From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

A Compiler for Deterministic, Decomposable Negation Normal Form

Adnan Darwiche
Computer Science Department
University of California
Los Angeles, CA 90095
darwiche@cs.ucla.edu

Abstract

We present a compiler for converting CNF formulas into de-
terministic, decomposable negation normal form (d-DNNF).
This is a logical form that has been identified recently and
shown to support a number of operations in polynomial time,
including clausal entailment; model counting, minimization
and enumeration; and probabilistic equivalence testing. d-
DNNFs are also known to be a superset of, and more succinct
than, OBDDs. The polytime logical operations supported by
d-DNNFs are a subset of those supported by OBDDs, yet are
sufficient for model-based diagnosis and planning applica-
tions. We present experimental results on compiling a variety
of CNF formulas, some generated randomly and others cor-
responding to digital circuits. A number of the formulas we
were able to compile efficiently could not be similarly han-
dled by some state-of-the-art model counters, nor by some
state-of-the-art OBDD compilers.

Introduction

A tractable logical form known aBeterministic, Decom-
posable Negation Normal Fornd-DNNF, has been pro-
posed recently (Darwiche 2001c), which permits some gen-
erally intractable logical queries to be computed in time
polynomial in the form size (Darwiche 2001c; Darwiche &
Marquis 2001). These queries include clausal entailment;
counting, minimizing, and enumerating models; and test-
ing equivalence probabilistically (Darwiche & Huang 2002).
Most notably, d-DNNF has been shown to be more succinct
than OBDDs (Bryant 1986), which are now quite popular in
supporting various Al applications, including diagnosis and
planning. Moreover, although OBDDs are more tractable
than d-DNNFs (support more polytime queries), the extra
tractability does not appear to be relevant to some of these
applications.

An algorithm has been presented in (Darwiche 2001a;
2001c) for compiling Conjunctive Normal Form (CNF) into
d-DNNF. The algorithm is structure-based in two senses.
First, its complexity is dictated by the connectivity of given
CNF formula, with the complexity increasing exponentially
with increased connectivity. Second, it is insensitive to non-
structural properties of the given CNF: two formulas with
the same connectivity are equally difficult to compile by the

Copyright © 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

given algorithm. However, most CNF formulas of interest—
including random formulas and those that arise in diagno-
sis, formal verification and planning domains—tend to have
very high connectivity and are therefore outside the scope of
this structure-based algorithm. Morever, some of these for-
mulas can be efficiently compiled into OBDDs using state-
of-the-art compilers such asubD. Given that d-DNNF is
more succinct than OBDDs (in fact, d-DNNF is a strict su-
perset of OBDD), such formulas should be efficiently com-
pilable into d-DNNF too.

We present in this paper a CNF to d-DNNF com-
piler which is structure-based, yet is sensitive to the non-
structural properties of a CNF formulas. The compiler is
based on the one presented in (Darwiche 2001a) but in-
corporates a combination of additional techniques, some
are novel, and others are well known in the satisfiability
and OBDD literatures. Using the presented compiler, we
show that we can successfully compile a wide range of CNF
formulas, most of which have very high connectivity and,
hence, are inaccessible to purely structure-based methods.
Moreover, most of these formulas could not be compiled
into OBDDs using a state-of-the-art OBDD compiler. The
significance of the presented compiler is two fold. First, it
represents the first CNF to d-DNNF compiler that practi-
cally matches the expectations set by theoretical results on
the comparative succinctness between d-DNNFs and OB-
DDs. Second, it allows us to answer queries about certain
CNF formulas that could not be answered before, including
certain probabilistic queries about digital circuits.

Tractable forms: d-DNNF and OBDD

A negation normal form (NNF) is a rooted directed acyclic
graph in which each leaf node is labeled with a litetake

or false, and each internal node is labeled with a conjunction
A or disjunctionv. Figure 1 depicts an example. For any
noden in an NNF graph,Vars(n) denotes all propositional
variables that appear in the subgraph rooted, &ndA(n)
denotes the formula representedrbgind its descendants. A
number of properties can be stated on NNF graphs:

e Decomposabilityholds whenVars(n;) N Vars(n;) = 0
for any two childrenn; andn; of an and-node:. The
NNF in Figure 1 is decomposable.

e Determinismholds whenA(n;) A A(n;) is logically in-

AAAI-02 627

or
and/ \and
of or o/\r

=

and and and and and and and and

-A B =B A C -D D -C

Figure 1: A negation normal form graph.

consistent for any two childrem; andn; of an or-nodex.
The NNF in Figure 1 is deterministic.

Decisionholds when the root node of the NNF graph is
a decision node. Alecision nodés a node Iabelgrd with

and and

true, false, or is an or-node having the foriX. a -
whereX is a variable andg are decision nodes. Here,
X is called thedecision variableof the node. The NNF

in Figure 1 does not satisfy the decision property since its
root is not a decision node.

Orderingis defined only for NNFs that satisfy the decision
property. Ordering holds when decision variables appear
in the same order along any path from the root to any leaf.

