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Abstract

A number of algorithms have been proposed for the Mini-
mum Vertex Cover problem. However, they are far from sat-
isfactory, especially on hard instances. In this paper, we in-
troduce Edge Weighting Local Search (EWLS), a new lo-
cal search algorithm for the Minimum Vertex Cover problem.
EWLS is based on the idea of extending a partial vertex cover
into a vertex cover. A key point of EWLS is to find a vertex set
that provides a tight upper bound on the size of the minimum
vertex cover. To this purpose, EWLS employs an iterated lo-
cal search procedure, using an edge weighting scheme which
updates edge weights when stuck in local optima. Moreover,
some sophisticated search strategies have been taken to im-
prove the quality of local optima. Experimental results on the
broadly used DIMACS benchmark show that EWLS is com-
petitive with the current best heuristic algorithms, and out-
performs them on hard instances. Furthermore, on a suite of
difficult benchmarks, EWLS delivers the best results and sets
a new record on the largest instance.

Introduction

Given an undirected graph G = (V, E), a vertex cover is a
subset S ⊆ V , such that every edge in G has at least one
endpoint in S. The Minimum Vertex Cover (MVC) problem
is to find the minimum sized vertex cover in a graph. MVC is
a prominent combinatorial optimization problem with many
applications (Richter, Helmert, and Gretton 2007), and it is
equivalent to two other well-known optimization problems:
Maximum Independent Set (MIS) problem and Maximum
Clique (MC) problem. For their importance in theory and
applications, these problems have been widely investigated
in AI community (Pullan and Hoos 2006; Richter, Helmert,
and Gretton 2007; Fellows et al. 2009).

MVC is NP-hard and the associated decision problem is
NP-complete (Garey and Johnson 1979); furthermore, it is
NP-hard to approximate MVC within any factor smaller than
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1.3606 (Dinur and Safra 2005), and state-of-the-art approx-
imation algorithms can only achieve an approximation ratio
of 2 − o(1) (Halperin 2002; Karakostas 2005). Therefore,
for large and hard instances one must resort to heuristic ap-
proaches to obtain good solutions within reasonable time.

Heuristic algorithms have been successfully used to solve
combinatorial problems efficiently. For example, on random
problems, heuristic methods for SAT can significantly out-
perform DPLL-based methods. A modern SAT solver can
solve hard instances with over a million variables and sev-
eral million constraints within reasonable time (Gomes et
al. 2008). For graph problems, such as MVC, MIS and MC,
a number of heuristic algorithms have also been proposed.
However, the results are far from satisfactory, especially on
hard instances. For example, there is a hard instance with
4000 vertices, which has a 3900-sized optimal vertex cover
while the size of the best solution found up to now is 39031.

Since large and hard SAT instances can be solved effi-
ciently, one may consider transforming MVC (MIS, MC)
problems into SAT problems and solving them by SAT
solvers. However, the size of those SAT instances trans-
formed from MVC (MIS, MC) problems may become much
larger, and they may lose some structural information. In-
deed, general solvers like SAT solvers do not perform better
than specific solvers on these problems. This calls for more
essential progress on algorithms for hard instances of MVC
(MIS, MC) problems.

In this paper, we propose a new local search algorithm for
MVC, dubbed EWLS (Edge weighting Local Search). Most
state-of-the-art solvers, including the ones we introduce in
the following section, search for a vertex cover (or clique, re-
spectively) during the search procedure. EWLS uses a rather
different framework, which focuses on finding a vertex set
that provides a better upper bound on the size of the mini-
mum vertex cover, and extends it into a vertex cover. EWLS
makes use of edge weights, which are dynamically modified
during the search to level the cost landscape; thus it may dis-
cover good candidate solutions hidden behind local optima.

Constraint weighting is an effective technique for es-
caping local optima, which has been widely used in SAT
and CSP, such as clause weighting in SAT (Morris 1993;

1http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-
benchmarks.htm
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Hutter, Tompkins, and Hoos 2002; Thornton 2005), and
was introduced to MVC by the COVER algorithm (Richter,
Helmert, and Gretton 2007). Although the edge weight-
ing scheme in EWLS falls into constraint weighting tech-
nique, EWLS is quite different from COVER. COVER is an
iterative best improvement algorithm and updates edge
weights in each step, while EWLS is an iterated local
search algorithm and updates edge weights only when stuck
in local optima, as the weighting scheme proposed in SAT
community does (Morris 1993; Hutter, Tompkins, and Hoos
2002). Also, EWLS employs some search strategies to im-
prove the quality of local optima.

