putting strategies com-
pared to the expert play in the large set of 6M games was at
most 3% (see Figure 5). For us this observation came as a
surprise as the crude approximation of winning chances by

multiplying the winning probabilities in each suit fully ne-
glects card dropping, which is crucial for playing the game.
We, therefore, decided to go in for this option for the de-
clarer to select the cards to be put and dropped.

Trump Games

There are many special rules to detect games won by certain.
One general rule in Grand is the following.
Theorem 1 (High-Card Theorem) If the number of high-
value cards (HC) secured by the declarer is at least as large
as the number of tricks lost (assuming no points were put
into them), then the standard Grand game is won.
Proof: We look at the following cases.
1 Cached HC For one opponent trick, they certainly cannot

reach 60 points.
2 Cached HCs For 2 tricks at most 44 points are available

(4 As).
3 Cached HCs In 3 opponent tricks at most 58 points can

be made (4 As, 1 T, and 1 K).
4 Cached HCs In 4 tricks at most 59 points are possible (3

As, 1 T, and 4 Ks).
5 Cached HCs In 5 lost tricks at most 57 points are con-

tained (2 As, 1 T, 4 Ks and 3 Qs)
6 Cached Hs In 6 opponent tricks at most 54 points are pos-

sible (2 As, 1 T, 4 Ks, 3 Qs, and 2 Js)
7 Cached HCs In 7 opponent tricks we find at most 47

points (1 A, 4 Ks, 4 Qs and 4 Js)
If one has 4 As, then for the case of 4 cached HCs the de-

clares can even afford giving 1 Q to the opponents, offering
the opponents again at most 59 points in total.

The next concept to be understood is the concept of stand-
ing cards. Roughly speaking a standing card is a (trump or
non-trump) card, which will go home by certain. While this
definition suggests an integer value, we refine the value by
attaching probabilities for each card to be saved. This takes
the e.g,, the current turn, and the values put in the skat into
account. We use a table for storing these values, which were
derived on the basis on expert knowledge assisted by the sta-
tistical analysis of several million of played Grand games.

In each suit, we have seven non-trump cards and 27 = 128
cards of that suit that form a pattern.

Open Game Play
For open games we implemented an engineered glass box
solver to decide a game; the game-theoretical value for
trump games is then found via binary search.

To represent hands, the skat and the played cards we em-
ploy bitvectors (in form of unsigned integers), for which we
utilize Boolean set operations: & , ∼ , and | . so that bit
masking and shifts help to identify chosen parts of the hands
in constant time. For an efficient solver, we exploit that mod-
ern CPUs provide constant-time __builtin procedures to
determine the number of cards as POPCOUNT(x) (short
|x|), the first card as LZCOUNT(x), and the last card as
TZCOUNT(x) (short select). For the representation of a
state of the game, we chose the union of the three hands.

54

AND()

if (v = lookup(hand[0]|hand[1]|hand[2],0)) return v;

h = hand[0];

while (h)

index = select(h);

bitindex = (1<<index);

if (!playable(hand[0],index,0) || equiv(h,index))

h &= ∼bitindex;
continue;

hand[0] &= ∼bitindex; played |= bitindex;

t[0] = i[0]; t[1] = i[1]; t[2] = i[2]; i[0] = index;

if (|played| % 3 == 0)

turn = winner(0);

i[0] = i[1] = i[2] = -1;

if (turn == 0) val = 0;

else if ((hand[0]|hand[1]|hand[2]) == 0) val = 1;

else if (safe(hand[0],played) == hand[0]) val = 1;

else if (turn == 1) val = OR1();

else if (turn == 2) val = OR2();

else val = OR1();

i[1] = t[1]; i[2] = t[2]; i[0] = t[0];

played &= ∼bitindex; hand[0] |= bitindex;

h &= ∼bitindex;
if (|played| % 3 == 0)

add(hand[0]|hand[1]|hand[2],0,1);

return 1;

if (|played| % 3 == 0)

add(hand[0]|hand[1]|hand[2],0,0);

return 0;

Figure 1: Glass box for the declarer’s turn in the Nullspiel.

