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Abstract

In this paper we focus on efficient methods for pruning the state space in cost-
optimal planning. The use of heuristics to guide search and prune irrelevant branches
has been widely and successfully explored. However, heuristic computation at ev-
ery node in the search space is expensive, so reducing the number of nodes to be
considered by up-front analysis has great potential. Our contributions are not con-
cerned with heuristic guidance, rather completeness-preserving pruning techniques
that reduce the number of states a planner must explore to find an optimal solution.
We focus on search space reduction and aim to draw the attention of the optimal
planning community towards pruning techniques based on problem analysis that are
orthogonal to the use of heuristics. We present results showing that our techniques
can improve upon state-of-the-art optimal planners, both when using blind search
and importantly in conjunction with modern heuristics, thus improving their poten-
tial.

1 Introduction

In cost-optimal planning, the key challenge in scaling to larger problems is the sheer size
of the search space that must be explored to find a provably optimal solution. In attempt-
ing to address this, a great deal of attention has been paid to the creation of heuristics.
The function of heuristics can be thought of in two ways: guiding the planner towards
exploring states that are most likely to lead to a goal; and pruning (or at least heavily
deferring the exploration of) states that are never going to (cost-efficiently) lead to a goal
state. These two problems are traditionally considered together as part of the heuristic
evaluation step performed on a per-state basis.

As recently as 2008, the optimal track of the International Planning Competition
alerted the community to the fact that heuristic computation can be very expensive: the
Baseline planner, performing blind-search, solved more problems than any of the other
then-state-of-the-art planners in the competition. More recently, new heuristics such as
him.cur (Helmert & Domshlak, 2009) have been produced, that (in combination with A*
search) are capable of outperforming the Baseline planner. The observation remains, how-
ever, that the overhead of heuristic computation at each state is a comparatively expensive
way of finding that a given state is of no interest, so there are gains to be made through
minimizing the number of such states at which heuristic computation must be performed.



Also, theoretical work by Helmert & Roger (2008) demonstrates that for a number of
planning benchmarks, even if a heuristic is near-perfect, an exponential number of nodes
must be visited before a provably optimal solution is found. This further suggests that
heuristics alone is unlikely to be a panacea, and other mechanisms of pruning the search
space must be explored in order to scale to larger problems.

We propose an approach orthogonal, and complementary, to per-state heuristic com-
putation: reducing the branching factor during search using information obtained from
up-front static analyses. Such an approach shifts the burden of analysis away from search-
time heuristic evaluation to preprocessing, thereby cutting per-node overheads to a min-
imum. We present a number of techniques to reduce the number of nodes that must be
considered. The over-arching theme linking all the techniques is the pre-search analysis
of SAS+ encodings, identifying parts of the search space that can be avoided — whilst
preserving optimality. Our focus is on techniques leading to one of three observations: a
given action is irrelevant, can be removed from the planning task; a given action should al-
ways be applied when certain conditions hold; and a given action should never be applied
if certain conditions hold. Our analysis represents direct consideration of the second of
the aforementioned requirements of a heuristic; rather than relying on this being tackled
as a side-effect of reasoning about the first.

We note that our techniques are not limited to cost-optimal planning and can be ap-
plied in satisfycing planning. Our focus here is on the former, as a planner must not only
find a valid solution; but also explore enough of the search space to ensure no better solu-
tion exists. We evaluate the use of our techniques in two contexts. The first is the Baseline
planner, which has no per-node heuristic overheads, and hence can expand many nodes
very efficiently; but tends to exhaust available memory. Second, in contrast to this, we
consider the recent hyy.cyr heuristic: computationally expensive, but giving good heuris-
tic estimates allowing the exploration of fewer nodes. Empirically, its weakness lies in
the per-node heuristic computation overheads, meaning it is more likely to hit a time limit
imposed when solving problems. We explore how our techniques enhance performance
in each of these very different settings.

2 Background

In this paper we consider cost-optimal planning, using the SAS+ representation (Béackstrom
& Nebel, 1995). Defined formally, a cost-optimal planning problem is a tuple II =
(V. 50, Sx, O, cost) where:

e V is a set of variables, where each v € V' can take a value from a corresponding
finite domain D,. A partial assignment is a function f assigning values to a set
V' C V, with f[v] € D(v) for each V'. A state s is a partial assignment where
V' =V, and is said to satisfy a partial assignment f over variables V' iff Vv €
V' slv] = flv].