Satisfiability and clausal entailment can be decided in lin-
ear time for decomposable negation normal form (DNNF)
(Darwiche 2001a). Moreover, its models can be enumerated
in output polynomial time, and any subset of its variables
can be forgotten (existentially quantified) in linear time. De-
terministic, decomposable negation normal form (d-DNNF)
is even more tractable as we can count its models given
any variable instantiation in polytime (Darwiche 2001c;
Darwiche & Marquis 2001). Decision implies determin-
ism. The subset of NNF that satisfies decomposability
and decision (hence, determinism) corresponds to Free Bi-
nary Decision Diagrams (FBDDs) (Gergov & Meinel 1994).
The subset of NNF that satisfies decomposability, deci-
sion (hence, determinism) and ordering corresponds to Or-
dered Binary Decision Diagrams (OBDDs) (Bryant 1986;
Darwiche & Marquis 2001). In OBDD notation, however,

S
d and

the NNF fragmentX « ﬂ% is drawn more compactly as

2

a B, Hence, each non-leaf OBDD node generates three
NNF nodes and six NNF edges.

Immediate from the above definitions, we have the fol-
lowing strict subset inclusions OBDB FBDD < d-DNNF
C DNNF. Moreover, we have OBDD FBDD > d-DNNF

628 AAAI-02

CNF2DDNNF(n, €2)
1. if nis a leaf node, returoLAUSE2DDNNF(Clauses(n) | 2)
2. «—CNF2KEY(Clauses(n) | Q)
3. if CACHE, (1)) # NIL, returnCACHE,, ()
4. T« CASE_ANALYSIS(n, §2)
5. CACHE, (¢)<T"
6. returnl’

CASE.ANALYSIS(n, §2)
7.3X—Sep(n,N)
8. if X = 0, returnCONJOIN(CNF2DDNNF(n;,),CNF2DDNNF (1, 2))
9. X« choose a variable ik
10. WHILE _CASE(X ,true,Il):
11. fII =0, a™—false
12. elsen™ +CONJOIN(IT, CASE_ANALYSIS(n, I U))
13. WHILE _CASE(X ,false,II):
14. ifII =0, o~ «false
15. elsex™ «—CONJOIN(II, CASE_ANALYSIS(n, IT U Q))
16. returnpisJoiN(at,a7)

Figure 2: Compiling a CNF into d-DNNF.

> DNNF, where> stands for “less succinct thah.”OB-
DDs are more tractable than DNNF, d-DNNF and FBDD.
General entailment among OBDDs can be decided in poly-
time. Hence, the equivalence of two OBDDs can be decided
in polytime. The equivalence of two DNNFs cannot be de-
cided in polytime (unless P=NP). The equivalence question
is still open for d-DNNF and FBDD, although both support
polynomial probabilistic equivalence tests (Blum, Chandra,
& Wegman 1980; Darwiche & Huang 2002). For a com-
prehensive analysis of these forms, the reader is referred to
(Darwiche & Marquis 2001).

We close this section by noting that the polytime op-
erations supported by DNNF are sufficient to implement
model-based diagnosers whose complexity is linear in the
size of compiled device, assuming the device is expressed as
a DNNF (Darwiche 2001a). Moreover, for planning and for-
mal verification applications, there is no need for a polytime
test for general entailment as long as the goal (or property to
be verified) can be expressed as a CNF (clausal entailment
can be used here). Finally, polytime equivalence testing is
not needed here as it is only used to check for fixed points:
whether the models of some theafyf (reachable states at
time t) equal the models of some theoty ™! (reachable
states at time+ 1), whereA! = At+! (the states reachable
att are included in those reachable atl). The two theories
are equivalent in this case iff they have the same number of
models. Hence, counting models is sufficient to detect fixed
points in these applications.

Compiling CNF into d-DNNF

Figure 2 depicts the pseudocode of an algorithm for compil-
ing a CNF into a d-DNNF. The presented algorithm uses a

'That DNNF is strictly more succinct than d-DNNF assumes
the non-collapse of the polynomial heirarchy (Darwiche & Marquis
2001).

Jac2o] Jew 20| @

(2L 3L)

SRS I () I)

Figure 3: A decomposition tree for a CNF. Each leaf node is
labeled with a clause (a set of literals). Each internal node is
labeled with a separator (S) and a context (C).

data structure, known asdecomposition tree (dtreejhich
is a full binary tree with its leaves corresponding to clauses
in the given CNF (Darwiche 2001a). Figure 3 shows an ex-

Separators. We may have to perform case analy-
sis on more than one variable before we can decompose
Clauses(n;) and Clauses(n,); that is, before we eliminate
every common variable between them. In general though,
we do not need to perform case analysis on every variable
common betweellauses(n;) and Clauses(n,). By setting
a variableX to some value, some clauses undgor n,. may
become subsumed, hence, eliminating some more variables
that are common between them. This is why the separator
for noden is defined with respect to a set of literdbson
Line 7. That is,Sep(n,?) is defined as the variables com-
mon betweerClauses(n;) | @ and Clauses(n..) | 2, where
Clauses(.) | Q is the result otonditioningthe clauses . on
the literalsQ2. That is, Clauses(.) | Q is the set of clauses
which results from eliminating the variables{infrom . and
replacing them by either true or false according to their signs
in Q.2 Figure 3 depicts the separator for each node the given
dtree, assuming = 0.