We show that EWLS achieves excellent performance on
a large variety of benchmarks, especially on large and hard
instances. On the DIMACS benchmark, EWLS is competi-
tive with state-of-the-art solvers, and outperforms them on
hard instances. Furthermore, on the BHOSLIB benchmark,
which is strongly recommended by researchers in MC com-
munity (Grosso, Locatelli, and Pullan 2008), EWLS delivers
the best results and sets a new record on the largest instance.

The remainder of this paper is organized as follows. In
the next section, we introduce some necessary background
knowledge and related work. Then we describe the EWLS
algorithm. Experimental results demonstrating the perfor-
mance of EWLS are presented next. Finally, we give some
concluding remarks.

Preliminaries and Related Work

A graph G = (V, E) consists of a vertex set V and an
edge set E ⊆ V × V , where each edge is a pair of distinct
vertices. For an edge e(u, v), u and v are the endpoints of
edge e, and endpoint(e) = {u, v}.

MIS problem and MC problem can be reduced to MVC
problem (Richter, Helmert, and Gretton 2007). All these
problems are NP-hard and the associated decision problems
are NP-complete (Garey and Johnson 1979). Moreover, be-
sides the inapproximability of MVC, both MIS and MC
are not approximable within |V |1−ǫ for any ǫ > 0, unless
NP=ZPP (Håstad 1999; 2001). Therefore, for large and hard
instances, we have to resort to heuristic approaches.

There are a number of heuristic approaches to MVC.
An evolutionary approach to MVC and related survey on
this kind of algorithms are presented in (Evans 1998). Ant
colony approaches have been proposed in (Shyu, Yin, and
Lin 2004) and (Gilmour and Dras 2006). The recent Cover
Edge Randomly (COVER) algorithm (Richter, Helmert, and
Gretton 2007) is an iterative best improvement algorithm us-
ing edge weights to guide the local search. Shown by re-
sults on DIMACS benchmark and BHOSLIB benchmark,
COVER is the best one among heuristic methods to MVC.

For MIS, existing heuristic algorithms include: Opti-
mised Crossover Heuristic (OCH) (Aggarwal, Orlin, and
Tai 1997); QSH, which is based on optimization of a
quadratic over a sphere (Busygin, Butenko, and Pardalos
2002); and the evolutionary algorithm Widest Acyclic Ori-
entation (WAO) (Barbosa and Campos 2004). Recently, an
iterated local search algorithm based on improving swaps
is proposed in (Andrade, Resende, and Werneck 2008). Seen

from results on the DIMACS benchmark, it is dominated by
the best MC algorithm except two MANN instances.

Compared with MVC and MIS, more work has been
done on MC problem. Reported in (Pullan and Hoos 2006),
there are five heuristic algorithms achieving state-of-the-
art performance: Reactive Local Search (RLS) (Battiti and
Protasi 2001), QUALEX-MS (Busygin 2002), Deep Adap-
tive Greedy Search (DAGS) (Grosso, Locatelli, and Croce
2004), k-opt algorithm (Katayama, Hamamoto, and Nar-
ihisa 2004) which has evolved into iterated k-opt algo-
rithm (Katayama, Sadamatsu, and Narihisa 2007) and Edge-
AC+LS (Solnon and Fenet 2006). However, Dynamic Local
Search-Maximum Clique (DLS-MC) algorithm proposed in
(Pullan and Hoos 2006) delivers the best results on DIMACS
benchmark. DLS-MC alternates between phases of iterative
improvement and plateau search, using vertex penalties to
guide selecting vertices, and has an instance dependent pa-
rameter called penalty delay. Fortunately, its improved ver-
sion Phased Local Search (PLS) algorithm, has no instance
dependent parameters and is comparable with or more ef-
ficient than DLS-MC for all DIMACS instances (Pullan
2006). Even at the time of writing, PLS is still one of the best
algorithms for the DIMACS benchmark as we know. Pul-
lan extends PLS to MVC and MIS problem (Pullan 2009),
achieving state-of-the-art performance.

Edge Weighting Local Search for MVC

In this section, we present the EWLS algorithm, which is an
iterated local search algorithm based on the idea of extend-
ing a vertex set into a vertex cover and uses edge weighting
technique.

