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Abstract

Generalized planning is concerned with how to find a sin-
gle plan to solve multiple similar planning instances. Ab-
stractions are widely used for solving generalized planning,
and QNP (qualitative numeric planning) is a popular abstract
model. Recently, Cui et al. showed that a plan solves a sound
and complete abstraction of a generalized planning problem
if and only if the refined plan solves the original problem.
However, existing work on automatic abstraction for general-
ized planning can hardly guarantee soundness let alone com-
pleteness. In this paper, we propose an automatic sound and
complete abstraction method for generalized planning with
baggable types. We use a variant of QNP, called bounded
QNP (BQNP), where integer variables are increased or de-
creased by only one. Since BQNP is undecidable, we pro-
pose and implement a sound but incomplete solver for BQNP.
We present an automatic method to abstract a BQNP problem
from a classical planning instance with baggable types. The
basic idea for abstraction is to introduce a counter for each
bag of indistinguishable tuples of objects. We define a class
of domains called proper baggable domains, and show that
for such domains, the BQNP problem got by our automatic
method is a sound and complete abstraction for a generalized
planning problem whose instances share the same bags with
the given instance but the sizes of the bags might be different.
Thus, the refined plan of a solution to the BQNP problem is a
solution to the generalized planning problem. Finally, we im-
plement our abstraction method and experiments on a number
of domains demonstrate the promise of our approach.

Code — https://github.com/sysulic/ABS

Introduction
Generalized planning (g-planning in short), where a single
plan works for multiple planning instances, remains a chal-
lenging problem in the AI community (Levesque 2005; Sri-
vastava, Immerman, and Zilberstein 2008; Hu and De Gia-
como 2011; Aguas, Celorrio, and Jonsson 2016; Bonet and
Geffner 2018; Illanes and McIlraith 2019; Francès, Bonet,
and Geffner 2021). Computing general solutions with cor-
rectness guarantees is a key problem in g-planning.
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Abstraction methods play an important role in solving g-
planning problems. The idea is to abstract a given low-level
(LL) problem to get a high-level (HL) problem, solve it and
then map the solution back to the original problem. Based
on the agent abstraction framework of Banihashemi, De Gi-
acomo, and Lespérance (2017), Cui, Liu, and Luo (2021)
proposed a uniform abstraction framework for g-planning.
Cui, Kuang, and Liu (2023) proposed an automatic verifica-
tion method for sound abstractions of g-planning problems.

Qualitative numeric planning (QNP) (Srivastava et al.
2011), an extension of classical planning with non-negative
real variables that can be increased or decreased by some
arbitrary amount, has been a popular abstract model for g-
planning. A number of QNP solvers have been developed,
including FONDASP (Rodriguez et al. 2021) and DSET
(Zeng, Liang, and Liu 2022). Bonet and Geffner (2018) ab-
stracted a class of g-planning problems into QNP problems.
In recent years, the automatic generation of abstractions for
g-planning has attracted the attention of researchers. Bonet,
Francès, and Geffner (2019) learned a QNP abstraction of a
g-planning problem from a sample set of instances, however,
the abstraction is only guaranteed to be sound for sample
instances. Bonet et al. (2019) showed how to obtain a first-
order formula that defines a set of instances on which the ab-
straction is sound. Illanes and McIlraith (2019) considered
a class of g-planning problems called quantified planning
problems based on the idea of quantifying over sets of sim-
ilar objects, and adapted QNP techniques to produce gen-
eral solutions. They also proposed to use the work by Riddle
et al. (2016) to build a quantified planning problem out of a
planning instance. However, they did not address the sound-
ness and completeness issues of their abstraction method. A
closely related line of work is reformulation (Riddle et al.
2016; Fuentetaja and de la Rosa 2016), where to reduce the
state space, a classical planning instance is reformulated by
quantifying over indistinguishable objects.

In this paper, we propose an automatic method to abstract
a QNP problem from a classical planning instance with bag-
gable types. We use a variant of QNP, called bounded QNP
(BQNP), where integer variables are only increased or de-
creased by one. The basic idea for abstraction is to intro-
duce a counter for each bag of indistinguishable tuples of
objects. The reason we use BQNP instead of QNP as our
abstract model is that our target abstract actions are those
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which perform an action on arbitrary elements from bags,
thus increasing or decreasing the size of bags by one. We
resolve the technical complications involved with the defi-
nitions of numeric variables, abstract goal, and abstract ac-
tions. In particular, we have to ensure the numeric vari-
ables are independent from each other, since QNP cannot
encode constraints among numeric variables. We define a
class of domains called proper baggable domains, and show
that for such domains, the BQNP problem is a sound and
complete abstraction for a g-planning problem whose in-
stances share the same bags with the given instance but the
sizes of the bags might be different. Since BQNP is unde-
cidable, we propose a sound but incomplete algorithm to
test if a BQNP policy terminates, and implement a basic
BQNP solver based on the QNP solver DSET. Finally, we
implement our abstraction method, and experiments on a
number of domains demonstrate its promise. To the best of
our knowledge, this is the first automatic abstraction method
which can guarantee both soundness and completeness.

Preliminaries
Situation Calculus
The situation calculus (Reiter 2001) is a many-sorted first-
order language with some second-order ingredients suit-
able for describing dynamic worlds. There are three dis-
joint sorts: action for actions, situation for situations, and
object for everything else. The language also has the follow-
ing components: a situation constant S0 denoting the initial
situation; a binary function do(a, s) denoting the successor
situation to s resulting from performing action a; a binary re-
lation Poss(a, s) indicating that action a is possible in situ-
ation s; a set of relational (functional) fluents, i.e., predicates
(functions) taking a situation term as their last argument.
We call a formula with all situation arguments eliminated
a situation-suppressed formula ϕ. We use ϕ[s] to denote the
formula obtained from ϕ by restoring s as the situation ar-
guments to all fluents.

In the situation calculus, a particular domain of applica-
tion can be specified by a basic action theory (BAT) of the
form D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 , where Σ is the
set of the foundational axioms for situations, Dap, Dss and
Duna are the sets of action precondition axioms, successor
state axioms, unique name axioms for actions, and DS0

is
the initial knowledge base stating facts about S0.

Levesque et al. (1997) introduced a high-level program-
ming language Golog with the following syntax:

δ ::= α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗,

where α is an action term; ϕ? is a test; δ1; δ2 is sequential
composition; δ1|δ2 is non-deterministic choice; πx.δ is non-
deterministic choice of action parameter; and δ∗ is nondeter-
ministic iteration. The semantics of Golog is defined using
an abbreviationDo(δ, s, s′), meaning that executing the pro-
gram δ in situation s will result in situation s′.

The counting ability of first-order logic is very limited.
Kuske and Schweikardt (2017) extended FOL by counting,
getting a new logic FOCN. The key construct of FOCN are

counting terms of the form #y.φ, meaning the number of tu-
ples y satisfying formula φ. The situation calculus has been
extended with counting by, e.g., Zarrieß and Claßen (2016).