® 5 is the initial state of the planning problem.

e s, is the goal, a partial assignment to variables G € V. For a state s to be a goal
state, Vv € G s[v] = s,[v].

e O is a set of operators, each (pre, eff). pre is a partial assignment denoting the
operator’s preconditions, and each (v, post € D(v)) € eff denotes an effect v = d.



An operator (pre, eff ) can be applied to a state s iff s satisfies pre, and applying it
yields a state s’ = s, modulo for each effect v = d, s'[v] = d. For convenience,
if an operator has a precondition v = p and an effect (v, q) we refer to it having a
pre_post condition (v, p, q).

e cost is a cost function over operators. We assume each cost(0) € R{. Setting all
costs to 1 is equivalent to seeking a shortest plan.

Defined thus, a solution to a planning problem is a lowest-cost ordered sequence of
operators o € O that when applied to sy produce a state satisfying s,.

We make use of two structures that can be derived from SAS+. First, the causal graph,
C'G (Helmert, 2006). This defines the relationships between the task variables, compris-
ing a vertex C'G(v) for each v € V, and an edge CG(v') — CG(v) iff v is mentioned in
a precondition or effect of an operator with an effect on v. Second, the domain transition
graph for each variable, DT'G/(v), denotes the transitions between its values. It contains
a node for each of D,, and an edge n — n’ (labelled o) for each o € O with an effect
v = n’ and either a precondition v = n, or no precondition on v (in which case the effect
v = n/ can be attained irrespective of the prior value of v).

In this work we consider state-pruning for cost-optimal planning as forwards search.
We build on two contrasting planners using this approach:

e ‘Baseline’ from the optimal track of IPC 2008, i.e. A* blind search — this exhibited
the best performance in the competition;

e A* search using hpy.cur (Helmert & Domshlak, 2009), a recent state-of-the-art
heuristic for optimal planning, and one of the few shown to comprehensively out-
perform blind search.

In satisfycing planning, work on abstraction approaches (Haslum, 2007) and macro-
actions (Botea, Miiller, & Schaeffer, 2005) is related, as they can be seen as finding ways
to transform a problem into one for which a solution is easier to find. However, in optimal
planning, any transformations must preserve optimality, which these do not, and it is this
challenge we focus on.

3 Pruning Irrelevant Actions

One well-established technique for reducing the number of ground actions to consider
when planning is to perform a reachability analysis backwards from the goals: any ac-
tion not reached during this has no effects relevant to the task goals, and can hence be
discarded. The power of this approach, however, is limited in domains with undirected
search spaces. Consider, for instance, a small problem from the Driverlog domain, with
one truck, driver and package (variables ¢, d and p); and a single goal p = g, where g is
some goal location. Regression from the goal will reach all load and unload actions:

¢ unloading the package at its goal location means the package was in the truck;
e thus, it was loaded into the truck at some location;

e thus, it could have been unloaded at that location first.
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Figure 1: Domain Transition Graphs

Even options which are clearly suboptimal are kept: we know no optimal trajectory
will return p to its initial location, nor will it move p out of its goal location once there.
The actions may lie on a path to the goal, but with respect to optimal solutions, they are
irrelevant. We can generalize this notion of pruning irrelevant actions, and prune actions
as follows:

Definition 1 — Simple Irrelevant Action
An action is a simple irrelevant action iff:

1. Tt has a single effect (v, aft) and, optionally, a precondition v = bef;
2. The causal graph contains no edges out of CG(v);

3. Either so[v] = aft, or s,[v] = bef.

This pruning relies on there being no dependencies between the affected variable v €
V' and any other, to ensure that there is no reason to retrace variable transitions within
DTG (v) for the benefit of other variables. Whilst sufficient in Driverlog, restricting the
maximum number of packages each truck can carry at once will break the definition: each
load/unload action also modifies the value of the relevant capacity variable. The intuition
remains unaffected, however: there is no benefit of using capacity in its own right. We
now present an approach to recognizing such cases.