The choice of which variable to set next from the sepa-
rator Sep(n, §2) on Line 9 has an effect on the overall time
to compile into d-DNNF and also on the size of resulting d-
DNNF. In our current implementation, we choose the vari-
able that appears in the largest number of binary clauses.
Finally, the base case in the recursive procedure of Figure 2
is when we reach a leaf nodein the dtree (Line 1), which
means thaClauses(n) contains a single clause. In this case,

ample dtree, where each leaf node is labeled with a clause cLause2pDNNF(.) is a constant time procedure which con-

and each internal node is labeled with two sets of vari-
ables to be explained later. The algorithm works as fol-
lows. Each node: in the dtree corresponds to the set of
clauses,Clauses(n), appearing in the subtree rootedrat
Let n; andn,. denote the left and right children of node
n. If Clauses(n;) and Clauses(n,.) do not share variables,
then we can converClauses(n;) into a d-DNNF «; and
Clauses(n,.) into a d-DNNFq,. and simply returry; A «,

as the d-DNNF ofClauses(n). In general Clauses(n;) and
Clauses(n,.) do share variables, calledsaparatorfor dtree
node node: . In that case, we choose one of these variables,
call it X, and then perform a case analysis on it.

Case analysis.To perform case analysis on a variable
is to consider two cases, one under whi€ls set to true and
another under which it is set to false. Under each cAsis,
eliminated from the given set of clauses.aif is the result
of converting Clauses(n) into d-DNNF underX = true,
and if o~ is the result of converting’lauses(n) into d-
DNNF underX = false, then(X Aat)V (=X Aa")isa
d-DNNF equivalent tadClauses(n).? Case analysis is imple-
mented using the macMHILE _CASE(X ,v,IT) on Lines 10
& 13, which replaces every occurrence of the variakley
v, performs unit resolution, and then collects all derived lit-
erals (includingX = v) in II. Note here thail not only
contains the literalX = v as suggested above, but also all
other literals derived by unit resolution (this leads to better
results in general). If unit resolution derives a contradiction,
II is then the empty set.

*This is known as the Shannon expansiorCifuses(n) in the
literature on Boolean logic. It was initially proposed by Boole,
however (Boole 1848).

verts a clause into a d-DNNF.

Unique nodes. Another technique we employ comes
from the literature on OBDDs and is aimed at avoiding the
construction of redundant NNF nodes. Two nodes are redun-
dant if they share the same label (disjunction or conjunction)
and have the same children. To avoid redundancy, we cache
every constructed NNF node, indexed by its children and la-
bel. Before we construct a new NNF node, we first check
the cache and construct the node only if no equivalent node
is found in the cache. This technique is implicit in the im-
plementation otoNJoINandDISJOIN.?

Caching. Probably the most important technique we em-
ploy comes from the literature on dynamic programming.
Specifically, each time we compil€lauses(n) | Q into a
d-DNNF «, we store (the root of) d-DNNE in a cache as-
sociated with dtree node see Line 5. When the algorithm
tries to compileClauses(n) | € again, the cache associ-
ated with node node is first checked (Lines 2&3). The
cache keywe use to store the d-DNN& is a string gener-
ated from Clauses(n) | ©: each non-subsumed clause in
Clauses(n) | © has two characters, one capturing its iden-
tity and the other capturing its literals. The generation of
such a key is expensive, but the savings introduced by this

3This process is also known asstrictionin the literature on
Boolean logic.

4A clausely, ..., 1, can be converted into a d-DNNF as fol-
lows: /7 i N[;.

5congoiNandbpisJoiNwill construct nodes with multiple chil-
dren when possible. For example, when conjoining two conjunc-
tions, coNJOINwiIll generate one node labeled withand have it
point to the children of nodes being conjoined.

AAAI-02 629

caching scheme are critical. This caching scheme is a ma- eral. Therefore, if one does not have time to search across
jor improvement on the one proposed in (Darwiche 2001a; different balance factors, a balance factor of 3/1 is our rec-
2001c). In the cited work, eontextfor noden, Context(n), ommended setting.

is defined as the set of variables that appear in the sepa- We close this section by noting that to compile a CNF
rator of some ancestor of and also in the subtree rooted into a d-DNNF, we have to first construct a dtree with root

at n; see Figure 3. It is then suggested that d-DNNF for A and then calbtNF2DDNNF(n, 0).

of Clauses(n) | © be cached under a key, which corre-

sponds to the subset of literdlspertaining to the variables Experimental results

in Context(n). Thatis, if Clauses(n) = {Av-B,CV D},

then Clauses(n) | {A} could be cached under key, and
Clauses(n) | {=B} could be cached under keyB, hence,
generating two different subproblems. Using our caching
approach, botiClauses(n) | {A} and Clauses(n) | {—~B}

will generate the same key, and will be treated as instances of
the same subproblem, since both are equivalefi€te D}.