STRIPS
Definition 1. A STRIPS domain is a tuple D = ⟨T, P,A⟩,
where T is a set of object types, P is a set of predicates and
A is a set of actions, every a ∈ A consists of preconditions
pre(a), add list add(a) and delete list del(a), where pre(a) is
a formula that must be satisfied before a is executed, add(a)
is a set of the true ground atoms after doing a, and del(a) is
a set of the false ground atoms after performing a.

Definition 2. A STRIPS planning instance is a tuple P =
⟨D,O, I,G⟩, whereD is a STRIPS domain,O is a set of ob-
jects of different types, I , the initial state, is a set of ground
atoms made from predicates in P and objects in O, and G,
the goal condition, is a set of ground atoms.

Given a STRIPS domain, it is easy to write its BATD. We
omit the details here.

Example 1 (Gripper World). The Gripper domain involves
a robot with several grippers and a number of balls at dif-
ferent rooms. The robot robby can move between rooms
and each gripper may carry one ball a time. The predicates
are: at(b, r) denotes ball b is at room r; white(b) means b is
white; black(b) means b is black; carry(b, g) denotes gripper
g carries b; free(g) denotes g is free; HE(g) denotes g is high
energy; LE(g) denotes g is low energy; at-robby(r) denotes
robby is at r. The actions are: move(r-from, r-to) denotes
robby moves from one room to another room; charge(g)
denotes charging g; drop(b, g, r) denotes g drops b at r;
pick(b, g, r) denotes g picks b at r, where

• pre = {at(b, r), free(g), at-robby(r),HE(g)};
• eff = {carry(b, g),LE(g),¬at(b, r),¬free(g),¬HE(g)}.

Below is a planning instance P = ⟨D,O, I,G⟩, where

• O = {b1, b2, b3, b4, b5, b6, b7, b8, g1, g2, r1, r2};
• I = {at(b1, r1), at(b2, r1), at(b3, r1), at(b4, r1),

at(b5, r2), at(b6, r2), at(b7, r2), at(b8, r2),white(b1),
white(b2),white(b3),white(b4), black(b5), black(b6),
black(b7), black(b8), free(g1), free(g2),HE(g1),
HE(g2), at-robby(r1)};

• G = {at(b1, r2), at(b2, r2), at(b3, r2), at(b4, r2),
at(b5, r1), at(b6, r1), at(b7, r1), at(b8, r1)}.

Qualitative Numeric Planning (QNP)
QNP is classical planning extended with numerical variables
that can be decreased or increased by arbitrary amount (Sri-
vastava et al. 2011). Given a set of non-negative numerical
variables VN and a set of propositional variables VB , L de-
notes the class of all consistent sets of literals of the form
N > 0 and N = 0 for N ∈ VN , B and ¬B for B ∈ VB .

Definition 3. A QNP problem is a tuple Q =
⟨VN , VB , Init,Goal, Ops⟩ where VN is a set of non-
negative numeric variables, VB is a set of propositional vari-
ables, Ops is a set of actions, every op ∈ Ops has a set of
preconditions pre(op) ∈ L, and effects eff(op), Init ∈ L



is the initial state, Goal ∈ L is the goal condition. Propo-
sitional effects of eff(op) contain literals of the form B and
¬B for B ∈ VB . Numeric effects of eff(op) contain special
atoms of the form inc(N) or dec(N) for N ∈ VN which
increase or decrease N by an arbitrary amount.

A qualitative state (qstate) of Q is an element of L in
which each variable has a corresponding literal. A state of
Q is an assignment of non-negative values to all N ∈ VN
and of truth values to B ∈ VB . An instance ofQ is a numer-
ical planning instance Q = ⟨VN , VB , s0, Goal, Ops⟩ which
replaces Init with a state s0 satisfying Init.

A policy π for a QNP problem Q is a partial mapping
from qstates into actions. Given a policy π, a π-trajectory is
a sequence of states s0, s1, . . . (finite or infinite) s.t. for all
i ≥ 0, si+1 can be resulted from performing π(s̄i) in si,
where s̄i is the qstate satisfied by si.

We omit the definitions that π terminates for Q and π
solves Q. Srivastava et al. (2011) introduced a sound and
complete algorithm SIEVE, which tests whether a policy π
for Q terminates. Given G, the qstate transition graph in-
duced byQ and π, SIEVE iteratively removes edges fromG
until G becomes acyclic or no more edges can be removed.
Then π terminates iff G is acyclic.

Abstraction for Generalized Planning
Cui, Liu, and Luo (2021) proposed a uniform abstraction
framework for g-planning, which we adapt to our setting.
Definition 4. A g-planning problem is a tuple G = ⟨D, G⟩,
where D is a BAT and G is a goal condition.

A solution to a g-planning problem G = ⟨D, G⟩ is a
Golog program δ s.t. for any model M of D, δ terminates
and achieves the goal. We omit the formal definition here.
Definition 5 (refinement mapping). A function m is a re-
finement mapping from the HL g-planning problem Gh =
⟨Dh, Gh⟩ to the LL g-planning problem Gl = ⟨Dl, Gl⟩ if for
each HL action type A, m(A(x⃗)) = δA(x⃗), where δA(x⃗) is
a LL program; for each HL relational fluent P , m(P (x⃗)) =
ϕP (x⃗), where ϕP (x⃗) is a LL situation-suppressed formula;
for each HL functional fluent F , m(F (x⃗)) = τF (x⃗), where
τF (x⃗) is a LL term, possibly a counting term.

For a HL formula ϕ, m(ϕ) denotes the formula resulting
from replacing each HL symbol in ϕ with its LL definitions.
For a HL program δ, m(δ) is similarly defined.
Definition 6 (m-isomorphism). Given a refinement map-
ping m, a situation sh of a HL model Mh is m-isomorphic
to a situation sl in a LL model Ml, written sh ∼m sl, if: for
any HL relational fluent P , and variable assignment v, we
have Mh, v[s/sh] |= P (x⃗, s) iff Ml, v[s/sl] |= m(P )(x⃗, s);
for any HL functional fluent f , variable assignment v, we
have Mh, v[s/sh] |= f(x⃗, s) = y iff Ml, v[s/sl] |=
m(f)(x⃗, s) = y.
Proposition 1. Suppose sh ∼m sl. Let ϕ be a HL situation-
suppressed formula. Then Mh, v[s/sh] |= ϕ[s] iff Ml,
v[s/sl] |= m(ϕ)[s].

In the following definition, ∆M
S denotes all situations of

M , SM0 stands for the initial situation of M .

Definition 7 (m-bisimulation). A relationR ⊆ ∆Mh

S ×∆
Ml

S

is an m-bisimulation relation, if ⟨SMh
0 , SMl

0 ⟩ ∈ R, and
⟨sh, sl⟩ ∈ R implies that: sh ∼m sl; for any HL action
type A, and variable assignment v, if there is a situation s′l
s.t. Ml, v[s/sl, s

′/s′l] |= Do(m(A(x⃗)), s, s′), then there is a
situation s′h s.t. Mh, v[s/sh, s

′/s′h] |= Do(A(x⃗), s, s′) and
⟨s′h, s′l⟩ ∈ R, and vice versa.