3.1 Resource Analysis

A resource generic type (Long & Fox, 2000) captures the PDDL idiom of propositionally
encoding a resource level using a stack of propositions; for instance, the number of free
cells, or the remaining capacity of a truck. An abstraction of such a structure is presented
in Figure[Ta] and within a SAS+ encoding, resources correspond to variables whose DTGs
are of the form presented, and of which certain conditions hold. Our concern here is
resources that are taken (and, optionally, given back) in the process of changing the values
of other state variables. We define resources as follows:

Definition 2 — Resource
A variable r is a resource iff: it has no value specified in the goal state; no operator
has a precondition on r without also having an effect on r (i.e. observing the value of
the resource but not changing it); and we can map the values from its domain D, to an
ordered sequence of levels [1,.(0)..l.(n)] where:

1. All ‘take’ actions have:



e a pre_post condition (r,l,.(:+1),1.(7)) (i.e. the action decreases r from [, (i +
1) to 1,(i));
e an effect (u, RUV (u,r)), such that RUV (u,r) is a common effect across all

the ‘take’ actions on 7 that have an effect on w. w is then said to be a resource-
using variable, and RUV (u, ) is the value it adopts when using r.

2. Further, for every take action, for each j € [1..n] there is an action that is identical,
modulo its pre_post condition on r being (r,1,.(j),1.(j — 1)).

3. All ‘give’ actions have at least two pre_post conditions:

e one (r,1.(i),l.(i + 1)) (i.e. increasing r);

e another (u, RUV (u,r),e), where e # RUV (u,r), for some resource-using
variable u.

4. Further, for every give action, for each j € [0..(n — 1)] there is an action that is
identical, modulo its pre_post condition on r being (r,[,.(7),.(j + 1)).

5. All actions with an effect on r can be characterized as gives or takes;

6. All actions with an effect on a resource-using variable u also have a precondition on
u; all actions with an effect (u, RUV (u, r)) have another taking r; and all actions
with a pre_post condition (u, RUV (u,r), e) where e # RUV (u,r), also give r.

7. (solr] =l:(n—1)) < (1 ={ueV|soul = RUV(u,r)}|)

The key consequence of this definition is that the level of a resource r is never im-
portant for its own ends. Intuitively, by insisting it cannot be used in a prevail condition
or have a goal value, then the only case in which r can be referred to or changed is by
actions with a take or give pre_post condition acting upon it. Then, from Point[2] we know
that effectively equivalent take actions are available at any point where there is a non-zero
value of 7; and from Point[d] we get a similar guarantee on give actions.

We can now identify irrelevant resources as follows:

Definition 3 — Irrelevant Resource
A variable r is irrelevant iff it is a resource under Definition 2] and:

1. Its domain D, contains n + 1 values;

2. There are at most n resource-using variables that could use 7.

Simply, if the capacity of the resource is at least as great as the number of variables
that could want to use it, then in any state .S where there is a resource-using variable v
and S[v] # RUV (v, r), there is always at least one unit of the resource still available, to
be used by v if needs be.

Finally, we revisit the definition of an irrelevant action as follows:

Definition 4 — Irrelevant Action
An action A is an irrelevant action iff:

1. It has an effect (v, aft) and, optionally, a precondition v = bef;

2. Either sg[v] = aft, or s,[v] = bef.



3. All edges out of C'G(v) are to resource variables, and hence any other effects of A
are pre_post conditions on resources.

4. For each non-irrelevant resource r, if s.[v] = bef then bef # RUV (v,r)); or if
solv] = aft then aft # RUV (v,r).

4 Inferring Inevitable Actions

In this section we focus on identifying conditions under which certain actions can be
applied automatically, without loss of optimality. In doing so, the intermediate states can
be discarded: at any state S in which the conditions for automatically applying an operator
o are satisfied, we can replace .S with the state reached after applying o, and disregard the
other successors. In doing so, we can both avoid their heuristic evaluation, and — when
performing A* search — avoid having to record the intermediate states on the closed list.