Constructing dtrees. Another major factor that affects Random CNF formulas
the behavior of our algorithm is the choice of a dtree. At
first, one may think that we need to choose a dtree where
the sizes of separators are minimized. As it turns out, how-

ever, this is only one important factor which needs to be bal- i
X L : . lems; see Table 1.Random 3CNF formulas (uf50-uf200)
anced by minimizing the size of contexts as defined above. could be easily compiled with less than a minute on aver-

;thosnrgﬂgr t.?ﬁesgfna;ﬁlé?rtsﬁeth;ﬁ\gzrsC?ﬁ: ﬁgﬁlgrs?ﬁevieagﬁgeage for the largest ones (200 vars). Compiling such CNFs
. , H i _nf _ 8 i

hit rate. Unfortunately, these two objectives are conflicting: Ir?(;? fge?s?tl)jles fnsggntgéftgé? g;g:ﬁpgu\?vz CC:qup'rI‘%rt v(\:/gﬁq_
?g;egfh(\;vr'tvr\}:m;gjﬁgaf?éti?d;?a&aavtzrl?égg Ecr)r:]itzixi %ned pile the first instance of uf100 within four hours. Moreover,
size of clustgrs The. cluster ofpnodeis the unFi)on of its the first instance in uf50 takes about 20 minutes to compile.

: . More than 2 million nodes are constructed in the process
separator and context. The size of the maximum cluster -1 _ . : '
is known as thaltree width(Darwiche 2001a). In our cur- with more than 500 thousand nodes present in memory at

rent implementation, we construct dtrees using the method some point (the final OBDD has only 82 nodes though). We

. . ; . I have to point out here that we used CUDD in a straight-
descrlbed in (Darwiche & Hopkln's'2001), Wh'.Ch IS based_ ON forward manner. That is, we simply constructed an OBDD
g’ﬁl”:rz\{e hypergtradph tdec%mposmop%lS%ecmcall)g tk|1e 9VEN tor each clause and then conjoined these clauses accord-

is converted into a hypergraggh, where each clause . . ; -~
. , : : ing to their order in the CNF. There are more sophisticated
:2 é\'ﬁ:rzpi;etsﬁ:;erdearse?eeﬁggogeln Cére%a%hnvg”evbgﬁ approaches for converting CNFs into OBDDs that have
connects all hypernopdes (clauseslb?h whigchX éppears geen rebportze(;:ioiecel\rl]tly (Alogl, Marlkov, gl‘ Sakallah_|2(l)JC|)1;
. L ecember . No experimental results are available at
Once'the hypergrap@ is constru'c.ted', we partition it into this stage howe)ver on c%mpiling random CNFs into OB-
.tWOAp.'GCESGl andG,, he(rjl_ce, patrgnonlggtheTigt 3f clauses png using these approaches. We will report on these ap-
in A into two corresponding set&; andA,.. This decom- : '
" proaches with respect to other datasets later on though.
position corresponds to the root of our dtree, and the pro- Wi P :
. : . ‘e also report on the compilation of graph coloring prob-
cAess czn be repeege_d rec_ursllvely un'|t_||l the set %f glauses "Mlems in Tablepl (flat100 and f?atZOO) Ag isF():Iear fromgtﬁe ta-
are decomposed Into singletons. Hypergraph decompo- ble, these CNFs can be easily com .iled into small d-DNNFs
sition algorithms try to attain two objectives: minimize the : M P)
number of hyperedges that cross betwearand G, and that have a large number of models. Each one of these mod

balance the sizes @, andG,. These two objectives lead els is_a graph coloring solution. Not only_can we count these
to generating dtrees with small widths as has been shown in SOIUtions, but we can also answer a variety of queries about
(Darwiche & Hopkins 2001). The construction of a dtree ac- fgggﬁssglel:t'tﬁgsc'gl(:'rng]?rng(rjn;'to E)’garlr:;pli'??r.ug?r\ivatmva?znso-
cording to the above method is quite fast and predictable, so noden. is assianed colot: . then nco.dez must be assianed
we don't include the time for converting a CNF into a dtree color cl,) Andgso on? Allt'hou h com2ilin a flatzoogCNF

in the experimental results to follow. We have to mention K 121 . : 9 piing fth X
two facts though about the method described above. First, ta es mmgtez on a\éera_ge, lanswenng an)r/]o the p_rle\(/jlodus
the hypergraph partitioning algorithm we use is randomized, gl&e&'gsogfnonge E)gaerw% r?érg%(})lltcr:?vv(\a/ﬁi‘::nhgt;kisclz gf;ﬁan a_
hence, it is hard to generate the same dtree again for a given y '

CNF. This also means that there is no guarantee that one spp./\ww.intellektik.informatik.tu-darmstadt.de/SATLIB/
would obtain the same d-DNNF for a given CNF, unlessthe 7sets uf50 and uf100 contain 1000 instances each. We only use
same dtree is used across different runs. Second, the hyper+he first 100 instances.

graph partitioning algorithm requires a balance factor, which 8http://visi.colorado.edu/ fabio/CUDD/

is used to enforce the balance constraint. We have found that “we used the sift-converge dynamic ordering heuristic in our
a balance factor of 3/1 seems to generate good results in gen-experiments.