Definition 8. Gh is a sound m-abstraction of Gl if for each
model Ml of Gl, there is a model Mh of Gh s.t. there is an
m-bisimulation relation R between Mh and Ml, and for any
⟨sh, sl⟩ ∈ R, Mh, v[sh/s] |= Gh[s] iff Ml, v[sl/s] |= Gl[s].

Definition 9. Gh is a complete m-abstraction of Gl if for
each model Mh of Gh, there is a model Ml of Gl s.t. there is
a m-simulation relation R between Mh and Ml, and for any
⟨sh, sl⟩ ∈ R, Mh, v[sh/s] |= Gh[s] iff Ml, v[sl/s] |= Gl[s].

Theorem 1. If Gh is a sound and complete m-abstraction
of Gl, then δ solves Gh iff m(δ) solves Gl.

Bounded QNP
In this section, we consider a variant of QNP, called bounded
QNP (BQNP), where numeric variables are only increased
or decreased by one. Since BQNP is undecidable, we pro-
pose a sound but incomplete method to test whether a policy
for a BQNP problem terminates, based on which, by adapt-
ing a characterization of QNP solutions to BQNP, we pro-
pose a sound but incomplete method for BQNP solving.

Definition 10. A BQNP problem is a QNP problem where
numeric variables take integer values, inc(N) is interpreted
as: N is increased by 1, and similarly for dec(N).

Definition 11. Given a BQNP problem B, a policy π for B is
a partial mapping from qualitative states to actions. A policy
π terminates for B (resp. solves B) if for every instance of
B, the only π-trajectory started from the initial state is finite
(resp. goal-reaching).

As noted in (Srivastava et al. 2011), BQNP policies can
be used to represent arbitrary abacus programs, so BQNP is
undecidable. Formal proof is given in Helmert (2002).

Theorem 2. The decision problem of solution existence
for BQNP is undecidable: there is no algorithm to decide
whether a BQNP problem has a solution.

We now analyze the relationship between QNP and
BQNP. The following results follow from the definitions:

Proposition 2. Let Q be a QNP problem, and let B be its
corresponding BQNP problem. Then

1. If a policy π terminates for Q, then it terminates for B.
2. If a policy π solves Q, then it solves B.

Zeng, Liang, and Liu (2022) gave a characterization of
QNP solutions, which by a similar proof, holds for BQNP:

Proposition 3. Given the AND/OR graph G induced by a
BQNP problem B, a subgraphG′ ofG, representing a policy
for B, is a solution to B iff G′ is closed, terminating, and
contains a goal node.



Figure 1: The solution graph of B.

Proof. By Def. 11, the only-if direction is obvious. For the
if direction, assume that there is an instance of B s.t. the
only G′-trajectory started from the initial state terminates at
a non-goal node s. Since G′ is closed, s will be continued
with the execution of an action, which contradicts that the
trajectory terminates at s.

However, for Proposition 2, the converse of neither (1) nor
(2) holds. In the following, we illustrate with an example.

Example 2. Let Q = ⟨VN , VB , Init,Goal, Ops⟩, where
VN = {X}, VB = {A,B}, Init = {X > 0, A,¬B},
Goal = {X = 0} and Ops = {a, b, c}, where pre(a) =
{X > 0, A,B}, eff(a) = {dec(X),¬A}, pre(b) = {X >
0,¬A,B}, eff(b) = {dec(X),¬B}, pre(c) = {X >
0,¬A,¬B}, eff(c) = {inc(X), A,B}.

Figure 1 shows a policy π for Q and the graph induced
by π. By SIEVE, π does not terminate for Q, and hence not
a solution for Q. However, π terminates for B, since there
is only one loop, and after each iteration of this loop, X
decreases by 1. By Proposition 3, π is a solution for B.

Since there are only finitely many policies, by Theorem
2 and Proposition 3, termination-testing for BQNP policies
is undecidable. Motivated by Proposition 2 and Example 2,
based on SIEVE, we propose a sound but incomplete algo-
rithm (Algorithm 1), to test whether a policy π for a BQNP
problem B terminates. In the algorithm, a SCC is a strongly
connected component, and a simple loop is a loop where no
node appears more than once. Given G, the qstate transition
graph induced by π, our algorithm first applies SIEVE to G
and removes edges. It then returns “Terminating” if every
remaining SCC is a simple loop g where there is a variable
v s.t. the number of actions in g that decrease v is more than
the number of actions in g that increase v.

Theorem 3. Given a BQNP problem B and a policy π, letG
be the qstate transition graph induced by π. If Termination-
Test(G) returns “Terminating”, then π terminates.

Proof. By Proposition 2, if SIEVE(G) returns “Terminat-
ing”, π terminates for B. By soundness of SIEVE, any po-
tential infinite loop resides in G′. If a SCC of G′ is decided
“terminates”, it cannot be executed infinitely often since the
variable v eventually reaches 0 no matter how the other vari-
ables behave. When all SCCs of G′ terminate, there cannot
be any infinite loop in G′, and thus π terminates.

Based on their characterization of QNP solutions, Zeng,
Liang, and Liu (2022) introduced an approach to solve a
QNP by searching for a solution in the induced AND/OR

Algorithm 1: Termination-Test
Input: G, the qstate transition graph induced by a

policy π for a BQNP problem B
Output: “Terminating” or “Unknown”

1 if SIEVE(G) = “Terminating” then
2 return “Terminating”;
3 G′ ← G with some edges removed by SIEVE(G);
4 Compute the SCCs of G′;
5 foreach g ∈ SCCs do
6 if g is a simple loop then
7 choose a variable v s.t. the number of actions

in g that decrease v is more than the number
of actions in g that increase v;

8 if such v exists then
9 g terminates;

10 if all g ∈ SCCs terminate then
11 return “Terminating”;
12 return “Unknown”;

graph, and implemented a QNP solver DSET. By Prop. 3, a
sound but incomplete BQNP solver can be implemented by
replacing the termination test in DSET with Alg. 1.

Srivastava (2023) proposed a policy termination test al-
gorithm for the QNP variant with deterministic semantics,
where numeric variables are only increased or decreased by
a fixed discrete quantity. The algorithm leverages classic re-
sults from graph theory involving directed elimination trees
and their quotient graphs to compute all “progress” variables
that change in only one direction (either increasing or de-
creasing), which are then used to identify all the edges that
can be removed. In contrast, our termination test algorithm
is specifically tailored for BQNP, is more intuitive and easier
to implement.

Our Abstraction Method
In this section, we show how to abstract a given planning
instance P of a baggable domain into a BQNP problem BP .
The basic idea is to introduce a counter for each bag of in-
distinguishable tuples of objects.

Baggable Domains and Bags
If two objects can co-occur as the arguments of the same
predicate or action, then they can be distinguished by the
predicate or action. Thus we first define single types. A bag-
gable type has to be a single type.
Definition 12. For a domain D = ⟨T, P,A⟩, a type t ∈ T is
single if there is no predicate p ∈ P or action schema a ∈ A
having more than one type t argument.
Definition 13. Let t be a single type, and M a set of predi-
cates involving t, called a predicate group for t. The mutex
group formula of M for t, denoted by ϕtM , is defined as:
∀x.Σp∈M#z⃗.p(x, z⃗) = 1, where x is of type t.