Nullspiel

Fig. 1 provides the glass box pseudo-code implementation
including transposition table pruning, detection of equiva-
lent cards, and analyses of safe cards1. A concise imple-
mentation of the decision procedure to compute safe cards
is given in Fig. 2. The backtracking algorithm in Fig. 1 re-
turns the game-theoretical value (lost, won) of the game at
a given node in the search tree, with an And-node (AND)
referring to the declarer and an Or-node referring to one of
the two opponents (OR1 and OR2). Code fragments for the
latter twos are similar, with the outcomes 0 and 1 reversed.

We see a lot of bitshifting to convert an index of a card
to its position in the bitvector and vice versa. All variables
not bound are global and set in a main driver program of
the search. Variables set to some value are set back to their
original one on a backtrack. We check for early termination
in case the player only has safe cards. A transposition ta-
ble (a hash table supporting insertion and membership only)
avoids evaluating same game states again. We have two
functions that check a card from a given hand h (maintained
as a bitvector) is playable according to the rules of the game
and not equivalent, meaning that a smaller card exists that
will lead to the same game value, because these cards are
adjacent. The recursive structure generates a tree and using

1We tried proof-number search (Allis, van der Meulen, and
van den Herik 1994), but by the involved handling of transpositions
and the experienced higher efforts per node, it was less efficient.

safe(hand, played)

s = 0;

for (suit=0;suit<4;suit++)

counter = 0;

for (j=7;j>=0;j--)

card = 1 << (suit*8+j);

if (card & played) continue;

if (hand & card) counter++; s |= card;

else if (counter == 0) break; counter--;

return s;

Figure 2: Computing safe cards in the hand of the declarer
with respect to a set of already played cards.

Boolean reasoning to generate an optimal strategy. Pruning
takes place in the Boolean formulas as only parts of it (e.g.,
the principal variation) need to be evaluated.

If there are three cards are on the table, the trick is evalu-
ated and the game is either terminated, or continued with the
winner of the trick. To avoid problems with ongoing tricks,
we use the transposition table only after a trick has been
played. This is sufficient to encode the entire state into 32
bits, re-using the skat cards that during play of a given game
remain unchanged to denote the turn.

Trump Games

Fig. 3 shows the according glass box for Trump games,
where point scores for both parties are added and hashed.
To maintain the card order within the tricks, which is impor-
tant to evaluate its outcome, we use explicit indices.

Playing Null

The algorithm for hidden card games is significantly differ-
ent to Ouvert games, for which most of the cards (except of
the ones in the skat) are known to the opponent players. As
indicated above, in both cases, not the shortest but the safest
way to win is sought. We advice not to give up, if a game
lost for the opponents, since the declarer may not be aware
of this fact and, thus, his play can be flawed.

There are 177 (of the 256) patterns of unsafe cards in a
suit, if it is not the declarer’s turn, and 209 patterns, if it is the
declarer’s turn (as the forced play of a card in a safe group
may cast it unsafe). Safe patterns have a winning probability
of 100% in our look-up table. The algorithm, consisting of a
set of expert rules, roughly works as follows.

For the choice of the first card of the declarer we again use
a table addressed with patterns. The first table gives the prob-
ability of winning by choosing this card, the second one pro-
vided the index of the card itself. This information is elicited
from human play. The probabilities are refined on whether
or not one or two cards of the same color have been put.

Opponents’ Choice

Choice of Initial Card If there is a 7 on your hand, choose
the shortest suit, of which you do not have another 7. If
the 7 is sole, play it immediately. If there are two or more
short colors, choose the one with the higher winning prob-
ability. For example in (♣K, ♣Q, ♠J , and ♠8) choose