Basic Notation and Definitions

A candidate solution is a subset of vertices C ⊆ V . An
edge e ∈ E is covered by a candidate solution C if at least
one endpoint of e belongs to C. During the search procedure,
EWLS always maintains a current candidate solution C and
a set L of edges not covered by C. The step to a neighbor-
ing candidate solution consists of exchanging two vertices:
a vertex u ∈ C is removed from C, and a vertex v /∈ C is
put into C. Each edge e ∈ E is associated with a positive
integer number w(e) as its weight. We set

cost(G, C) =
∑

e∈E and e is not covered by C

w(e)

which indicates the cost of C, that is, the total weights of
edges not covered by C. The evaluation function is g :
C 7→ cost(G, C), which means EWLS prefers candidate
solutions with lower cost. For a vertex v ∈ V ,

dscore(v) = cost(G, C) − cost(G, C′)

where C′ = C\{v} if v ∈ C, and C′ = C ∪ {v} otherwise.
Obviously, dscore(v) ≤ 0 if v ∈ C, and dscore(v) ≥ 0 if
v /∈ C. For two vertices u, v ∈ V , where u ∈ C and v /∈ C,

score(u, v) = cost(G, C) − cost(G, [C\{u}] ∪ {v})

which indicates the score of exchanging u and v.
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Lemma 1 Given G = (V, E) and C the current candidate
solution, for a pair of vertices u, v ∈ V , where u ∈ C and
v /∈ C, score(u, v) = dscore(u) + dscore(v)+w(e(u, v))
if e(u, v) ∈ E; and score(u, v) = dscore(u) + dscore(v)
otherwise.

The lemma can be proved according to the definition of
dscore and score by some elementary set-theoretic argu-
ments. EWLS calculates the score of an exchanging step
according to Lemma 1.

Partial vertex cover is an important notion in our work, so
we give its definition as follows:

Definition 2 For an undirected graph G = (V, E), a k-sized
vertex set P ⊆ V is a (k, t)-partial vertex cover (0 ≤ t ≤
|E|) if |E| − t edges of G are covered by P .

In the above definition, a (k, 0)-partial vertex cover is a k-
vertex cover. Generally, a (k, t)-partial vertex cover can be
extended into a vertex cover whose size is at most k + t,
since we need at most t vertices to cover t edges. A (k, t)-
partial vertex cover can be denoted by a k-sized vertex set
P ⊆ V and a t-sized set L ⊆ E of edges not covered by P .
According to the definition of partial vertex cover, we have
the following lemma.

Lemma 3 For an undirected graph G = (V, E), a (k, t)-
partial vertex cover of G provides an upper bound that is
equal to k + t on the size of the minimum vertex cover of G.

The EWLS Algorithm

An essential idea of EWLS is to find a partial vertex cover
that can be extended into an optimal vertex cover. We have
a general framework as follows. Whenever finding a partial
vertex cover providing a better upper bound, EWLS extends
it into a vertex cover, and then removes some vertices from
C, and goes on to find a new upper bound. In this way, the
MVC problem is transformed to a series of new problems:
given a graph G(V, E) and an integer number k, to find a
(k, t)-partial vertex cover that minimizes t, i.e., the num-
ber of uncovered edges. EWLS solves these problems in an
iterated local search scheme, which applies a so called
local search stage to an initial candidate solution until it
meets a local optimum; then it perturbs the final candidate
solution and executes the next stage.

Edge weighting scheme in EWLS increases the cost of
local optima it meets, making the cost landscape flatter; the
algorithm may thus find good candidate solutions hidden be-
hind local optima. To this end, EWLS maintains a set L of
uncovered edges. When it gets stuck in local optima, for
each edge e ∈ L, w(e) is increased by 1, and then EWLS
perturbs C to continue to search from another starting point.

Based on the above considerations, we outline the EWLS
algorithm as Algorithm 1. Further comments on the algo-
rithm are given below.

In the beginning, EWLS creates two set variables L and
UL. L is the set of uncovered edges; and UL ⊆ L is the set
of those unchecked by the function ChooseExchangePair
in the current local search stage. Both of them are set to E.
Moreover, edges weights are initialised as 1, and dscores
of vertices are computed accordingly. Also, to construct the

current candidate solution C, a loop is executed until C be-
comes a vertex cover. In each iteration, the vertex with the
highest dscore is added to C (ties are broken randomly). Fi-
nally, the upper bound ub is initialised as |C|, and the best
solution C∗ is initialised as C. Whenever finding a new up-
per bound, EWLS selects vertices with the highest dscore in
C and removes them until |C| = ub − delta. We note that,
in C, the vertex with the highest dscore has the minimum
absolute value of dscore since all these dscore are negative.