4.1 Slip-Streaming Goal Actions

The first type of operators we consider are goal-achieving operators. The intuition behind
our interest in these is as follows. Suppose we have a variable v, with no incoming
edges into C'G(v) in the causal graph, and with goal value s.[v]. If in a state s (where
s[v] # s.[v]) there is an applicable operator o with effect (v, s.[v]), and no other operator
o’ with this effect carries a lower cost, then o must be applied. Simply, such an operator is
side-effect free: it only changes v to its goal value, and from the causal graph we guarantee
a specific value of v is never needed for an operator changing any other variable.

Generalizing this to include the cases where v interacts with resource variables gives
us the following:

Definition 5 — Slip-Stream Action
An operator o is a Slip-Stream action in the state s iff the following conditions hold:

1. ois applicable in s, has an effect (v, s, [v]), and s[v] # s,[v];
2. There does not exist an operator o’ with cost(0") < cost(o0) and an effect (v, s,[v]).
3. Any edge out of CG(v) is to CG(r), where 7 is a resource variable (Definition [2));

4. s.[v] # RUV (v, r) for any non-irrelevant resource r (Definition [3).

The provisi for resource variables still follow the intuition that o must be side-effect
free, but allow operators whose side-effects that can only ever be beneficial: after o,
we guarantee that v is not using any resource (other that ones which are known to be
irrelevant).

4.2 Tunnel Macros

Tunnel Macros were first introduced as part of a Sokoban solver (Junghanns & Schaeffer,
2001). Consider a grid-based maze: here, ‘tunnels’ arise when a column of empty squares
has a column of blocked squares on each side. Upon entering such a tunnel, assuming the
points along it bear no significance, the only optimal choice is to carry on until the end:



walking backwards would introduce a cycle. As such, we can skip consideration of the
immediate states.

To generalize this idea to planning, we identify analogs to tunnels within DTGs. Con-
sider by way of example Figure [Tb] the DTG for a Driverlog driver. In the benchmark
Driverlog problems, there exist major locations (here designated 0,1,2) between which
trucks can drive. Between these, are path locations ((0-1), (1-2),(2-0)), through which
drivers can walk. This results in the DTG shown: a driver can be at a major location, a
path location, or in a truck (T).

Now consider a state s where s[d] = 1 for a driver d. If we apply the operator (walk
d 1 0-1), we reach s’ where s'[d] = (0-1). (d = (0-1)) is a precondition of only two
actions: walking back to d = 1, which would be cyclical; or, walking to d = 0. Hence, the
only reasonable option is the latter, and it becomes apparent that path locations are analogs
to tunnels: once entered, the only reasonable option is to walk on. These principles can
be generalized to SAS+ operators, subject to certain criteria:

Definition 6 — Tunnel Macros
In whichever state s we can and do apply an operator o, with preconditions pre and a
single effect (v, p), a state s’ is reached in which we know the following partial assignment
holds:

smin = {(v,p)} U{(a,b) € pre | a # v}

We can then tunnel if:
1. v = pis not a goal;
2. Any operator with a precondition v = p has an effect on v;
3. For every operator o’ with a pre_post condition (v, p, p’):

e the preconditions of o are satisfied by $,,in;

e any other effect of o’ is on an irrelevant resource (see Definition [3)).
We call the set of all such operators tunnels.

If tunnels, is empty the process terminates. Otherwise, each o’ € tunnels can be applied
to s, yielding a set of states, each s”. The tunnel macro procedure can then be applied
recursively, to each s”, and s’ can then be discarded.

In the Driverlog example, there is only one possible tunnel outcome: o' = (walk d
0-1 0), leading to s[d] = 0. In general, applying o can lead to many options o’. As stated
in the definition, we handle these cases by considering each o’ € tunnels and applying
tunnel-macro detection recursively, finding multiple macros stemming from o. Note that,
because tunnel macro detection relies only on the partial assignment s,,;, guaranteed to
hold after o, we can detect tunnel-macros for each operator prior to search. If there are
tunnel macros for o, and o is applied at some state during search to yield s’, we know s’
satisfies s,,;n, hence the detected tunnel outcomes can be applied (leading to one or more
replacements for s').

5 Symmetry Detection

Fox and Long (Fox & Long, 1999) introduced the notion of functional symmetry in PDDL
planning. Here we contribute a mechanism for identifying symmetry in a SAS+ setting.