55

AND(remaining)

best = lookup(hands[0]|hands[1]|hands[2],as);

if (best != -1) return best;

while (remaining) {

index = select(remaining);

bitindex = (1<<index);

if (!playable(hands[0],index,0))

remainng &= ∼bitindex; continue;

hands[0] &= ∼bitindex; played |= bitindex;

i[0] = index; val = -1;

if (|played| % 3 == 0)

cached = played; turn = winner(1,2,0);

score = VALUE(i[0]) + VALUE(i[1]) + VALUE(i[2]);

if (turn) gs += score; else as += score;

t1 = i[1], t2 = i[2]; i[0] = i[1] = i[2] = -1;

val =

(gs >= 120-LIMIT) ? 0 : (as > LIMIT) ? 1 :

(turn == 0) ? AND(hands[0]) :

(turn == 1) ? OR1(hands[1]) : OR2(hands[2]);

i[1] = t1; i[2] = t2;

if (turn) gs -=score; else as -= score;

cached = played;

else

val = OR1(playable(hands[1],(i[2]>=0)?i[2]:i[0]));

i[0] = -1;

played &= ∼bitindex; hands[0] |= bitindex;

remaining &= ∼bitindex;
if (val == 1)

if (|played| % 3 == 0)

add(hands[0]|hands[1]|hands[2],as+128);

return 1;

if (|played| % 3 == 0)

add(hands[0]|hands[1]|hands[2],as);

return 0;

Figure 3: Glass box for the declarer’s turn in Trump games.

spades, and take the smallest card in there. In contrast, if
you have more than one 7 on your hand, take the suit, of
which you do not have the 7, choose the longest, and play
the highest card.

Reacting on Cards If the other opponent has all higher
cards of the played suit and another lower card, on
which the declarer can be beaten, take the trick and play
the lower card immediately. For example for ♦K being
played and (♦A,♦Q,♦7) in hand, play ♦A and then
play ♦7, not ♦Q. To generate dropping cards this scheme
also applies if the declarer cannot be beaten: the suit, on
which the other opponent drops cards is then to be played,
as long as there is the chance to beat the declarer. If one
has all remaining cards in one suit and also the 7, then the
7 is played to show that the color should not be played
further on. Be careful to assume that the declarer has all
cards on hand, as she may have put some into the skat.

Change of Suit If one does not have any suit with small
cards, a change of suits is appropriate. More precisely, a
change in suit is necessarily needed, if: a) the declarer
has no more card in this played suit (an exception of this
rule is if the other opponent has already dropped a card
in a suit, from which one has the smallest, and the de-

clarer cannot get rid of his weaknesses); b) There is no
suit, which threatens the declarer (such as 7, or 8, or 8 and
9, or 8 and T, or 9 and T, or 9 and T and J, or 9 and T
and Q); c) the other opponent can’t drop all cards on the
played suit; d) one has a singleton that can be dropped.

Dropping Card A general rule is to play the highest card
of the shortest color of which one doesn’t has a 7 or a
once-supported 8. Do not drop the card that is sole in sup-
porting the 8. In case of two suits of same length, the suit
is chosen, of which one has the highest lowest card.

Declarer’s Choice

For the declarer, we distinguish between selecting the first
card (only for first trick) and reacting to cards on the table.

Declarer’s Card Choose the suit which has the highest
winning probability according to the probability distribu-
tion table. This might be a sole 8 or, in case of 8 and 9,
also the 8 (playing 9, is of course, equivalent).

Obeying a Suit Here we assume a card in hand for the of-
fered suit. If there is only one card on the table, the card is
selected that has a value right below the one that is on the
table. If two cards have been played, then a card is chosen
that has a value below the larger of the two.

Dropping a Card In case a suit cannot be obeyed, the gen-
eral rule is that a card is dropped from a suit that, accord-
ing to our statistical information, provides the largest im-
provement in the winning probability. The obvious situ-
ation is if suits becomes safe, otherwise the probability
tables have to be consulted.

Playing Null Ouvert

In imperfect information games, the belief state space is the
set of possible states the game can be in. In the worst case
for |S| as the number of states in S, the belief state space
can grow exponentially in |S|. In Ouvert games, however,
the belief state space (in view of the opponents) is much
smaller. It is a game of almost full information, so that ex-
haustive search is more effective. To reduce the uncertainty
for the opponents in the number of unknown hands down
from

(
12
10

)
= 66 possible cards, we determine good cards

that –under reasonable play– the declarer should not have
been put.