After the initialization, the loop (lines 8-24) is executed
until a limited number of steps denoted by maxSteps is
reached. In each iteration, if ChooseExchangePair suc-
cessfully finds a pair of vertices to exchange, then an im-
proving step is executed by exchanging the two vertices
(lines 10-12). EWLS keeps track of the vertices last inserted
into C and last removed from C, and prevents them from
being rolled back immediately. If ChooseExchangePair
fails, which means EWLS gets stuck in a local optimum,
then the edge weights are updated by incrementing the
weights of all edges in L, by one (line 14). After updating
the edge weights, C is perturbed by a random step, which
exchanges a random vertex u ∈ C and a random vertex
v ∈

⋃
e∈L

endpoint(e) (line 15).

Algorithm 1: EWLS

EWLS(G,delta,maxSteps)1

Input: graph G = (V, E),delta(adjust size of C according to
|C| = ub − delta), maxSteps

Output: vertex cover of G
begin2

step := 0; L := E; UL := E;3

initialize edge weights and dscore of vertices;4

construct C greedily until it’s a vertex cover;5

ub := |C|; C∗ := C;6

remove some vertices from C;7

while step < maxSteps do8

if ((u, v) := ChooseExchangePair(C,L, UL))6=9

(0, 0) then
C := [C\{u}] ∪ {v};10

tabuAdd := u;11

tabuRemove := v;12

else13

update edge weights;14

take a random step;15

if |C| + |L| < ub then16

ub := |C| + |L|;17

if L = Ø then18

C∗ := C;19

else20

construct C+ greedily that covers L;21

C∗ := C ∪ C+;22

remove some vertices from C;23

step := step + 1;24

return C∗;25

end26

At the end of each step, if a new upper bound is found,
EWLS will do some updatings (lines 16-23). The upper
bound ub is updated (line 17), and the best solution C∗ is
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updated in one of two ways (lines 18-22). If L = Ø, which
means C is a vertex cover, C∗ is set to C; otherwise, EWLS
extends C into a vertex cover by constructing a vertex set
C+ that covers the uncovered edges, and C∗ is updated as
C ∪ C+. EWLS uses a greedy strategy to construct C+,
which chooses a vertex that covers most uncovered edges
each time. Finally, EWLS removes vertices from C to con-
tinue to search for a better upper bound (line 23).

Obviously, larger delta results in smaller C, which
leaves more uncovered edges. We will show that
ChooseExchangePair searches a vertex pair for exchang-
ing by scanning L; as a result, larger L means the algorithm
searches a wider region at each local search stage and may
find better local optima. However, the algorithm becomes in-
efficient when delta is too large (depending on the instance),
because C+ is constructed simply, but not optimally. Even if
C and C+ are optimal, C ∪ C+ is unlikely to be an optimal
solution if both C and C+ are of a considerable size.

The most important part of EWLS algorithm is the func-
tion ChooseExchangePair. Its pseudo code is given in
Algorithm 2. Before we come to describe it, let’s introduce
a notion first. In EWLS, the age of an uncovered edge is
the current step number minus the step number that it be-
came uncovered most recently. For example, let the uncov-
ered edge set L = {e1, e3} at the 100th step; the last time
e1 became uncovered is at the 30th step, and the last time e3

became uncovered is at the 51th step. Then we say e1’s age
is 70, and e3’s age is 49; thus e1 is older than e3.