7



A
DI SCET

Figure 2: Package Domain Transition Graphs

According to Fox and Long, two entities are be defined to be functionally symmetrical as
follows:

Definition 7 — PDDL Functional Symmetry
Two entities a, b are functionally symmetrical in a state s iff:

1. a and b are of the same type;

2. Neither a nor b is a constant appearing in the precondition or effects of any action
schema;

3. a and b are placed in equivalent propositions in the current state. Taking a proposi-
tion to be defined by a tuple (name, {eg..e,, }), where eg..e,, is a list of parameters:

{<na’m6a {60-'6717@’ en+2'~6m}> S S}
= {(name, {eg..n,b,en12..60}) € s}

4. Similarly, a and b are placed in equivalent goal propositions.

With this definition one can build symmetry groups — groups of pairwise functionally
symmetrical entities — and use these as a basis for pruning effectively equivalent action
choices. For full details on how to do this in a PDDL setting, we refer the reader to (Fox
& Long, 1999).

At the core of Definition [7]is the notion of entities and their function, inferred from
types, facts and actions. In a SAS+ formalism, however, we have none of these, so we
will consider symmetries between variables. A variable’s DTG can be thought of charac-
terizing the behavior of some component of the problem. For example, within a simple
logistics problem, a variable denotes the status of each package: either at a location, or in
anamed truck. Its DTG has a characteristic topology: no transitions between ‘at location’
values; and no transitions between ‘in truck’ values.

Ignoring labels on edges for the moment, the problem of finding structure-preserving
mappings between two DTGs is that of graph isomorphism (McKay, 1981). If an isomor-
phism can be found, a mapping is defined from the vertices in one DTG onto the vertices
in another. Let us consider, by way of example, the two DTGs A and B in Figure ]
(two packages from a logistics problem with a single truckﬂ Each vertex in DT'G(a)
and DT'G(b) corresponds to a value in D, or D, respectively. If we denote their domain
values as [ag..a,,] and [bo..b,], an isomorphism is a structure-preserving mapping mapp 4

INote here that in an automatic translation to SAS+, such as (Helmert, 2009), the numerical domain
values (and hence DTG vertex labels) are arbitrary, and do not correspond to the names of the original
locations.



from B to A, where mapp (i) defines the vertex a; that corresponds to b; € B. As the
vertices correspond to variable values, the mapping can then be used to map values of b
onto values of a, with mapgp 4(7) dictating the value of A symmetric to b = 1.

Whilst graph isomorphism detection can narrow down the potential isomorphisms
from the values B to A, considering topology alone is not sufficient: we must also com-
pare operators relevant to B and/or A. For instance, in Figure mapp,a(l) = 4, but it
appears by could map to any ag..a3: however, these correspond to named locations, and
hence are not interchangeable. For a variable v, the relevant operators we must consider,
ro(v), are:

ro(v) ={o€ O | (v=~Fk) € pre(o)
Vo (v,q) €eff(o) }

With a candidate isomorphism, we can morph the preconditions and effects of each
operator op € ro(B). For a given op, we define mapgp 4(op) as:

e replace each precondition (b = k) with (a = mapp a(k));
e replace each effect (b, ¢) with (a, mapp a(q));

As an extension of this:

mapp a(ro(B)) = {mapp.a(op) | o € ro(B)}

Then, if mapg 4(ro(B)) is equivalent to ro(A), we have shown that mapp 4 defines
an isomorphism from variable B to A. For clarity, equivalence between operators and
operator sets is defined as:

e two operators are considered equivalent if their costs, preconditions and effects are
the same;

e two operator sets a, b are considered equivalent if for each o € a, there is an equiv-
alent operator in o’ € b, and vice-versa.

Finally, for the two to be considered symmetrical in search, either neither has a spec-
ified goal value, or s.[A] = mapp a(s«[B]). Symmetry detection in this way will not
identify as much symmetry as the approach taken by Fox & Long, as entities previously
recognizable as symmetric may be compiled to more than one SAS+ variable. However,
as we shall now discuss, it can be used in search in a manner that introduces minimal
overheads. It is worth noting that graph isomorphism in general is non-trivial; we will
discuss in our evaluation the trade-off between the costs of symmetry detection and plan-
ner performance.