Definition 4 (Good Card) A card c in hand h is good if the
dropping gain is smaller than the highest dropping gain of
any card she has shown, i.e.,

good(c) = 1 iff drop(h, h \ {c}) < max
c′∈h

drop(h, h \ {c′}).

Once a card has being played, it is no longer unknown.
For the remaining choices in the unknown cards, we call the
glass box solver. If we have an unambiguous majority vote,
we know which card to play. In case the vote is ambiguous,
we take the rules from Null as a tie breaker. Besides evalu-
ating all states in the belief space, we invest more efforts in
the ordering of moves (reorder). The major observation we
exploit is that in the tree search expert rules will consider
more promising card proposals first.

56

decide_beliefs()

nskat = nhand = 0;

for (i=0;i<32;i++) vote[i] = 0;

maxvote = 0;

while (unknown)

chosen1 = select(unknown);

nskat |= (1 << chosen1);

unknown &= ∼(1 << chosen1);

rest = unknown;

while (rest)

chosen2 = select(rest);

nskat |= (1 << chosen2); rest &= ∼(1 << card2);

nhand = other_hand_or_skat & ∼nskat;
reorder();

if (start == 1)

if (!glassbox(hand0,hand,nhand))

vote[proposed_card]++;

if (start == 2) {

if (!glassbox(hand0,nhand,hand))

vote[proposed_card]++;

new_skat &= ∼(1 << chosen2);

new_skat &= ∼(1 << chosen1);

for (i=0;i<32;i++)

if (maxvote < vote[i]) maxvote = vote[i];

Figure 4: Selecting an opponents’ card in Ouvert game.

We apply different orderings. For example, we avoid play-
ing suits, in which the declarer is unbeatable, and prefer ones
that enable the other opponent to play a card that beats her.
We also favor cards that increase the degree of knowledge of
the cards. While knowledge is computed for the belief space,
turn transfers are computed for each of the state in the be-
lief space. To enhance the computation together with good
cards, we compute all possible transfers of play between the
opponents.

We observed that opponent play is close to optimal. The
informal argument we give is information-theoretic. With
known safe and good cards the number of remaining cards
being unknown to the opponent player is small, and, with
general rules of play, the players can furtherly reduce. Based
on the analysis of the transfer graph of opponent play and the
options for dropping, safety analysis can go much deeper:
for example a player’s hand with three low cards and one A
in a suit can only be beaten, if all the other cards are in one
opponents hands; for 5 and 6 cards in one hand similar rules
exist; in some cases a 2:2 partitioning in a suit is needed to
win; and so on. At some stage within the game the skat is
completely known, and from this moment onwards, the op-
timal game can be played. If one looks at the tricks needed
to beat the player, then the clarifying tricks lead to a possible
reordering/inclusion of tricks compared to the optimal play
for the same hand.

In the implementation we maintain a bitvector of the 12
unknown cards for each player, and update the status of the
cards on each trick, again using safe/good card analyses and
possible turn transfers, as well as following the set of expert
rules: 1) in case of a trivially flawed suit, transfer play im-
mediately to opponent that can beat it; 2) transfer play to the

opponent to put player in second position, even better if pos-
sible in the dropping suit; 3) if the above rules do not apply,
change play to a non-flawed suit, that can overtaken by cer-
tain; 4) if none of the above rules apply, play the best card is
the one that gets the declarer in second position.

Playing Trump Games

There are two main categories of Grands: a) standard grands
(more than one J), in which strong Js and long suits secure a
win, and b) high-card grands, in which the high-value cards
(namely A and T) warrant sufficient points to satisfy the
contract. Similarly, there is a distinction between standard
Suit games (with more than 4 trumps), and b) high-card Suit
games, in which even some high-valued trumps can be put.

The play of the declarer depends heavily on the category
of the Grand. In standard grands she plays Js as soon possi-
ble to reduce the options for the opponents to gain control.
In the case of a high-card grand, Js are played first, only if all
4 As are present. She will also play the suit first, which has
the highest risk to be cut on by the opponents. Exceptions
are if there are more than two ways to win.