Algorithm 2: function ChooseExchangePair

ChooseExchangePair(C,L,UL)1

Input: current candidate solution C, uncovered edge set L,
edge set UL of uncovered edges unchecked in the
current local search stage

Output: a pair of vertices
begin2

if S := {(u, v)|u ∈ C, v ∈ {v∗
1 , v∗

2} and3

score(u, v) > 0} 6= Ø then
return random(S) ;4

else5

foreach e(v1, v2) ∈ UL, from old to young do6

if S := {(u, v)|u ∈ C, v ∈ {v1, v2} and7

score(u, v) > 0} 6= Ø then
return random(S);8

return (0,0);9

end10

The function ChooseExchangePair chooses a pair
of vertices u ∈ C and v ∈

⋃
e∈L

endpoint(e) that

score(u, v) > 0. When choosing the vertex v to put into
C, the function prefers endpoints of older uncovered edges.
In detail, it first checks the oldest edge e∗(v∗1 , v∗2) in L. If
there exists at least one vertex pair u ∈ C and v ∈ {v∗1 , v∗2}
such that score(u, v) > 0, the function returns one of them
randomly. Otherwise, it goes to check the edges in UL, ac-
cording to the order from old to young. If for some edge
e(v1, v2) in UL, the set S = {(u, v)|u ∈ C, v ∈ {v1, v2}
and score(u, v) > 0} is not empty, then the function returns

one vertex pair (u, v) ∈ S randomly. Finally, if the function
fails to find such a vertex pair, it returns (0,0).

To sum up, EWLS strikes a balance between guided
search and the diversity. In each step, candidate vertex pairs
for exchanging are chosen according to improving heuris-
tics; however, one of them is selected randomly to exchange.
Moreover, the old-to-young search strategy makes EWLS
prefer to cover old uncovered edges, which keeps L lively
so that the search region in each local search stage is wide
enough for the algorithm to reach a local optimum of high
quality. Also, EWLS takes a random step when stuck in lo-
cal optima to provide additional diversification. Finally, the
edge weighting scheme makes EWLS unlikely to converge
in a small region by filling up the local optima.

Empirical Performance Results

We evaluate the performance of EWLS on the DIMACS
Clique benchmark set and the BHOSLIB benchmark set. For
each benchmark set, we compare with the solvers with the
best results as far as we can find in literatures.

Our algorithm is implemented in C++, compiled by the
g++ compiler with the ’-O2’ option. All experiments were
run on a machine with a 3 GHz CPU and 4GB RAM under
Linux. To execute the DIMACS machine benchmarks2, this
machine required 0.19 CPU seconds for r300.5, 1.12 CPU
seconds for r400.5 and 4.24 CPU seconds for r500.5. In the
following, all CPU times refer to our machine’s. CPU times
in other ones are scaled to ours according to the run-time on
machine benchmarks.

We perform 100 independent trials with different ran-
dom seeds on each instance. The parameter maxSteps is
set to 108 for all DIMACS instances and 4 × 108 for all
BHOSLIB instances because of their higher difficulty. Each
run was stopped in advance before the step limit when an
optimal/best known solution was detected. All algorithms
for comparison also use the same termination criterion as
EWLS. For each instance, we report the following informa-
tion: the minimum known vertex cover size (k∗); the number
of runs (out of 100) in which a solution of size k∗ is found
(rate); and the run-time in CPU seconds averaged over all
successful runs. We also report the optimised delta (d) for
EWLS, and the dominant solver is highlighted in bold text.

DIMACS Benchmark Results

The DIMACS benchmark is taken from the Second DI-
MACS Implementation Challenge (1992-1993)3. Thirty
seven graphs were selected by the organizers for a sum-
mary to indicate the effectiveness of algorithms, comprising
the Second DIMACS Challenge Test Problems. We compare
EWLS with the solvers PLS and COVER, both of which also
run 100 times with the same step limit as EWLS. We down-
load COVER4 and run its iterative version COVER-I5 on our

2ftp://dimacs.rutgers.edu/pub/dsj/clique/
3ftp://dimacs.rutgers.edu/pub/challenges
4http://www.informatik.uni-freiburg.de/˜srichter/
5COVER is a k-vertex cover solver and needs to know k∗, while

COVER-I runs without knowing k∗
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Graph EWLS PLS COVER-I

Instance k
∗ d rate CPU(s) rate CPU(s) rate CPU(s)

brock400 2 371 1 2 40.902 100 0.111 0 n/a

brock400 4 367 1 96 56.816 100 0.031 2 242.025

brock800 2 776 1 0 n/a 100 7.157 0 n/a

brock800 4 774 1 0 n/a 100 1.918 0 n/a

C2000.9 1921 1 18 327.875 0 n/a 0 n/a

C4000.5 3982 1 100 686.472 100 43.886 100 658.33

keller6 3302 1 100 4.934 36 161.568 100 68.214

MANN a45 690 1 56 68.069 0 n/a 40 171.823

MANN a81 2221 3 7 115.751 0 n/a 0 n/a

p hat1500-1 1488 1 100 13.587 100 0.961 100 18.095

Table 1: Results on DIMACS benchmark

machine with the same setting, while PLS is not available to
us and the results are taken from (Pullan 2006).