5.1 Symmetry Breaking

Having now identified variables that are symmetrical, we will use the information to re-
duce the number of states visited during search. The technique we use is adding Sym-
metry Breaking constraints (Crawford, Ginsberg, Luks, & Roy, 1996) (SBCs). Where
previously during search there would a range of symmetric choices available (in plan-
ning, operators to apply), the SBCs render only one option available, thus pruning the
effectively equivalent alternatives.

Returning to the concept of a symmetry group, with the discussed notion of symmetry
between SAS+ variables we can define a symmetry group:

9



Definition 8 — SAS+ Variable Symmetry Group
A SAS+ variable symmetry group M consists of an ordered list of at least two variables
[mg..m,,], such that:

e For each variable m; € [my..m,], m; is symmetric with m, through a map,,, -

With the (arbitrary) order imposed on the list of members of M, we can now break
symmetry, by adding constraints to allow only one of each effectively equivalent operator
to remain applicable in each state. First, for each value p € D,,. of each m; € M we
forbid the equivalent values of the variables earlier in the list M/, denoted SBV (m;, p).
These are the basis of the symmetry-breaking constraints relevant to using that value.

SBV (mi,p) = U {(m; # mapy,. ., (map,, .,(p)))}
j€[0..(i—1)] -

Then, with these constraints on variables’ values, we add constraints to operators,
based on their preconditions. The symmetry-breaking constraints on an operator are de-
fined as follows:

Definition 9 — Symmetry-Breaking Constraints
For an operator o, with preconditions pre, the symmetry breaking constraints SBC(0)

are:
SBC(0o) ={ v#w]|Aie D,.(v=1i)e€ pre

A(p=q) € pre. (v#w) € SBV(p,q)}

If a state s contradicts one of the conditions in SBC(0), and o is applicable, then we know
there is at least one other applicable action that: (i) is identical to o, modulo referring to
the equivalent settings of variables earlier in the list of one or more symmetry groups’
members; and (ii) would lead to an effectively equivalent successor state. Thus, for o to
be applied in s, we insist that no such equivalent action is available, i.e.:

V(v # w) € SBC(0).s[v] # w

6 Evaluation

We evaluate our techniques under A* cost-optimal search, with two contrasting heuristics,
to give an insight into the benefits of the techniques in different settings. The first is blind
search, exploring many nodes, but keeping per-node overheads to a minimum. The second
is a powerful but expensive heuristic, hyy.cur. Each test was ran on a 3.4GHz Pentium
IV machine and limited to 30 minutes and 1.5GB of memory. We evaluated on the 20
STRIPS domains taken from the last three International Planning Competitions. For pre-
2008 domains, no action costs were specified, so they were each taken to be 1. Also,
when evaluating hyy.cur, all costs were set to 1, due to the implementation available.
Our first observations, relevant to both sets of results, are the generality of our tech-
niques. Of the 20 domains used, our analyses recognized some feature in 16, and were
able to make use of that feature to improve performance in 12 of these (features identified
in these 12 are shown in the final column of Table[I)). (We also note that in many domains,
more than one feature was identified and gave rise to performance enhancements.) This
demonstrates our techniques have a good level of generality: the domains were a diverse