Intuitively, ϕtM means: for any object e of type t, there is
only one predicate p ∈M and only one u⃗ s.t. p(e, u⃗) holds.



Definition 14. Let D be a STRIPS domain. We use D for
its BAT. Let Π be a set consisting of a set Πt of predicate
groups for each single type t. Let TS denote the set of all
single types. We use ϕΠ to denote

∧
t∈TS ,M∈Πt ϕtM , i.e.,

the conjunction of all mutex group formulas. We say Π is a
mutex invariant if Dap ∪ Dss ∪ Duna |=

∀s∀a.ϕΠ[s] ∧ Poss(a, s) ⊃ ϕΠ[do(a, s)].

So Π is a mutex invariant means: if ϕΠ holds in a state,
it continues to hold in any successor state resulting from an
executable action. If Π is a mutex invariant, we call each
predicate group in Πt a mutex group for t.

Note that in this paper, we ensure that a mutex group is a
state constraint, i.e., holds in any reachable state, by ensuring
1) it holds in the initial states, as will be seen later in the
paper; 2) the set of all mutex groups forms a state invariant,
as required in the above definition.

Definition 15. LetD be a STRIPS domain. A baggable type
is a single type t s.t. predicates involving t are partitioned
into mutex groups. We say that D is a baggable domain if
there are baggable types.

So if a predicate p involves two baggable types t1 and t2,
pmust belong to both a mutex group of t1 and a mutex group
of t2. Thus true atoms of p induce a 1-1 correspondence be-
tween objects of t1 and t2. For Example 1, true atoms of
carry(b, g) induce a bijection between balls and grippers.
This means each gripper can only carry one ball.

For Example 1, types ball and gripper are baggable, but
type room is not. The mutex groups of ball are: M1 =
{at(b, r), carry(b, g)} and M2 = {white(b), black(b)}. The
mutex groups of gripper are: M3 = {free(g), carry(b, g)}
and M4 = {HE(g),LE(g)}.

In the rest of the section, we assume a baggable domain
D = ⟨T, P,A⟩with mutex invariant Π and we fix a planning
instance P = ⟨D,O, I,G⟩ s.t. I satisfies ϕΠ.

We now introduce some notation used throughout this
paper. We use TB to denote the set of baggable types.
Since a predicate does not contain different arguments of
the same baggable type, we use p(T, y⃗) to represent a pred-
icate, where T ⊆ TB denotes that there is an argument t for
each type t ∈ T , and y⃗ stands for arguments of non-baggable
types. We also use p(x⃗, y⃗) where x⃗ stands for all arguments
of baggable types, and p(x, z⃗) where x represents an argu-
ment of baggable types, and z⃗ denotes the remaining argu-
ments. We use similar notation for action schemas. Finally,
we use e and o for constants of baggable and non-baggable
types, respectively, and u for constants of either type.

Next, we formalize the concept of bags. Informally, a bag
is a set of indistinguishable objects. Essentially, two objects
are indistinguishable in a state if they satisfy the same goals
and predicates. Thus our formalization of a bag consists of
two parts: a subtype of goal-equivalent objects and an ex-
tended AVS (attribute value vector).

Definition 16. Given goal G, we say two objects e1 and
e2 of the same baggable type are goal-equivalent if for all
predicate p and u⃗, p(e1, u⃗) ∈ G iff p(e2, u⃗) ∈ G. We call
each of the equivalence classes of t a subtype of t.

For Example 1, the subtype of gripper: st1 = {g1, g2}.
For ball: st2 = {b1, b2, b3, b4} and st3 = {b5, b6, b7, b8}.

We now use mutex groups to define attributes of objects.
We first explain the intuitive idea. The basic way to define at-
tributes of objects of a type t is to use each predicate involv-
ing t as an attribute, and true and false as attribute values.
However, this can be improved for baggable types. Note that
for a baggable type t, predicates involving t are partitioned
into mutex groups, and for any object of type t, at any reach-
able state, one and only one predicate from the group holds.
Thus we can use each mutex group as an attribute, and ele-
ments of the group as attribute values.

Definition 17. Let t be a baggable type. We call anM ∈ Πt

an attribute of objects of type t. Let p(T, y⃗) ∈M where t ∈
T . Let o⃗ be an instantiation of y⃗. We call av(T ) = p(T, o⃗) an
attribute value for M , where av(T ) denotes that T is the set
of variables for av. We use DM to denote the set of attribute
values for M .

For Example 1, DM1 = {at(b, r1), at(b, r2), carry(b, g)}.
Definition 18. Let t ∈ TB ,Πt = {M1, . . . ,Mm} and
avs(T ) = (av1(T1), . . . , avm(Tm)) ∈ ×mi=1DMi

where
T =

⋃m
i Ti. We call avs(T ) an attribute value vector (AVS)

for t. Avst denotes the set of all attribute value vectors for t.

For Example 1, for type ball, Avsb = {at(b, r1) ∧
white(b), at(b, r1)∧black(b), at(b, r2)∧white(b), at(b, r2)∧
black(b), carry(b, g)∧white(b), carry(b, g)∧ black(b)}. For
type gripper, Avsg = {free(g) ∧ HE(g), free(g) ∧
LE(g), carry(b, g) ∧ HE(g), carry(b, g) ∧ LE(g)}.

Our initial idea is to introduce a counter for each AVS.
Then for Example 1, we have the following counters:

• N1 = #b.∃g.carry(b, g) ∧ white(b),
• N2 = #b.∃g.carry(b, g) ∧ black(b),
• N3 = #g.∃b.carry(b, g) ∧ HE(g),
• N4 = #g.∃b.carry(b, g) ∧ LE(g).

Since each gripper only carry one ball a time, there would be
a constraintN1+N2 = N3+N4. However, QNP cannot en-
code such numeric constraints. To resolve this issue, we de-
fine the concept of extended AVSes, and introduce a counter
for each extended AVS. Thus instead, we have the following
4 counters, which are independent from each other:

• N5 = #(b, g).carry(b, g) ∧ white(b) ∧ HE(g),
• N6 = #(b, g).carry(b, g) ∧ white(b) ∧ LE(g),
• N7 = #(b, g).carry(b, g) ∧ black(b) ∧ HE(g),
• N8 = #(b, g).carry(b, g) ∧ black(b) ∧ LE(g).

The intuitive idea for defining extended AVSes is this. In
the above example, true atoms of carry(b, g) induce a 1-1
correspondence between objects of ball and gripper. So we
should join the AVS carry(b, g) ∧ white(b) with one of the
AVSes carry(b, g)∧HE(g) and carry(b, g)∧ LE(g), getting
cavs, and count the pairs (b, g). It might be the case that
a gripper is connected to an object of another type t by a
binary predicate p(g, t). So we have to further join cavswith
an AVS of type t, and count the triples (b, g, t). We continue
this process until no further join is possible.