The results on the Second DIMACS Challenge Test Prob-
lems are shown in Table 1. Most DIMACS instances are too
easy for a modern solver. The instances not appearing in
the table are solved by the three solvers with 100% success
rate in less than 2 seconds. To obtain a meaningful compar-
ison, k∗ for C2000.9 is set to 1921. Indeed, the best known
1920-vertex solution was found within 109 steps (Grosso,
Locatelli, and Pullan 2008), and we are not aware of any
algorithm finding an optimal solution in 108 steps.

The results show that EWLS is competitive with PLS and
performs better on hard instances. EWLS finds a solution
of size k∗ for 35 out of 37 instances, while this number is
34 for PLS and 32 for COVER-I. Furthermore, EWLS sig-
nificantly outperforms PLS and COVER-I on three hard in-
stances (C2000.9, MANN a45, and MANN a81), where
PLS does not find a solution of size k∗. On the putatively
hardest instance MANN a81, EWLS finds an optimal so-
lution in 7 runs, while PLS only finds solutions of size k∗+2
and COVER-I finds a solution of size k∗+1 in 5 runs.

Nevertheless, both EWLS and COVER-I fail in some
graphs of the brock family which is generated by explic-
itly incorporating low-degree vertices into the optimal cover
to defeat greedy heuristics. Indeed, most algorithms that
prefers the higher degree vertices such as GRASP, RLS,
and k-opt also failed in these graphs. Remark that, PLS per-
forms well on brock family because it comprises three sub-
algorithms, one of which favors the lower degree vertices.

BHOSLIB Benchmark Results

We also consider a new benchmark that is much more diffi-
cult, the BHOSLIB (Benchmark with Hidden Optimum So-
lutions) instances arising from the SAT’04 Competition6.
These 40 BHOSLIB instances were translated from SAT
instances generated randomly in the phase transition area
according to the model RB, and have been proven to be
hard both theoretically and practically (Xu et al. 2007). The
BHOSLIB benchmark has been widely used in the recent lit-
erature as a reference point for new heuristics to MVC, MC
and MIS7. Besides these 40 instances, there is a large in-
stance with 4,000 vertices and 572,774 edges, which is de-
signed for challenge. We compare EWLS with the solvers

6http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-
benchmarks.htm

7http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/list-graph-
papers.htm

Graph EWLS PLS-MVC COVER-I

Instance k
∗ d rate CPU(s) rate CPU(s) rate CPU(s)

frb50-23-1 1100 2 100 262.313 87 479.845 100 267.752

frb50-23-2 1100 2 61 535.889 59 622.067 53 730.832

frb50-23-3 1100 1 42 692.21 22 786.944 47 967.853

frb50-23-4 1100 1 100 31.573 100 37.682 100 32.734

frb50-23-5 1100 2 100 117.730 100 132.791 100 167.929

frb53-24-1 1219 4 29 885.421 9 891.715 19 994.628

frb53-24-2 1219 3 62 659.381 41 933.330 62 946.14

frb53-24-3 1219 2 100 165.720 86 541.244 100 281.189

frb53-24-4 1219 2 51 783.279 59 593.589 59 1099.910

frb53-24-5 1219 2 100 250.262 94 540.461 99 416.047

frb56-25-1 1344 3 29 773.586 14 809.778 34 1255.851

frb56-25-2 1344 2 32 730.987 10 806.611 22 1230.623

frb56-25-3 1344 4 100 307.964 18 1028.537 99 536.067

frb56-25-4 1344 4 100 234.376 89 695.234 98 466.007

frb56-25-5 1344 3 100 94.242 96 428.927 100 168.166

frb59-26-1 1475 2 21 1015.145 2 748.640 21 1421.241

frb59-26-2 1475 3 18 1116.251 2 272.768 11 1149.700

frb59-26-3 1475 3 44 726.424 24 934.994 38 1765.950

frb59-26-4 1475 4 19 900.275 14 1003.104 6 2069.310

frb59-26-5 1475 1 100 334.044 97 472.659 100 478.587

Table 2: Results on BHOSLIB benchmark

PLS-MVC and COVER. We run COVER-I on our machine
with the same setting, while the solver PLS-MVC is not
available to us and the results are taken from (Pullan 2009).