10



Coverage Time Scores Node Scores Features

Domain baseline|all|-tun|-sym|-pru|| all |-tun|-sym|-pru|| all |-tun|-sym|-pru|| Used
driverlog 7 10 9 | 10 | 7 ]/0.02/0.07/0.02|0.16{|0.02]0.06|0.02 |0.15|| IRGTS
rovers 5 707 | 7 |5 ||0.040.04/0.04| 1 ||0.04/0.04/0.04| 1 || -GT-
Zeno 7 8/ 8| 8 | 80.2]0.2/0.22]0.56//0.19/0.19| 0.2 |0.59|| I-G-S
pathways 4 414 4 | 4 0.23]0.23]0.23| 1 ||0.26/0.26/0.26| 1 G-
satellite 4 54| 5 |5 0.25/0.74/0.24|0.33{/0.32|0.71|0.32|0.47|| -GTS
mystery 15 |14) 14| 15 | 14 ||0.38]0.38| 0.4 |0.81]|0.35|0.35/0.38|0.78|| IRG-S
pipestankage 7 [10/10| 7 |101/0.57/0.58/1.01(0.57|/0.6|0.6| 1 |0.6]| -R-S
transport-strips 11 11] 11| 11 | 11 ||0.58/0.59|0.62]0.95(|0.52|0.52/0.57|0.93|| IRG-S
tpp 5 5/5] 5 | 510.58/0.97/0.61]0.58//0.48| 1 |0.48(0.48|| -R-T-
elevators-strips 9 [10{ 10| 10 | 10 ||0.68|0.68|0.68 |1.01{|0.61]0.61|0.61| 1 || IRG-S
psrsmall 48 149149 | 49 |48 10.9/09] 0.9 |1.01]|0.85]0.85/0.85| 1 || IRG-S
openstacks-strips|| 17 (17| 17| 17 | 17 ||0.91{0.91) 1 [0.91{/0.91|0.91] 1 |0.91|| —-S
sokoban-strips 16 |16/ 16| 16 | 16 |0.99] 1 |0.99]|0.99]|0.96] 1 [0.96/0.96| -R-T-

Table 1: Results for adding features to the Baseline planner. To remove noise, result
problems solved in < 1s are excluded (except in coverage). Node and Time scores are
relative to Baseline. Features key: I: irrelevant actions, R: resource analysis, G: slip-
streaming goal actions, T: tunnel macros, S: symmetry.

collection (all compatible domains from recent competitions), and were not specially se-
lected for features. The ability to match features in over 3/4 of these domains, and to
improve performance in over 1/2 of them, is a pleasing result in itself. We have only
included results in the table for the 12 domains in which performance was improved. For
any of the other 8, the data is uninteresting, other than showing our analyses never added
more than 2% to the runtime of the planner, and coverage was always identical.

Considering what our analyses recognized, we shall highlight a few results. As one
might expect, in domains with payloads (passengers or people), both irrelevant and slip-
stream actions were found (e.g. packages should never be returned to initial locations; can
be automatically unloaded at their goals; and then should never be subsequently loaded).
In PSR and Pathways, an interesting case of slip-streaming actions arose: the domains
were compiled from ADL to STRIPS, and the dummy actions introduced to mark that
disjunctive goals had been achieved could be slip-streamed. Thus, some of the search
overheads incurred in using the compiled domain are eliminated. Tunnel macros were
found in five domains, including Sokoban, where the detection was facilitated through
recognizing irrelevant resources: each square is a resource (available, or occupied with
a stone/the player), but resources for squares only reachable by the player are irrelevant,
and hence can be tunneled through. Symmetry detection found the intuitive symmetries
between payloads with identical goals, as well as items appearing in identical orders in
Openstacks, and the tanks at the storage locations in Pipestankage.

Let us now turn our attention to the performance results, considering first using the
analyses with the baseline planner. Data for this is shown in Table [I] where we consider
using all of our analyses (all), along with a configuration disabling each of the features,
to allow assessment of which features provide benefits in which domains. We take the
approach of subtracting each feature from the whole system, rather than adding each
to the baseline individually, in order to allow for synergy between different techniques.
All time and node scores are relative to the baseline, based only on problems that were
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Coverage Time Scores Node Scores

Domain him.cur|all|-tun|-sym|-pru|| all |-tun|-sym|-pru|| all |-tun|-sym|-pru|Features
driverlog 13 (14| 14 | 14 | 14 ||0.24/0.42]/0.33]0.39{|0.15/0.25[0.24| 0.3 || IRGTS
rovers 7 9/ 9| 9 | 7 0.25/0.25/0.25/1.01//0.21]0.21{0.21| 1 || —GT-
zeno 12 112112 ] 12 | 12 ||0.52/0.51]0.57]0.86(| 0.5 | 0.5 {0.57|0.85|| I-G-S
pathways 5 5/5] 5 |5 [/0.52]0.51]0.52] 1 |/0.48/0.48/0.48| 1 G-
satellite 8 9/ 8| 9 |9 1041097 04 0.42//0.38/0.93/0.380.42|| -GTS
mystery 17 |16/ 16| 17 | 16 ||0.86/0.86| 1 ]0.86/(0.95/0.95] 1 |0.95|| IRG-S