We will now apply the presentedNF2DDNNF compiler to

a number of CNFs. The experiment were run on a Windows
platform, with a 1GHz processor. Our implementation is
in LISP! We expect a C implementation to be an order of
magnitude faster. The compiler is available through a web
interface—please contact the author for details.

Our first set of CNFs comes from SATLf&nd includes sat-
isfiable, random 3CNF formulas in the crossover region, in
addition to formulas corresponding to graph coloring prob-

630 AAAI-02

Name Vars/Clause d-DNNF d-DNNF | Model Time
nodes edges | count (sec)
uf50 50/218 111 258.4 362.2 1
ufl00 100/430 1333.3 4765.3 | 1590706.1 2
ufl50 150/645 3799.8 15018.5| 68403010 8
uf200 200/860 4761.8 19273.3| 1567696500 37
flatl00 300/1117 | 1347.2 8565.2 | 8936035 4
flat200 600/2237 | 4794.9 46951.3| 2.2202334e+13 636

Table 1: CNF benchmarks from SATLIB. Each set contains a 100 instances. We report the average over all instances.

700000

-+ Nodes#
— Edges#
—Time (ms)

600000

500000

400000 -

300000

200000 -

100000

Figure 4: Difficulty of compilation according to clauses/vars
ratio. Each point is the average over 100 instances.

second in this case. Hence, the compilation time is amor-
tized over all queries which makes the time-to-compile a
worthy investment in this case. We note here that the first
instance of flat100 could not be compiled into an OBDD us-
ing cubD within a cutoff time of 1 hour. One can count the
models of flat100 efficiently however using tReELSAT'®
model counter, but we report in the following section on
other CNFs which could not be handled efficiently using
RELSAT.

We also experimented with planning CNFs from SATLIB.
We could compile blocks-world CNFs anomaly, medium,
huge, and large.a within a few minutes each. But we could
not compile large.b, nor the logistics CNFs within a few
hours.

We close this section by noting that random 3CNF for-
mulas in the crossover region, those with clauses/vars ratio
of about 4.3, are easier to compile than formulas with lower

ratios. The same has been observed for counting models,

where the greatest difficulty is reported for ratios around 1.2
by (Birnbaum & Lozinskii 1999) and around 1.5 by (Ba-

yardo & Pehoushek 2000). Figure 4 plots information about
compilations of random 3CNFs with0 variables each, for
clauses/vars ratio ranging fromto 3.5 at increments ofl.

As is clear from this plot, the peak for the number of nodes,
number of edges, and time is around a ratid 6f

Boolean Circuits

We now consider CNFs which correspond to digital circuits.
Suppose we have a circuit with inputsoutputsO and let

W stand for all wires in the circuit that are neither inputs
nor outputs. We will distinguish between three types of rep-
resentations for the circuit:

Type | representationA theory A over variabled, O, W
where the models ofA correspond to instantiations of
1,0,W that are compatible with circuit behavior. A CNF
corresponding to Type | representation can be easily con-
structed and in a modular way by generating a set of clauses
for each gate in the circult.

Type |l representation: A theory A over input/output
variablesI, O, where the models ofA correspond to in-
put/output vectors compatible with circuit behavior.
A is a Type | representation, thefiV A is a Type Il
representatiof?

Type Ill representation for circuit output A theory over
inputs I, where the models correspond to input vectors that
generate a 1 at output If A is a Type |l representation,
thendo.A A ois a Type Il representation for output

Clearly, Type | is more expressive than Type II, which
is more expressive than Type lll. The reason we draw this
distinction is to clarify that in the formal verification litera-
ture, one usually constructs Type Il representations for cir-
cuits since this is all one needs to check the equivalence of
two circuits. In Al applications, however, such as diagnosis,
one is mostly interested in Type | representations, which are
much harder to obtain.

We compute Type Il representations by simply replacing
Lines 12 & 15 inCNF2DDNNF by

If

at—coNJOIN(IT', CASE_ANALYSIS(n, T U)),

HType | representations are call@ircuit Consistency Func-

tionsin (Aloul, Markov, & Sakallah 2001; December 2001).
12Recall: JwA, wherew is a single variable, is defined as' v

A~ ,whereA™ (A7) is the result of replacing with true (false)

in A. 3W A is the result of quantifying over variables ', one

Ohttp:/ivww.almaden.ibm.com/cs/people/bayardo/vinci/index.htrrt a time (Darwiche & Marquis 2001).

AAAI-02 631

and
a~ «COoNJOIN(IT', CASE_ANALYSIS(n, IT U Q2)),

respectively, wherell’ is obtained fromII by remov-

ing all literals corresponding to variables W. We

also have to modify the boundary condition handled by
CLAUSE2DDNNF, SO thatCLAUSE2DDNNF(.) returnstrue

if the clause . contains a literal pertainingiio, and behaves

as usual otherwise. Given the above changes—which imple-
ment the proposal given in (Darwiche 2001a) for existential
quantification—eNF2DDNNF(n, () is then guaranteed to re-
turn IW A in d-DNNF, wheren is the root of a dtree for
CNFA.13

To compute efficient Type Il representations, one needs
to use multi-rooted NNFs, where each root corresponds to
the compilation of one circuit output. This is how it is done
in the formal verification literature, where multi-rooted OB-
DDs are known ashared OBDDs.Our compiler does not
handle multi-rooted d-DNNFs yet, so we do not report on
Type lll representations.