Definition 19. Let T be a set of baggable types. For each
t ∈ T , let avst(Tt) ∈ Avst. Let cavs =

∧
t∈T avs

t(Tt).
We call cavs a conjunctive AVS. The underlying graph for
cavs is a graph whose set of nodes is T and there is an edge
between t1 and t2 if avst1 ∩ avst2 ̸= ∅. We call cavs con-
nected if its underlying graph is connected. We call cavs an
extended AVS if it is a maximal connected conjunctive AVS.
We denote the set of extended AVSes with Eavs. For a type
t, we use Eavst to denote the set of extended AVSes that
extends an AVS for t.

For Example 1, let avsb = carry(b, g)∧white(b), avsg =
carry(b, g) ∧ HE(g). There is eavs(b, g) = carry(b, g) ∧
white(b) ∧ HE(g) and it is maximal.

We can now finalize our formalization of a bag.
For T ⊆ TB , we use sts(T ) to represent a subtype as-

signment, which maps each t ∈ T to a subtype of t. We also
use sts(x⃗) for sts(T ), meaning xi is of subtype sti.

A bag is a set of tuples of objects of T satisfying both a
subtype assignment sts(T ) and an extended AVS eavs(T ).

Abstraction Method
First, a numeric variable counts the size of a bag.

Definition 20 (Numeric variables).
VN = {(sts(T ), eavs(T )) | sts(T ) is a subtype assign-
ment, eavs(T ) ∈ Eavs}.
The refinement mapping is defined as follows:
m(sts(T ), eavs(T )) = #x⃗.

∧
i sti(xi) ∧ eavs(x⃗).

Recall #x⃗.φ means the number of tuples x⃗ satisfying φ.
For Example 1, here are some numerical variables that

will be used later:N1 = (st3(b), at(b, r1)∧white(b)),N2 =
(st3(b), at(b, r1) ∧ black(b)), N3 = (st3(b), at(b, r2) ∧
white(b)), N4 = (st3(b), at(b, r2) ∧ black(b)), N5 =
(st1(g) ∧ st3(b), carry(b, g) ∧ white(b) ∧ HE(g)), N6 =
(st1(g) ∧ st3(b), carry(b, g) ∧ black(b) ∧ HE(g)), N7 =
(st1(g) ∧ st3(b), carry(b, g) ∧ white(b) ∧ LE(g)), N8 =
(st1(g) ∧ st3(b), carry(b, g) ∧ black(b) ∧ LE(g)), N9 =
(st1(g), free(g)∧HE(g)), N10 = (st1(g), free(g)∧LE(g)).

Definition 21 (Propositional variables).
VB = {p(o⃗) | p ∈ PN , o⃗ ∈ O}, m(p(o⃗)) = p(o⃗),
where PN is the set of predicates s.t. all arguments are of
non-baggable types.

For Example 1, B = at-robby(r1) ∈ VB .
The abstract initial state is simply the quantitative evalua-

tion of the LL initial state.

Definition 22. Abstract initial state Ih:

• Propositional variables: ForB = p(o⃗) ∈ VB , if p(o⃗) ∈ I ,
then B ∈ Ih, otherwise ¬B ∈ Ih;

• Numeric variables: For N = (sts(T ), eavs(T )) ∈ VN ,
if I |= m(N) > 0, then N > 0 ∈ Ih, else N = 0 ∈ Ih.

For Example 1, B = at-robby(r1), N4 > 0 ∈ Ih.
We now define the abstract goal Gh, which is character-

ized by those numeric variables that are equal to 0. This
is because the goal condition is a partial state that cannot
definitively determine which numeric variables are greater
than 0. Thus, we introduce the following two sets: one is the

set of all numeric variables involved in G, and the other is
the set of numeric variables that may be greater than 0 in G.

For a subtype st of baggable type t, we define the
set of numeric variables associated with st as Vst =
{(sts(T ), eavs(T )) | st(t) ∈ sts(T ), eavs(T ) ∈ Eavst}.
Let g = p(e⃗, o⃗) ∈ G for predicate p(T, y⃗), t ∈ T , and
st is a subtype of t containing et, which is the argument
of type t from e⃗. We define a subset of Vst as follows:
V gst = {(sts(T ′), eavs(T ′)) | p(T, o⃗) ∈ eavs(T ′)}.
Definition 23. Abstract goal Gh: Propositional variables:
For B = p(o⃗) ∈ VB , if p(o⃗) ∈ G, then B ∈ Gh; Numeric
variables: For g = p(e⃗, o⃗) ∈ G and N ∈ Vst \ V gst, we have
N = 0 ∈ Gh.

For Example 1, N4 = 0 ∈ Gh.
We now define abstract actions. Let a(T, y⃗) be an LL ac-

tion, and let Ni(Ti), i = 1, . . . , k be numeric variables. We
say that these numeric variables are suitable for a(T, y⃗) if
T1, . . . , Tk form a partition of T .
Definition 24. Let Ni = (stsi(Ti), eavsi(Ti)), i =
1, . . . , k be suitable for a(T, y⃗) ∈ A. Let o⃗ be an in-
stantiation of y⃗. Let ao = a(T, o⃗). If

∧
i eavsi(Ti) |=

pre(ao) − {B ∈ pre(ao)}, there is a HL action, denoted
by α = a(N⃗ , o⃗) s.t.

• pre(α) = {B ∈ pre(ao)} ∪ {Ni > 0 | Ni ∈ N⃗};
• eff(α) consist of: 1. l ∈ eff(ao), where l is a propo-

sitional literal; 2. for any i, if eavsi(Ti) ∧ eff(ao) ∧
ϕΠ is inconsistent, then dec(Ni, 1); 3. for any N ′ =

(sts(T ′), eavs(T ′)) ∈ VN − {N⃗} s.t. sts(T ′) ⊆∧
i stsi(Ti) and

∧
i(eavsi(Ti)− del(ao))∧ add(ao)) |=

eavs(T ′), then inc(N ′, 1).
• m(α) = πT.

∧
i stsi(Ti) ∧ eavsi(Ti) ∧ pre(a0)?; ao.

For Example 1, N1, N9, N10 are suit-
able for pick(b, g, r).There exists a HL action
α = pick(N1, N9, N10, r1), with pre(α) =
{at-robby(r1), N1 > 0, N9 > 0}, and eff(α) =
{dec(N1, 1), dec(N9, 1), inc(N10, 1)}.

Finally, we give a simple example to demonstrate the form
of the solutions to the BQNP problems as abstracted by our
abstraction method. Suppose there are 3 rooms and some
balls, all initially in room S, with some needed to be moved
to room A and others to room B. The only available LL ac-
tion is “push(ball, from, to)”, which moves a ball directly
from one room to another. After abstraction, we obtain a
BQNP problem with 6 numeric variables in the form of
NT
C , representing the number of balls currently in room C

that are intended for room T. A (compact) solution to this
BQNP problem is: [NA

S > 0: push(NA
S , S, A), NB

S > 0:
push(NB

S , S, B)], which is refined to a LL solution, mean-
ing that when there are balls in room S intended for A (resp.
B), we select any such ball and perform “push(ball, S, A)”
(resp. “push(ball, S, B)”. This solution can be used to solve
any LL problem where all balls start in room S and need to
be moved to either room A or B.