pipestankage 9 10{10| 9 |10 0.28/0.28] 1 (0.28({0.3/03| 1 |0.3| -R-S
transport-strips 12 12/ 12| 12 | 12 ||0.82/0.82/0.86|0.95]| 0.8 | 0.8 |0.84|0.94|| IRG-S

tpp 6 6/6| 6 | 6| 1101101 1 111 ]1]| -RT-
elevators-strips 19 120/ 20 | 19 | 20 ||0.78|0.78/0.79]0.97||0.77|0.77|0.78 |0.98|| IRG-S
psrsmall 48 |48/ 48 | 48 | 48 |[1.79/1.81/1.91]0.99(/0.99|0.99| 1 (0.99|| IRG-S

openstacks-strips 6 7,7 | 6 | 7 (0.59/0.58 1 [0.59//0.58/0.58] 1 |0.58|| —-S
sokoban-strips 20 [20{20| 20 |201/091| 1 10.92]/0.92|0.97] 1 0.97(0.97| -R-T-

Table 2: Results for adding features to A*+hpy.cyr. To remove noise, results on problems
solved in < 1s are excluded (except in coverage). Node and Time scores are relative to
A*+hyvcut. All results used by vcur release 3304; differences between results here and
those in (Helmert & Domshlak, 2009) are due to differences in the machines used, and
non-determinism in the PDDL-to-SAS+ translator (NB we use the same SAS+ encoding
of each problem for each configuration.)

mutually solved. For a configuration c, the time score shown for domain d is:

Z time(c,d,p)/ Z time(baseline, d, p)

p p

where time(c, d, p) is the time taken by c to solve problem p in that domain (we ex-
clude problems that either configuration solves in under a second to remove noise). As
can be seen, coverage is improved in 7 out of the 12 domains; and otherwise unaffected,
other than in the Mystery domain. Here, on one problem (otherwise solvable in 38 sec-
onds), the time spent detecting symmetry exceeds 30 minutes as, unusually, the space of
possible isomorphisms our symmetry analysis must consider is large. This occurred in no
other problem instance we tested on, and could be circumvented by imposing a cut-off on
symmetry detection time.

Sometimes the improvements in coverage are small, due to large increases in difficulty
between problem instances. As such, we also consider time taken to solve problems
and nodes evaluated. With reference to the former, where one or more of our analyses
succeeds, performance is always improved beyond that of the baseline. Nodes evaluated
is closely aligned with time taken, indicating that our approach is reducing solution time
through avoiding the exploration of unnecessary parts of the search space.

When planning with a good heuristic rather than blind search, one might expect that
the scope for enhancing performance is lower; after all, the heuristic is already attempt-
ing to reduce search space exploration by heavily dissuading search from exploring some
branches. However, pleasingly, the results for A* with Ay .cut, shown in Table still in-
dicate performance improvements, confirming that the techniques do indeed remain help-
ful in this setting. Coverage is improved on a number of domains, although not quite so
much as with the baseline; though, again, this is in part due to jumps in difficulty between
larger problems. The time taken to solve mutually solved problems is again reduced, sub-
stantially in many cases. Considering nodes evaluated, as might be expected, the ratio

12



between the number of nodes expanded is more favorable in the case of the baseline plan-
ner, as hpy.cur Will already be avoiding some useless states. However, pleasingly, the
number of nodes evaluated is still reduced (in places, dramatically), showing our analyses
offer something complementary to the capabilities of current heuristics.

7 Conclusions

We have shown that pre-processing techniques based on analysis can improve the perfor-
mance of cost-optimal planners, with minimal overheads. These techniques prune irrele-
vant branches of the search space or allow skipping the evaluation of states that are never
in themselves interesting. Our techniques can be used in isolation or in combination with
any heuristic, complementing its use. The techniques we have introduced by no means
exhaust the possibilities available for SAS+ preprocessing, so the idea in general has even
wider potential. We also note that the competition domains, used in our evaluation, are
mostly written by planning experts who are aware of the workings of planning technol-
ogy and can write models that minimize redundancy in the representation; in the future
as the users of planners become less specialized, the user base is likely to be less aware
of modeling problems in the best possible way for solution, and this sort of analysis will
become even more important.
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