Tables 2 and 3 contain results on the first five circuits in
the ISCAS85 benchmark circuitd.We were able to obtain
Type | and Type Il representations for all these circuits ex-
pressed as d-DNNFs. The most difficult was ¢1908, which
took around 1.5 hrs, followed by ¢880 which took around
30 minutes. We are not aware of any other compilations of
these circuits of Types | and I, although the formal veri-
fication literature contains successful compilations of Type
[1l, represented as multi-rooted OBDDs. We could not com-
pile c499, ¢880, c1355, nor ¢1908 into Type | OBDDs us-
ing cubD, nor could we count their models USIRELSAT,
within cutoff times of 1hr, 1hr, 1hr and 3hrs, respectively
(we actually triedcupD on c499 for more than a day). For
c432, we tried several OBDD ordering heuristics. The best
OBDD we could obtain for this circuit had 15811 nodes.

We note here that although d-DNNF does not support
a deterministic test of equivalence, one can easily test the
equivalence of ad-DNNBR, and a CNH" = v A ... A Y,
which corresponds to a Type | representation of a circuit. By
construction, the number of models ris 2*, wherek is
the number of primary inputs for the circuit. Therefore,
andI are equivalent iff (1) the number of models fawis 2%
and (2)A = TI'. The first condition can be checked in time
linear in the size ofA since d-DNNF supports model count-
ing in linear time. The second condition can be checked
by verifying thatA = ~; for eachi, a test which can also
be performed in time linear in the size 4f since d-DNNF
supports a linear test for clausal entailment. We actually use
the above technique for checking the correctness of our d-
DNNF compilations.

Table 4 contains further results from ISCAS89These
are sequential circuits, which have been converted into com-

131n general, this only guarantees that the result is in DNNF
(Darwiche 2001a). For CNFs corresponding to digital circuits,
however, determinism is also guaranteed due to the following prop-
erty: for every instantiation of I, O, there is a unique instantia-
tion 8 of W such thatA A a = (.

M http:/iwww.cbl.ncsu.edu/www/CBDocs/iscas85.html

5 http:/ivww.cbl.ncsu.edu/www/CBDocs/iscas89.html

632 AAAI-02

Name Vars/Clause d-DNNF d-DNNF Clique | Time
nodes T edges size | (sec)
c432 196/514 2899 19779 28 6
c499 243/714 691803 | 2919960 23 448
c880 443/1112 3975728 7949684 24 1893
c1355 587/1610 338959| 3295293 23 809
c1908 913/2378 6183489 12363322 45 5712

Table 2: Type | compilations of ISCASS85 circuits.

Name |/Ovars| d-DNNF d-DNNF | Time
nodes edges | (sec)
c432 36/7 952 3993 1
c499 41/32 68243 214712 | 127
€880 60/26 718856 2456827 1774
c1355 41/32 | 65017 201576 | 483
c1908 33/25 | 326166 1490315 4653

Table 3: Type Il compilations of ISCASSS circuits.

binational circuits by cutting feedback loops into flip-flops,
treating a flip-flop’s input as a circuit output and its output
as a circuit input. Most of these circuits are easy to com-
pile and have relatively small d-DNNFs. Type | OBDD
representations for some ISCAS89 circuits are reported in
(Aloul, Markov, & Sakallah 2001; December 2001), which
is probably the most sophisticated approach for convert-
ing CNFs into OBDDs. In addition to proposing a new
method for ordering OBDD variables based on the connec-
tivity of given CNF, a proposal is made for ordering the
clauses during the OBDD construction process. (Aloul,
Markov, & Sakallah 2001; December 2001) report on the
maximum number of OBDD nodes during the construc-
tion process, not on the size of final OBDDs constructed.
Yet, their experiments appear to confirm the theoretical re-
sults reported in (Darwiche & Marquis 2001) on the rela-
tive succinctness of d-DNNF and OBDD representations.
For example, circuits s832, s953, s1196 and s1238 were
among the more difficult ones in these experiments, lead-
ing to constructingl15 x 103, 1.8 x 10°, 2 x 105, and

2 x 10% nodes, respectively—s1238 is the largest circuit they
report on. These numbers are orders of magnitude larger
than what we report in Table 4. We note here that the
total number of nodes constructed by our d-DNNF com-
piler is rarely more than twice the number of nodes in the
final d-DNNF!7 We finally note that no experimental re-
sults are provided in (Aloul, Markov, & Sakallah 2001;

160ne has to admit though that it is hard to tell exactly how much
of this difference is due to relative succinctness of OBDD vs d-
DNNF, and how much of it is due to the effectiveness of different
compilation techniques, since none of the compilers discussed are
guaranteed to generate optimal OBDDs or d-DNNFs.

This is in contrast to OBDD compilers, where the number of
intermediate OBDD nodes can be much larger than the size of final
OBDD returned. We believe this is due to the top-down construc-
tion method used by our compiler, as opposed to the bottom-up
methods traditionally used by OBDD compilers.