Performance results on BHOSLIB benchmark are shown
in Table 2. Here we focus on the hard instances, so the in-
stances solved by the three solvers with 100% success rate
in less than 200 seconds are not reported here. Note that
EWLS solves all BHOSLIB instances in terms of reaching
an optimal solution. Furthermore, referring to literatures on
this benchmark, EWLS solves the most instances with 100%
success rate (29 of 40 instances) while requiring less time for
most of these instances.

The results illustrate that EWLS is the dominant solver
for all instances in terms of both quality and run-time, with
the exceptions of frb50-23-3, frb53-24-4 and frb56-25-1.
For frb50-23-3, however, there is not an obvious dominant
solver.

The excellent performance of EWLS is further underlined
by the large gaps between EWLS and the other solvers on
the frb59 family, the largest and hardest family. The results
undoubtedly demonstrate that EWLS delivers the best per-
formance on the BHOSLIB benchmark, which remains jus-
tifiable when referring to other literatures on this benchmark.

For the challenge instance frb100-40, which has a min-
imum vertex cover of size 3900, the designer of the
BHOSLIB benchmark conjectures that this instance will not
be solved on a PC in less than a day within the next two
decades6. The best solution found up to now is a vertex cover
of size 3903 in 71.09 seconds by the solver COVER on a
2.13GHz/2GB computer. In detail, 25 out of 100 runs found
a 3903-sized solution with the median run-time of 1193.92
seconds6. It should be noted that COVER runs by given
k∗ in advance, which is not natural for MVC and makes
the problem easier. We run EWLS (with delta = 6 and
maxSteps = 3 × 108) 100 independent trials on this in-
stance. 4 runs find a 3902-sized vertex cover, or equivalently,
a 98-sized independent set (reported in Appendix) with the
average time of 2823.05 seconds and the fastest one does so
in 1239.87 seconds. Of the other 96 runs, 59 find a 3903-
sized solution and 37 find a 3904-sized solution.
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Conclusions and Future Work

We present a local search algorithm for the minimum vertex
cover problem, EWLS, which is based on a new idea that
finds a better partial vertex cover and extends it into a vertex
cover. EWLS uses edge weighting scheme to level the cost
landscape so that it would not converge in a small region.
Also, it utilizes an old-to-young search strategy to make a
wide search region for each local search stage to improve the
quality of local optima. Evaluated on the DIMACS bench-
mark and the hard BHOSLIB benchmark, EWLS is consis-
tently superior on large, hard instances, compared with the
current best algorithms on these benchmarks. Furthermore,
EWLS delivers the best results on the BHOSLIB bench-
mark, significantly improving the existing ones and sets a
new record for the twenty years long challenge instance
frb100-40. In this sense, this work takes a promising step
towards solving hard instances of MVC, MC and MIS prob-
lems.

As with the DLS-MC algorithm (Pullan and Hoos 2006),
EWLS has an instance dependent parameter too. Fortu-
nately, its optimal value is always one of {1, 2, 3, 4} and thus
is easy to tune. Indeed, it has the same value (delta = 1)
for all DIMACS instances except one instance. An obvi-
ous direction of future work is to eliminate the parameter
of EWLS. It is also interesting to apply the ideas in EWLS
to other combinatorial optimization problems.
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Appendix: Larger independent set for frb100-40

Here we report a 98-vertex independent set for frb100-40.
5, 54, 113, 145, 177, 212, 253, 293, 331, 366, 439, 470, 512, 528, 562, 618, 656, 694, 744, 787, 832,

868, 891, 941, 964, 1008, 1076, 1094, 1149, 1181, 1238, 1241, 1282, 1348, 1390, 1416, 1474, 1490,

1547, 1578, 1623, 1664, 1681, 1722, 1786, 1806, 1844, 1890, 1955, 1999, 2040, 2046, 2116, 2130,

2188, 2216, 2244, 2326, 2362, 2421, 2480, 2516, 2558, 2589, 2608, 2679, 2698, 2743, 2788, 2820,

2878, 2885, 2935, 2993, 3026, 3078, 3084, 3152, 3213, 3241, 3299, 3357, 3373, 3429, 3444 3515,

3538, 3600, 3638, 3648, 3705, 3760, 3762, 3834, 3875, 3895, 3928, 3994.
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