After clarifying the status of the Js, the declarer usually
tries to close gaps in his cards, so that virtual standing cards
become standing. We tabled priorities 1–6 for this to happen
for each suit, and propose the index of the first card in a
suit to be played. In case of a tie the longest suit is chosen.
Remaining ties are broken randomly.

We monitor and update the sum of points for all the play-
ers, and the cards being played in a data structure. In the be-
ginning the value in the skat is known only to the declarer,
but the opponents deduce information based the cards be-
ing played (especially, by looking at trick-openers and drop-
ping cards). Exploiting the knowledge on bidding values and
showing complement colors are strong weapons of the oppo-
nents. For each trick and each player, we evaluate if the game
is won according to the contract. For the case that there are
only standing cards left in the hand of the declarer, the game
ends and all tricks assigned to her.

In standard Grands, the declarer first clarifies the status
of the Js to avoid losing high-cards later on. There are ex-
ceptions, though. In case of 2 Js and 2-3 As at turn, usually
a standing card without an A is played first. With 2 Js and
3 As, and a suit of at last two cards with A, this A is cho-
sen. Other exception are two Js with 1 A and many standing
cards in a color, or 3 Js, 1-2 As and more than 4 cards in one
suit, etc.

In high-card Grands Js are used to take the turn. For each
distribution of Js, we store the cards to be selected. The J
in spades often is the best proposal as it hides the strength
of the declarer. For the declarer we distinguish between se-
lecting the first card and reacting to cards on the table. In
case a suit cannot be obeyed, the general rule is that a card
is dropped from that suit, which, according to our statistical
information, provides the largest improvement in the win-
ning probability. A high-value card is often kept, while lower
cards are dropped. K and Q are frequently cashed, if the de-
clarer is second in the trick. If a suit has to be obeyed, the
smaller card is taken in second position.

57

Figure 5: Prediction accuracy denoting the difference of
winning in human play and computer play in the Nullspiel,
partitioned along Pw ∈ {0%, 1% . . . , to 100%}.

There are similar rules for Suit game play (Gößl 2019),
choosing a well-defined strategy to be followed.

Experiments

We implemented our Skat player in C/C++ using the GNU
gcc compiler. For the experiments we used one core of an
Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz with 16GB
RAM. The different versions of the game have a signifi-
cant impact on the winning chances, which is reflected in
the probability tables we apply (in form of plain arrays and
STL hash maps).

We compared our performance with the Double-Dummy
Skat Solver (DDSS) by Sebastian Kupferschmid (2003).
DDSS is designed for trick playing only; it does not bid nor
put. The performance of DDSS in analyzing open games
stands out as a trademark. For the Nullspiel Kupferschmid
measured a mean runtime of 20ms for analyzing a random
Nullspiel game, which is remarkable. Our AI, however, im-
proved this performance with an average runtime of about
5ms. Forced play of contracts in randomly deals, however,
is an artificial assumption, so we decided to replay expert
games. As DDSS has a different card encoding, we wrote
a converter to provide human played games as input. The
DDSS solver is fast, but the playing strength in the Null-
spiel (with option partial observable play) was not convinc-
ing. Unfortunately, we also found bugs in the DDSS. We
refactored the code and applied workarounds, but eventually
we decided to compare with the Java player Fox1.2 (Furtak,
Buro), which was more reliable. According to our knowl-
edge, the solver code is based on DDSS anyway.

Our AI can play entire games, including bidding, game se-
lection, skat putting and trick play. Computing the bidding
value based on evaluating winning probabilities the 231 · 66
skats for each player and possible game type took about
0.03s per game. If the skat is not taken, the amount of un-
certainty is higher and leads to the generation and usage of
specialized probability tables for all the hand games, where
the concept of good cards does not apply. Other than this,
rule-based play and exploration algorithms remain the same.
Figures 5 and 6 validate that the predicted winning probabil-
ities are in good match with the human outcome in playging
the Nullspiel and Grand. The evaluation of predicted win-
ning probabilities in Suit games is similarly accurate.