Soundness and Completeness
In this section, we define a class of baggable domains called
proper baggable domains, and prove that our abstraction



method is sound and complete for such domains. In par-
ticular, given an instance P of a proper baggable domain,
we define the low-level generalized planning problem GP ,
and show that BP derived from our abstraction method is a
sound and complete abstraction of GP .

We begin with some propositions which serve to prove the
correctness of the abstract goal (Proposition 7).

For t ∈ TB , we defineGM t = {sts(T \{t})∧eavs(T ) |
eavs(T ) ∈ Eavst}.
Proposition 4. GM t forms a general mutex group, i.e.,
ϕΠ |= ∀x.Σψ∈GMt#z⃗.ψ(x, z⃗) = 1.

Proof. First, it is easy to see that the set of subtypes of a type
t forms a mutex group. Now we define two notions concern-
ing mutex groups. Let M and M ′ be two mutex groups, ei-
ther for the same type or for different types. Let p ∈M , and
M ′′ be the set resulting from replacing p ∈ M by elements
from p ∧M ′ = {p ∧ q | q ∈ M ′}. It is easy to see that M ′′

is a general mutex group, and we say that M ′′ is obtained
from M by refining p with M ′. Let M∗ be obtained from
M by refining each of its elements with M ′. So M∗ is also
a general mutex group, we call it the joining of M and M ′.

SinceAvst is obtained by joining mutex groups for t, it is
a general mutex group. Similarly, the set of subtype assign-
ments for T \ {t}, denoted STS(T \ {t}), is also a general
mutex group. Further, Eavst is obtained from Avst by re-
fining some of its elements, thus it is also a general mutex
group. Finally, by joining STS(T \{t}) withEavst, we get
GM t, which is a general mutex group.

We use |st| to denote the size of st. By proposition
4, for any object e of st, there is one and only one
(sts(T ), eavs(T )) ∈ Vst and only one u⃗ s.t. sts(e, u⃗) ∧
eavs(e, u⃗) holds. Thus we have

Proposition 5. ϕΠ |= |st| = ΣN∈Vstm(N).

Proof. By Proposition 4, for each object e of st, there is one
and only one N = (sts(T ), eavs(T )) ∈ Vst and only one u⃗
s.t. sts(e, u⃗) ∧ eavs(e, u⃗) holds.

For Example 1, Σ8
i=1Ni = |st3| = 4.

Proposition 6. ϕΠ ∪G |= |st| = Σ{m(N) | N ∈ V gst}.

Proof. For any e′ ∈ st, let g′ be the ground atom de-
rived from p(e⃗, o⃗) by replacing et with e′, since e′ is goal-
equivalent to et, we know g′ ∈ G. Now givenG, we know g′

holds. So we can replace Vst with V gst in Proposition 5.

Proposition 7. Let sh ∼m sl and sl |= ϕΠ. Then sh |= Gh
iff sl |= G.

Proof. (⇒) We prove that for all p(u⃗) ∈ G, p(u⃗) ∈ sl. If
p(u⃗) ∈ VB , then it is in Gh. Since sh |= Gh, p(u⃗) ∈ sh.
Since sh ∼m sl, p(u⃗) ∈ sl. Now let g = p(u⃗) ̸∈ VB . Then,
for all N ∈ Vst \ V gst, we have N = 0 in Gh. By sh |= Gh,
N = 0 in sh. Since sh ∼m sl, sl |= m(N) = 0. Since
sl |= ϕΠ, by Propositions 5 and 6, there is N ′ ∈ V gst s.t.
sl |= m(N ′) > 0. So p(u⃗) ∈ sl.

(⇐) We prove that for all B ∈ Gh, B ∈ sh and for all
N = 0 ∈ Gh, N = 0 ∈ sh. For any B ∈ Gh, let m(B) =

p(o⃗), then p(o⃗) ∈ G. Since sl |= G, p(o⃗) ∈ sl. Since sh ∼m
sl, B ∈ sh. For any N = 0 in Gh, there is g = p(e⃗, o⃗) ∈ G
and N ∈ Vst \ V gst. Since sl |= ϕΠ ∪ G, by Propositions 5
and 6, sl |= m(N) = 0. By sh ∼m sl, N = 0 ∈ sh.

We now define a property of action schemas which en-
sures that doing any LL ground action changes the value of
any numeric variable by at most one. This will enable us to
prove the correctness of abstract actions.

To see the intuitive idea behind our definition, consider
the extended AVS carry(b, g) ∧ white(b) ∧ HE(g). Suppose
an action a(b, g) changes the truth values of both white(b)
and HE(g). Then we require that it should also change the
truth value of carry(b, g), which connects b and g. So the
action is atomic in the sense that it cannot be decomposed
into an action a1(b) and an action a2(g).

Definition 25. We say that an action schema a is atomic, if
for any eavs(T ) ∈ Eavs, if a changes the value of p1(T1)
and p2(T2) from eavs(T ) where T1 ∩ T2 = ∅, then it also
changes the value of some p3(T3) from eavs(T ) where T1∩
T3 ̸= ∅ and T2 ∩ T3 ̸= ∅.

We now give simple sufficient conditions for atomic ac-
tions. If an action just involves one baggable type, then it is
atomic. Now consider an action a(t1, t2) involving only two
baggable types. It is atomic if for any p1(t1) and p2(t2) s.t.
a changes the values of both predicates, a also changes the
value of p(t1, t2), for any p(t1, t2) s.t. it belongs to the same
mutex group as neither p1(t1) nor p2(t2).

Definition 26. We say that a baggable domain is proper if
each action schema is atomic.

For Example 1, the only two actions with two baggable
types pick(b, g, r) and drop(b, g, r) change the truth value
of carry(b, g), which is the only predicate with two bag-
gable types. Thus the domain is proper.

Proposition 8. Let N = (sts(x⃗), eavs(x⃗)) ∈ VN . For any
atomic action a, if a changes the value of eavs(e⃗), then for
any e⃗ ′ ̸= e⃗, a does not change the value of eavs(e⃗ ′).

Proof. Suppose an action a changes the truth values of both
eavs(e⃗) and eavs(e⃗ ′). We first show that there must exist
p1(T1) and p2(T2) from eavs(T ) s.t. T1 ∩ T2 ̸= ∅ and a
changes the truth values of p1(e⃗T1) and p2(e⃗ ′

T2
), where e⃗T1

denotes the restriction of e⃗ to T1. Since a changes the val-
ues of both eavs(e⃗) and eavs(e⃗ ′), there must exist p1(T1)
and p2(T2) from eavs(T ) s.t. a changes the truth values of
p1(e⃗T1

) and p2(e⃗ ′
T2
). If T1 ∩ T2 ̸= ∅, we are done. So sup-

pose T1 ∩ T2 = ∅. By Definition 25, there is p3(T3) from
eavs(T ) s.t. T1 ∩ T3 ̸= ∅, T2 ∩ T3 ̸= ∅, and a changes
the value of p3(e⃗T4 , e⃗

′
T5
), where T4 = T1 ∩ T3, and T5 =

T3 − T1. We show that e⃗T4
= e⃗ ′

T4
, thus a changes the value

of p3(e⃗ ′
T4
, e⃗ ′

T5
), i.e., p3(e⃗ ′

T3
). Assume that e⃗T4

̸= e⃗ ′
T4

.
Then a does not change the value of p3(e⃗ ′

T4
, e⃗ ′

T5
). If it stays

false, then eavs(e⃗ ′) stays false, a contradiction. If it stays
true, since p3(e⃗T4

, e⃗ ′
T5
) changes, by mutex group, we have

e⃗T4
= e⃗ ′

T4
, also a contradiction.