Name Vars/Clausd d-DNNF d-DNNF | Clique Time by noting that the algorithm reported in (Darwiche 2001a;
nodes edges | size (sec) 2001c) also has a time complexity which is exponential in
s298 136/363 830 4657 12 1 the clique size. Hence, most of the CNFs we considered in
s344 184/429 962 4973 9 1 this paper are outside the scope of the mentioned algorithm.
s349 185/434 1017 5374 10 1
s382 182/464 | 1034 5081 17 1 Relationship to Davis-Putnam
:igg igéﬁgg iggi 225’0 ié i One cannot but observe the similarity between our proposed
s444 205/533 1091 5872 16 1 algorithm and the Davis-Putnam (DP) algorithm for propo-
s499 175/491 1090 5565 20 2 sitional satisfiability (Davis, Logemann, & Loveland 1962),
s510 236/635 967 5755 38 2 and its recent extensions for counting propositional models:
s526 217/638 2621 19605 | 22 1 the CDP algorithm in (Birnbaum & Lozinskii 1999) and the
s526n 218/639 2611 20115 | 22 1 DDP algorithm in (Bayardo & Pehoushek 2000).
s635 320/762 1360 4845 9 1 The DP algorithm solves propositional satisfiability by
s641 433/918 | 7062 84596 | 21 1 performing case analysis until a solution is found or an in-
s713 447/984 | 7128 90001 | 21 10 consistency is established. When performing case analy-
s820 312/1046 | 2774 21365 | 29 2 sis on variableX, the second value foX is considered
s832 31071056 | 2757 21224 | 28 2 only if the first value does not lead to a solution. The
s938 512/1233 | 2207 12342 14 2
s953 440/1138 | 11542 110266 | 64 14 CDP algorithm in (Birnbaum & Lozinskii 1999) observed
s967 439/1157 | 20645 443233 | 60 117 that by always considering both values, we can extend the
s991 603/1337 | 2382 13107 | 8 2 DP algorithm to count models sinddodelCount(A) =
s1196 561/1538 | 12554 261402 | 51 60 ModelCount(A*) + ModelCount(A~), where AT and
s1238 540/1549 | 14512 288143 | 53 58 A~ are the result of settind(to true and to false, re-
s1423 748/1821 | 112701 1132322 24 162 spectively, inA. The DDP algorithm in (Bayardo & Pe-
s1488 667/2040 | 6338 62175 | 49 1 houshek 2000) incorporated yet another ideaAltan be
s1494 661/2040 | 6827 64888 | 51 12 decomposed into two disconnected subsetandA2, then
s1512 866/2044 | 12560 140384 | 21 27 ModelCount(A) = ModelCount(A') ModelCount(A?).
s3330 1961/4605 | 358093 8889410 43 5853 Hence. DDP will appl lvsi til the CNF is dis-
$3384 1911/4440 | 44487 392223 | 17 45 , DOF will apply case analysis untii the LN IS diS
connected into pieces, in which case each piece is attempted
o o independently.
Table 4: Type | compilations of ISCASS89 circuits. The CDP algorithm can in fact be easily adapted to com-

pile a CNF into a d-DNNF, by simply constructing the NNF
fragmentX A cpP(AT) VX AcDP(A™) each time a case
analysis is performed on variahl. Here,cpp(.) is the re-

December 2001) for Type | OBDD representations of IS- sult of compiling . into d-DNNF using the same algorithm

CAS85 circuits, which are much harder to compile than IS- recursively. This extension of CDP will generate a strict

CASSQ.C"CWS_' -) o subset of d-DNNF: the one which satisfies the decision and
One implication of our ability to compile these circuits is decomposability properties (hence, an FBDD) and that also
that we can now perform a variety of reasoning tasks about has a tree structure (FBDDs have a graph structure in gen-
these circuits in time linear in the size of given d-DNNF. era|). FBDDs are known to be less succinct than d-DNNFs,
Some example queries: Given a distribution over the circuit eyen in their graph form (Darwiche & Marquis 2001). The
inputs, what is the probability that Wire 45 is high? How tree-structured form is even more restrictive.
may circuit inputs will generate a high on the first circuit The DDP algorithm can also be easily adapted to com-
output and a low on the fifth output? Is it true that whenever pjle a CNF into a d-DNNF, by constructing the NNF frag-
Wires 33 and 87 are high, then Wire 19 must be low? How ment X A ppr(A*+) V =X A DDP(A™) each time a case
may input vectors will generate a particular output vector? analysis is performed o, and by constructing the frag-
Each one of these queries can be answered by a single traverment ppp(A!) A DpP(A2) each time a decomposition is
sal of the d-DNNF circuit representation (Darwiche 2001b; performed as given above. This extension of DDP will ac-
2001a; 2001c). tually generate d-DNNFs which are not FBDDs, yet are still
We also report in Tables 2—4 on the best clique sizes ob- tree-structured which is a major limitation. The important
tained for these circuits when converting their structures into point to stress here is that any CNF which can be processed
jointrees (Jensen, Lauritzen, & Olesen 1990). This is needed successfully using the DDP algorithm, can also be compiled
for reasoning about these circuits probabilistically using successfully into a d-DNNF.
state-of-the-art algorithms for Bayesian networks. These The algorithm we present can be viewed as a further gen-
algorithms have exponential complexity in the clique size. eralization of the discussabp extension in the sense that it
Hence, most of these circuits are outside the scope of such generates graph NNFs as opposed to tree NNFs. The graph
algorithms. We are not aware of any algorithm for prob- structure is due to two features ©kF2DDNNF: the caching
abilistic reasoning which can handle these circuits, except and unique-node schemes. Each time a node is looked up
the one we report on in (Darwiche 2001b) which is based from a cache, its number of parents will potentially increase
on these d-DNNF compilations. We close this section by one. Moreover, th&ONJOIN and DISJOIN operations