Figure 6: Prediction accuracy denoting the difference of
winning in human and computer play in Grand, partitioned
along Pw ∈ {0%, 1% . . . , to 100%}.

We next validated that the skats being put by the com-
puter can be better than the ones of humans. Our evaluation
criterion is running the glass box with both the human and
the computer generated skats on 2.5M Null games (with a
winning probability of 0.5 to 0.8). In less that 4h (221m and
229m, corresponding about 5ms per game), the total number
of games won by the declarer in the glass box analysis wrt.
human skat putting was 576K, and 623K for the computer
skat, a significant lead for the AI.

Some experiences were made with other Skat engines.
In the Nullspiel, with all respect, they all play rather poor
and cannot match with human expert play, nor with our pro-
gram’s playing strength. Most of the systems were simply
not designed for misere play.

Computer vs. Computer

In this experiment we took a wide selection of 60K expert
Skat games of all different types and contracts. For Fox1.2
we converted the games into its so-called skat game format
(sgf). Fox1.2 took about 19h (or 1.13s on average per game)
to find the optimal game value together with the best cards
to play. In contrast, our player took about 9.5h for the same
task (0.52s on average), showing a speed-up of about fac-
tor 2. For both engines, deciding the game is much quicker:
Fox1.2 required about 4.5h for the 60K games (250ms per
game), while our AI took around 1h (or 63ms per game),
showing a speed-up factor of about 4. We validated that the
results were in match.

Computer vs. Human

For the qualitative analysis, we first chose some human Null-
spiel games selected by an expert as being characteristic.

Putting Skat First, we were interested in the quality of
putting the skat. For the hand ♦A;♦9; ♦7; ♥7; ♥K; ♥A;♠7;
♣8; ♣9; ♣K;— ♦8;♦J; ♥8; ♥9; ♥J; ♥Q;♠T; ♠J; ♠Q;
♣Q— ♦T;♦Q; ♦K; ♥T; ♠8; ♠9;♠K; ♠A; ♣T; ♣J; be-
fore taking the skat we obtain ♦: 72.8% win; ♥: 11.2%
win; ♠: 100% win; ♣: 63% win. This results in a hand win-
ning probability of 0.728 · 0.112 · 1 · 0.63 = 5.1% for the
entire hand. After taking the skat, some winning probabili-
ties for each possible skat putting option were: a. ♦A, ♥A :
1 ·0.614 ·1 ·1 = 61.4%, b. ♦A, ♥K : 1 ·0.523 ·1 ·1 = 52.3%,

58

and c. ♥A ♥K : 0.728 · 1 · 1 · 1 = 72.8%. (To determine the
hand strength before skat taking, we average the winning
probability over all possible skats.)

Null Games In the the game Null (23) the above set of
given expert rules were implemented and first tested posi-
tively on a set of critical examples, selected by a world-class
Skat player. Our play in the following deals matched the ex-
pert assessment. We distinguish between the player in first,
second, and third position within a trick.

1. ♦J;♦9; ♦8; ♦7; ♣8; ♥K;♥Q; ♥8; ♥7; ♠8— ♦T;♦K;
♦Q; ♠A; ♠K; ♠J;♠9; ♣Q; ♣J; ♥9— ♦A;♣A; ♣K; ♣T;
♣9; ♣7;♠T; ♥A; ♥T; ♥J; Declarer puts ♥K and ♥Q; In
proper opponent play he still loses. 1st Trick: ♣8; ♣Q;
♣A; 2nd Trick: ♠T; ♠8; ♠A; 3rd Trick: ♠9; ♠7, ♦A; 4th
Trick: ♠J; ♠Q;

2. ♣T;♠Q; ♠J; ♠9; ♥T; ♥K;♥Q; ♥J; ♦T; ♦K— ♥A;♥9;
♥8; ♥7; ♦Q; ♦9;♦7; ♠T; ♠7; ♣8— ♦8;♦J; ♦A; ♠8;
♠K; ♠A;♣K; ♣Q; ♣9; ♣7; Skat already put. Declarer
loses. 1st Trick: ♣T; ♣8; ♣ K; 2nd Trick: ♠7; ♦K; ♦
Q; 3rd Trick: ♠9; ♦8; ♦T , ♦9 4th Trick: ♥T; ♥9; ♠A
5th Trick: ♥J; ♥8; ♠K 6th Trick: ♥Q; ♥7; ♦A 7th Trick:
♥K; ♥A;