Now let t ∈ T1 ∩ T2, we must have e⃗t = e⃗ ′
t, since a

can only have one argument of type t. There are two cases.



1) p1(e⃗T1) and p2(e⃗
′
T2
) are both false before (after resp.)

the change, then eavs(e⃗) and eavs(e⃗ ′) are both true after
(before resp.) the change. Since Eavst is a general mutex
group, from e⃗t = e⃗ ′

t, we get e⃗ = e⃗ ′. 2) p1(e⃗T1) changes
from true to false, but p2(e⃗ ′

T2
) changes from false to true

(the symmetric case is similar). Then we must have eavs(e⃗ ′)
changes from false to true. Assume e⃗T1

̸= e⃗ ′
T1

. Then we
must have p1(e⃗ ′

T1
) is false before the action since p1 belongs

to a mutex group, and remains false since e⃗ ′
T1

is not con-
tained a’s arguments. This contradicts that eavs(e⃗ ′) changes
from false to true. So e⃗T1 = e⃗ ′

T1
. p1(e⃗ ′

T1
) also changes from

true to false. Thus eavs(e⃗ ′) remains false after the action,
also a contradiction. So the second case is impossible.

Here pre(m(α)) means the precondition for executing the
Golog program m(α).

Proposition 9. For any α, pre(m(α))⇔ m(pre(α)).

Proof. Let α = a(N⃗ , o⃗). Then pre(α) =
∧
iNi > 0 ∧∧

{B ∈ pre(a(T, o⃗))}. pre(m(α)) = ∃x⃗.
∧
i stsi(x⃗i) ∧

eavs(x⃗i) ∧ pre(a(T, o⃗)). Note that
∧
i eavs(x⃗i) |=

pre(a(T, o⃗)) − {B ∈ pre(a(T, o⃗))}. Thus both pre(m(α))
and m(pre(α)) are equivalent to ∃x⃗.

∧
i stsi(x⃗i) ∧

eavs(x⃗i) ∧
∧
{B ∈ pre(a(T, o⃗))}.

Proposition 10. Let sh ∼m sl. For any abstract action α =

a(N⃗ , o⃗) where a is atomic, if sh leads to s′h by execution of
α, then sl leads to s′l by execution of m(α) s.t. s′h ∼m s′l,
and vice versa.

Proof. First, sh |= pre(α) iff sl |= m(pre(α)), by Proposi-
tion 9, iff sl |= pre(m(α)). Let e⃗ be any instantiation of x⃗
satisfying

∧
i stsi(x⃗i)∧ eavsi(x⃗i). Let s′h result from sh by

execution of α, s′l result from sl by execution of a(e⃗, o⃗). We
show that s′h ∼m s′l. For Boolean variables, α has the same
effect on them as a(e⃗, o⃗) does. For numeric variables, there
are three cases. a) α has effect dec(Ni, 1). Then eavsi(e⃗i)
changes from truth to false. By Proposition 8, m(Ni) is de-
creased by one from sl to s′l. b) α has effect inc(N, 1).
Then eavs(e⃗) changes from false to truth. By Proposition 8,
m(Ni) is increased by one from sl to s′l. c) α has no effect
onN . Then a(e⃗, o⃗) does not affect the value of any predicate
in eavs(x⃗). So v(m(N)) does not change from sl to s′l.

Given an instance P of a proper baggable domain, we
have defined its BQNP abstraction BP . We now define the
LL g-planning problem GP , and show that BP is a sound
and complete abstraction of GP . Intuitively, any instance of
GP shares the same BQNP abstraction with P .

Definition 27. Given an instance P = ⟨D,O, I,G⟩, where
D = ⟨T, P,A⟩, of a proper baggable domain. Let BP with
initial state Ih and goalGh be its BQNP abstraction. The LL
g-planning problem for P is a tuple GP = ⟨D′, On, Il, Gl⟩,
where D′ = ⟨T ′, P,A⟩ and T ′ is the set of subtypes; On is
the set of non-baggable objects from P; Il = ϕΠ ∧ m(Ih)
and Gl = m(Gh).

Since ϕΠ is a part of Il, the mutex groups hold in I .

Theorem 4. Let P be an instance of a proper baggable do-
main. Then BP is a sound abstraction of GP .

Proof. We prove that for each model Ml of GP , i.e., an in-
stance of GP , there is a model Mh of BP , i.e., an instance
of BP , s.t. there is an m−bisimulation R between Mh and
Ml. First, for the initial situation SMl

0 of Ml, we define
the initial situation SMh

0 of Mh so that SMh
0 ∼m SMl

0 .
Since SMl

0 |= m(Ih), SMh
0 |= Ih. We use the induction

method to specify the m-bisimulation relation R. First, let
⟨SMh

0 , SMl
0 ⟩ ∈ R. As the induction step, if ⟨sl, sh⟩ ∈ R

and for any HL action α, if sh leads to s′h via execution
of α, and sl leads to s′l via execution of m(α), then let
⟨s′h, s′l⟩ ∈ R. By Proposition 10, we have s′h ∼m s′l. Fi-
nally, if ⟨sh, sl⟩ ∈ R, then sh ∼m sl. By Proposition 7,
sh |= Gh iff sl |= m(Gh).

Theorem 5. Let P be an instance of a proper baggable do-
main. Then BP is a complete abstraction of GP .

Proof. We prove that for each model Mh of BP , there is a
model Ml of GP s.t. there is a m-bisimulation between Mh

and Ml. We only show how to construct the LL initial situa-
tion. The rest of the proof is similar to the soundness proof.
Let SMh

0 be the initial situation of Mh. For each proposi-
tional variable B = p(o⃗), let SMl

0 |= p(o⃗) iff SMh
0 |= B.

We now describe the objects for each subtype. For each sub-
type st of type t, let Vst = {N1, . . . , Nm}. For each i, let
SMh
0 |= Ni = ci. We let sti, the subsubtype associated

with Ni, consist of ci objects, and we let subtype st be the
union of sti. We now define the set of true atoms. Consider
N = (sts(T ), eavs(T )). We choose t0 ∈ T . Then we have
for each t ∈ T − {t0}, stN (t0) and stN (t) have the same
size, where stN (t0) denotes the subsubtype of st(t0) as-
sociated with N . We define a bijection ft0,t from stN (t0)
to stN (t). Now for each e ∈ stN (t0), we define the tu-
ple β(e) as follows: β(e)(t0) = e, β(e)(t) = ft0,t(e) for
t ∈ T1 − {t0}. Now for each p(T ′) ∈ eavs(T ), for each
e ∈ stN (t0), we let p hold for the projection of β(e) to T ′. If
a ground atom is not defined to be true in the above process,
then it is defined to be false. We now show that the above
definitions for different numeric variables do not interfere
with each other. Let N1 and N2 be two different numeric
variables. If there is a subtype st of type t s.t. N1, N2 ∈ Vst,
then the above definitions deal with different subsubtypes of
st; otherwise, the above definitions deal with different types
or subtypes. Finally, it is each to prove that for each N , if
SMh
0 |= N = c, then SMl

0 |= m(N) = c. Thus we have
SMh
0 ∼m SMl

0 .