AAAI-02 633

will often return a pointer to an existing NNF node instead
of constructing a new one, again, increasing the number of
parents per nod€. Another major difference with the above
proposed extension afDp is the use of dtrees to guide the
decomposition process as they restrict the set of variables
considered for case analysis at any given time. The use of
dtrees can then be viewed as a variable splitting heuristic
which is geared towards decomposition as opposed to solu-
tion finding.

Conclusion

We presented a compiler for converting CNF formulas
into deterministic, decomposable negation normal form (d-
DNNF). This is a logical form that has been identified re-
cently and shown to support a number of operations in poly-
nomial time, including clausal entailment; model count-
ing, minimization and enumeration; and probabilistic equiv-
alence testing. d-DNNFs are also known to be a super-
set of, and more succinct than, OBDDs. The logical op-
erations supported by d-DNNFs are a subset of those sup-
ported by OBDDs, yet are sufficient for model-based diag-
nosis and planning applications. We presented experimen-
tal results on compiling a variety of CNF formulas, some
generated randomly and others corresponding to digital cir-
cuits. A number of the formulas we were able to compile
efficiently could not be similarly handled by some state-of-
the-art model counters, nor by some state-of-the-art OBDD
compilers. Moreover, our ability to successfully compile
some of these CNFs allowed us to answer some queries for
the very first time.

Acknowledgments

The author would like to thank Fadi Aloul, Roberto Ba-
yardo, Rolf Haenni and Pierre Marquis for helpful com-
ments and suggestions regarding earlier drafts of this paper.
This work has been partially supported by NSF grant 11S-
9988543 and MURI grant NO0O014-00-1-0617.

References

Aloul, F. A.; Markov, I. L.; and Sakallah, K. A. 2001.
Faster SAT and smaller BDDs via common function struc-
ture. Ininternational Conference on Computer Aided De-
sign (ICCAD) 443-448.

Aloul, F. A.; Markov, I. L.; and Sakallah, K. A. December,
2001. Faster SAT and smaller BDDs via common function
structure. Technical Report CSE-TR-445-01, Computer
Science and Engineering Division, University of Michigan.

Bayardo, R., and Pehoushek, J. 2000. Counting models
using connected components.AAAI, 157-162.

Birnbaum, E., and Lozinskii, E. 1999. The good old Davis-
Putnam procedure helps counting modétsurnal of Arti-
ficial Intelligence Research0:457-477.

18(Bayardo & Pehoushek 2000) rightfully suggest that “learning
goods,” which corresponds to caching non-zero counts, is essential
for efficient counting of models, but do not pursue the technique
citing technical difficulties.

634 AAAI-02

Blum, M.; Chandra, A. K.; and Wegman, M. N. 1980.
Equivalence of free Boolean graphs can be decided prob-
abilistically in polynomial time. Information Processing
Letters10(2):80-82.

Boole, G. 1848. The calculus of logithe Cambridge and
Dublin Mathematical JournaB:183-198.

Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation.IEEE Transactions on Computers
C-35:677-691.

Darwiche, A., and Hopkins, M. 2001. Using recursive de-
composition to construct elimination orders, jointrees and
dtrees. InTrends in Artificial Intelligence, Lecture notes in
Al, 2143 Springer-Verlag. 180-191.

Darwiche, A., and Huang, J. 2002. Testing equivalence
probabilistically. Technical Report D-123, Computer Sci-
ence Department, UCLA, Los Angeles, Ca 90095.

Darwiche, A., and Marquis, P. 2001. A perspective on
knowledge compilation. IProc. International Joint Con-
ference on Artificial Intelligence (IJCAIL75-182.

Darwiche, A. 2001a. Decomposable negation normal form.
Journal of the ACMA8(4):1-42.

Darwiche, A. 2001b. A logical approach to factoring be-
lief networks. Technical Report D-121, Computer Science
Department, UCLA, Los Angeles, Ca 90095. To appear in
KR-02.

Darwiche, A. 2001c. On the tractability of counting theory
models and its application to belief revision and truth main-
tenance. Journal of Applied Non-Classical LogickL(1-
2):11-34.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem provinGACM 5:394—-397.

Gergov, J., and Meinel, C. 1994. Efficient analysis and
manipulation of OBDDs can be extended to FBDIEEE
Transactions on Computeds(10):1197-1209.

Jensen, F. V.; Lauritzen, S.; and Olesen, K. 1990. Bayesian
updating in recursive graphical models by local computa-
tion. Computational Statistics Quarterf§;269-282.