3. ♣K;♣Q; ♠J; ♠8; ♥A; ♥T;♥Q; ♦T; ♦Q; ♦J— ♣A;♣J;
♣T; ♣9; ♣7; ♠Q;♠9; ♠7; ♥8; ♥7— ♣8;♠A; ♠T; ♠K;
♥J; ♥9;♦K; ♦9; ♦8; ♦7; Skat already taken, declarer in
MH loses, first cards 1st Trick: ♠8; 2nd Trick: ♣8; and
3rd Trick: ♠J (better than ♣Q); rest simple.

Queen with Three For Ouvert play, therefore, one set
of games we considered, consisted of the declarer having
a weakness of 7,8,Q (or 7,9,Q), which may be exploited.
When we selected games, in which the human player won,
we found several games in which the computer opponents
turn the game. Our analysis of the remaining data set of
65 534 lost games including a possible line of play required
23m19s (about 21ms each). The top level glass box search
took 5ms on average for analyzing a single game. We iden-
tified 3 902 games that were saved.

Declarer-First Games Next, we analyzed games, in which
the declarer issues the first card. We found over 17K expert
games in the database, in which she lost. By refined skat
putting, we experienced that about 4K games could be saved,
even with optimal game play of both the player and the op-
ponents. The time for analyzing all games (including a cer-
tificate of play in case the game was won) was 4m21s. Us-
ing a non-optimal reflex player, the value dropped to 3 901
games and 3m30. Using human skat putting, the number of
saved games went down to 960, and the time for analyzing
2min8s. This corresponds to about 7ms per game.

Null Ouvert Games Of the total of 290 084 critical NO-
Games with a predicted winning probability of > 50%, the
human opponents won 217 193 = 74.9% games while, our
computer opponents won 243 365 = 83.9% games. This is a
surplus of 26 172 games. For a fair comparison in both cases
the skat was fixed to what the human declarer had put.

Anlyzing about 300T games, including the generation of a
line of trick play, took 4231m, which means that each game

Table 1: Results in NO Games.
GlassBox WonHuman WonAI Number %

0 0 0 186 656 64.3%
0 0 1 30 537 10.5%
0 1 0 56 709 19.5%
0 1 1 16 182 5.6%

Table 2: Result in Null Games.
GlassBox WonHuman WonAI Number %

0 0 0 382 123 19.7%
0 0 1 495 909 25.5%
0 1 0 222 597 11.5%
0 1 1 843 226 43.4%

is played in less than 1s. This indicates that the opponent
players significantly outperforms human play.

From the 2.5M Null games with a winning probability
between .5 and .8 the optimal open card game solver lost
1 943 855 games, which is 77.1%. Of these, the human saved
45.2% games, the PC 31.1%. Sources of inferior play have
been removed, so that the AI saved many more games, but
still does not yet exceed human performance. We identified
the weakness of the player in the rules for color change,
which have to be carefully coded, since they need to be up-
dated dynamically. For example, if an opponent issued card
is obeyed by the declarer, but one does not have a small card
that takes her down, a color change is needed. Small cards
include 7 or 8, 8 and 9, 8 and T, 9 and T, 9/T/B (which beats
7, 8/9, Q), or 9/T/Q (beats 7, 8/9, K).