Thus, by Theorem 1, a policy π solves BP iff its refine-
ment solves any instance of GP .

Implementation and Experiments
Based on the proposed abstraction method, we implemented
an automated abstraction system ABS with input: the do-
main and problem description in PDDL format of a planning
instance. Helmert (2009) proposed an algorithm for auto-
matically obtaining mutex groups by focusing on effects of



Problem Original Abstract BQNP Solving
Domain |TB | Name |OB |/|ONB | |P↓|/#facts |A↓| ABS time(s) #sts |VN | |VB | |Ops| BQNP time(s)
Gripper-Sim 2 prob1-1 7/2 24/0 44 0.0110 2 4 2 6 0.0200

prob1-2 22/2 84/0 164 0.0170 2 4 2 6 0.0195
prob2-3 25/3 168/0 609 0.0660 4 13 3 24 M

Gripper-HL 2 prob1-1 10/2 40/0 70 0.0330 2 6 2 8 16.1030
prob1-2 22/2 88/0 166 0.0380 2 6 2 8 18.6693
prob2-1 10/2 40/0 70 0.0650 3 10 2 13 M

Gripper-HLWB 2 prob1-1 10/2 56/8 70 0.1140 2 10 2 13 M
prob2-1 10/2 56/8 70 0.1140 3 10 2 13 M

TyreWorld 1 prob1-1 4/0 16/0 12 0.0110 1 4 0 3 0.0030
Ferry 1 prob1-1 5/2 17/0 24 0.0060 1 3 3 6 0.0079

prob2-2 5/6 41/0 96 0.0200 1 7 7 42 M
Logistics 1 prob1-1 4/12 68/4 328 0.0560 1 10 20 60 TO
Transport 1 Avg(20) 6.25/20.70 354.80/48.30 10790.25 1.76 5.05 82.25 42.75 1446.40 TO
Elevators 1 Avg(20) 4.65/15.40 525.35/104.40 59471.40 2.97 4.00 61.15 89.20 2799.60 TO
Floortile 1 Avg(20) 2.40/28.40 3331.30/87.00 17668.00 1.34 1.00 52.80 79.20 311.60 TO
Nomystery 1 Avg(20) 7.50/147.00 4495651.25/11862.40 283280000.15 6.73 4.80 50.20 146.00 3654.50 M
Zenotravel 1 Avg(20) 10.25/18.70 445.40/6.00 203215.25 5.73 6.25 102.45 57.80 6164.10 M

Table 1: Results of abstracting and solving with time and memory limits of 30m and 8GB. “TO” and “M” are used to indicate
timeouts and memory out. |TB | is the number of baggable types. |OB | and |ONB | indicate the number of baggable and non-
baggable objects. |P↓| is the number of ground atoms. #sts is the number of subtypes. |VN | and |VB | are the number of
numerical variables and propositional variables. |A↓| and |Ops| are the number of ground actions and abstract actions. Avg(n)
represents the average results on n problems. “probi-j” with the same i in a domain can be abstracted into the same BQNP
problem, where bigger j means bigger problem.

actions. In this paper, we use their system to generate mutex
groups whose predicates appear in action effects. For those
mutex groups whose predicates do not appear in action ef-
fects, we automatically generate them by examining the ini-
tial state. We implemented a naive BQNP solver BQS using
the idea at the end of Section 3, and use the solver to solve
the BQNP problems output by ABS.

All the experiments were conducted on a Windows ma-
chine with 2.9GHz Intel 10700 CPU and 16GB memory.

We select 9 classical planning domains: Gripper, Tyre-
World, Ferry, Logistics, Transport, Elevators, Floortile, No-
mystery and Zenotravel. For Gripper, we consider 3 ver-
sions, depending on the number of mutex groups. Gripper-
Sim is the simplest version, the mutex group of ball is
{at, carry}, gripper has one {carry, free}. In Gripper-
HL, we add a mutex group {HE,LE} for gripper.
In Gripper-HLWB, we introduce another mutex group
{white, black} for ball, thus this version is same as in Ex-
ample 1. For all 3 versions, there are two baggable types, and
as argued in Section 4.2, the domains are proper. For each
of the rest 8 domains, there is only one baggable type, and
hence the domain is proper. In TyreWorld, the mutex groups
of wheel are {flat, inflated} and {have, fastened}. In
Ferry, the mutex group of car is {at, on}. Logistics is a clas-
sic domain, the mutex group of baggable type package is
{package-at, in-truck, in-airplane}. The others are from the
IPC competitions.

In our implementation of abstraction, we introduce an op-
timization trick to remove redundant variables and actions.
In some domains like Transport, Elevators, there are lots of
ground atoms whose truth value remain unchanged. We re-
fer to them as “facts”. We remove these atoms from the HL
Boolean variables. Also, we remove numeric variables (HL
actions resp.) whose EAVSes (preconditions resp.) conflict
with the truth values of these atoms.

As shown in Table 1, for all problems, ABS can produce

the BQNP abstractions efficiently (even for problems in No-
mystery with 108 ground actions and 106 ground atoms),
and the number of abstract actions and variables is signif-
icantly less than that of the LL ground actions and atoms
(reduced by 50% to 99%).

Our BQNP solver is indispensable for our experimenta-
tion, because some BQNP problems BQS can solve cannot
be solved with a QNP solver such as DSET or FONDASP.
However, BQS suffers from scalability. Solving BQNP with
a large state space is beyond the ability of BQS. Especially
when a policy involves actions with effects on many vari-
ables, BQS quickly reaches the memory limit, as observed
in examples like Gripper-Sim, Gripper-HL, and Ferry.

Conclusions
In this paper, we identify a class of STRIPS domains called
proper baggable domains, and propose an automatic method
to derive a BQNP abstraction from a planning instance of
a proper baggable domain. Based on Cui et al.’s work, we
prove the BQNP abstraction is sound and complete for a g-
planning problem whose instances share the same BQNP ab-
straction with the given instance. Finally, we implemented
an automatic abstraction system and a basic BQNP solver,
and our experiments on a number of planning domains show
promising results. We emphasize that our work distinguishes
from the work of on reformulation (Riddle et al. 2016;
Fuentetaja and de la Rosa 2016) in that they aim at improv-
ing the efficiency of solving a planning instance while we
target at solving a g-planning problem induced from a plan-
ning instance. Also, our work distinguishes from the work
of (Illanes and McIlraith 2019) in that they exploit existing
work to do the abstraction while we propose a novel abstrac-
tion method with both soundness and completeness results.
Our research raises the need to improve the scalability of
QNP solvers and investigate into QNP solvers for compact
policies, and these are our future exploration topics.
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