Conclusion

In this paper we presented a novel Skat AI that incorpo-
rates distilled human game information, expert rules, ag-
gregates winning probabilities for bidding, game selection,
as well as skat putting, and which exploits fast tree explo-
ration. According to the glass box evaluation at the current
stage of implementation, skat putting is better than humans
in the Nullspiel, equal in Grand games, and slightly worse
in Suit games. We expect to put the skat better than the hu-
man in all types of games soon. More importantly, the AI
plays Null Ouvert significantly better than human experts,
and the exploration is significantly faster than in other Skat
playing tools. By refined expert rules of play, while updating
knowledge of the players, we are optimistic that the general
strength of our AI Skat player will eventually exceed human
tournament play. While our program is primarily designed
to play Skat, some algorithmic aspects can transfer to other
imperfect information card games, including Tarots, Bridge
and Hearts. We are also looking forward to see whether or
not our use of a large body of statistical expert information
carries over to other incomplete information games.

Acknowledgement This research work would not have
been possible without the ingenious help of Rainer Gößl,
a Skat expert and world-class caliber player.

59

References

Allis, L. V.; van der Meulen, M.; and van den Herik, H. J.
1994. Proof-number search. Artificial Intelligence 66:91–
124.
Allis, L. V. 1998. A knowledge-based approach to connect-
four. the game is solved: White wins. Master’s thesis, Vrije
Univeriteit, The Netherlands.
Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2017. Heads-up limit hold’em poker is solved. Commun.
ACM 60(11):81–88.
Campbell, M.; A. J. Hoane, J.; and Hsu, F. 2002. Deep blue.
Artificial Intelligence 134(1-2):57–83.
Furtak, T. M. 2013. Symmetries and Search in Trick-Taking
Card Games. Ph.D. Dissertation, University of Alberta.
Gasser, R. 1995. Harnessing Computational Resources
for Efficient Exhaustive Search. Ph.D. Dissertation, ETH
Zürich.
Ginsberg, M. 1999. Step toward an expert-level bridge-
playing program. In IJCAI, 584–589.
Gößl, R. 2019. Der Skatfuchs – Gewinnen im Skatspiel mit
Mathematische Methoden. Selfpublisher. Dämmig, Chem-
nitz, Available from the Author or via DSKV Altenburg.
Grandmontagne, S. 2005. Meisterhaft Skat spielen. Self-
publisher, Krüger Druck+Verlag.
Harmel, S. 2016. Skat–Zahlen. Klabautermann-Verlag,
Pünderich (Mosel).
Keller, T., and Kupferschmid, S. 2008. Automatic bidding
for the game of skat. In KI, 95–102.
Kinback, T. 2007. Skat-Rätsel – 50 lehrreiche Skataufgaben
mit Lösungen und Analysen. Books on Demand, Norderst-
edt.
Kupferschmid, S., and Helmert, M. 2006. A Skat player
based on monte-carlo simulation. In Computers and Games,
135–147.
Kupferschmid, S. 2003. Entwicklung eines Double-Dummy
Skat Solvers mit einer Anwendung für verdeckte Skatspiele.
Master’s thesis, Albert-Ludwigs-Universität Freiburg.
Lasker, E. 1929. Das verständige Kartenspiel. August
Scherl Verlag, Berlin.
Lasker, E. 1938. Strategie der Spiele – Skat. August Scherl
Verlag, Berlin.
Long, J. R. 2011. Search, Inference and Opponent Mod-
elling in an Expert-Caliber Skat Player. Ph.D. Dissertation,
University of Alberta.
Quambusch, M. 1990. Gläserne Karten – Gewinnen beim
Skat. Stomi Verlag, Schwerte Rau Verlag, Düsseldorf.
Schaeffer, J.; Björnsson, Y.; Burch, N.; Kishimoto, A.;
Müller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2005. Solv-
ing checkers. In International Joint Conference on Artificial
Intelligence, 292–297.
Schettler, F., and Kirschbach, G. 1988. Das große
Skatvergnügen. Urania Verlag, Leipzig, Jena, Berlin.
Schubert, H. 1887. Das Skatspiel im Lichte der Wahrschein-
lichkeitsrechnung. J. F. Richter, Hamburg.

Silver, D., and et al., A. H. 2016. Mastering the game of go
with deep neural networks and tree search. Nature 529:484.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2017.
Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. Technical Report 1712.018,
arxiv.
Wergin, J. P. 1975. Wergin on Skat and Sheepshead. Wergin
Distributing, Mc. Farland, USA.

60

