
A Linear Programming Heuristic for Optimal Planning

Tom Bylander
Division of Computer Science

The University of Texas at San Antonio
San Antonio, Texas 78249

bylander@cs.utsa.edu

Abstract

I introduce a new search heuristic for propositional STRIPS
planning that is based on transforming planning instances
to linear programming instances. The linear programming
heuristic is admissible for finding minimum length plans
and can be used by partial-order planning algorithms. This
heuristic appears to be the first non-trivial admissible heuris-
tic for partial-order planning. An empirical study compares
Lplan, a partial-order planner incorporating the heuristic, to
Graphplan, Satplan, and UCPOP on the tower of Hanoi do-
main, random blocks-world instances, and random planning
instances. Graphplan is far faster in the study than the other
algorithms. Lplan is often slower because the heuristic is
time-consuming, but Lplan shows promise because it often
performs a small search.

Introduction
Planning is the problem of finding a combination of ac-
tions that achieves a goal (Allen, Hendler, & Tate 1990;
Hendler, Tate, & Drummond 1990). So far, there is lim-
ited success in general-purpose planning, in large part due to
two factors. One factor is the computational complexity of
planning, e.g., propositional STRIPS planning is PSPACE-
complete except for very severe restrictions (Bäckström &
Nebel 1995; Bylander 1994; Erol, Nau, & Subrahmanian
1995). The other factor is that planning formalisms make
very strong representational assumptions, e.g., the STRIPS
formalism assumes that actions are deterministic, and that
an agent knows all relevant aspects of the environment
(Dean & Wellman 1991).

Work within planning research can be viewed as attempt-
ing to find a suitable compromise or deviation from the
known formalisms and algorithms. This paper introduces
a new heuristic for propositional STRIPS planning based
on converting planning instances to linear programming in-
stances.

More precisely, an incomplete partial-order plan with a
constraint on the length (number of operators) of the plan is
translated to a 0-1 integer programming instance, and linear
programming is used to determine if the relaxed instance has
a solution. The relaxed instance does not require an integer

Copyright c
1997, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

solution, but retains the constraint that the values range from
0 to 1. If the relaxed instance has no solution, then the 0-
1 integer programming instance has no solution, which im-
plies that the partial-order plan cannot be refined to a plan
with the given length. The heuristic value for an incomplete
partial-order plan is the smallest length that results in a so-
lution for the corresponding relaxed instance.

This heuristic is admissible for finding the shortest plan
using partial-order planning with propositional STRIPS op-
erators. To my knowledge, this is the first non-trivial ad-
missible heuristic for partial-order planning. Heuristics dis-
cussed in the literature sacrifice optimality for efficiency
(Ephrati, Pollack, & Milshtein 1996; Gerevini & Schubert
1996; Mcdermott 1996).

Furthermore, because linear programming variables are
not restricted to binary values, I believe that this approach
has great potential for incorporating utility, probabilistic
operators, and lack of knowledge about the environment.
However, the results in this paper are restricted to proposi-
tional STRIPS planning. Future research will consider these
more general problems.

I compare Lplan, a planner using the linear program-
ming heuristic, to Graphplan (Blum & Furst 1995), Satplan
(Kautz & Selman 1996), and UCPOP (Penburthy & Weld
1992) on three domains: tower of Hanoi, random blocks
world instances (Slaney & Thiébaux 1996), and random
planning instances (Bylander 1996). Given a set of proposi-
tional STRIPS operators, an initial state, and a conjunctive
goal, Lplan returns optimal plans (minimum number of op-
erators). The comparison uses the other algorithms to solve
the same problem. The operators for Graphplan were modi-
fied so that only one operator per time step is allowed. A lin-
ear encoding (Kautz & Selman 1992) was used for Satplan.
The best-first search heuristic function for UCPOP returned
the length of the partial plan. Overall, Graphplan was much
faster than the other algorithms.

Lplan was often slower than the other algorithms pri-
marily due to the time to evaluate the linear program-
ming heuristic. Using high-quality commercial software
(CPLEX) on a fast machine (Sun UltraSparc), each heuristic
value required around a second of CPU time. Often, Lplan
expanded a small number of nodes. Future research will at-
tempt to find more efficient versions of this heuristic.



The remainder of this paper is organized as follows. First,
I describe propositional STRIPS planning and how plan-
ning instances can be translated to linear programming in-
stances. Next, I discuss how additional elements of partial-
order planning can be translated to linear programming. Fi-
nally, I compare Lplan’s performance to Graphplan, Sat-
plan, and UCPOP on three domains. Space limitations pre-
vent a more complete description of many topics.

Planning and Linear Programming
In this section, I define propositional STRIPS planning and
show how a simple instance can be translated to a linear pro-
gramming problem.

Propositional STRIPS Planning
An instance of propositional STRIPS planning is specified
by a tuple hP;O; I;Gi, where: P is a finite set of ground
atomic formulas, called the conditions; O is a finite set of
operators, where each operator consists of preconditions
and postconditions, both of which are satisfiable conjunc-
tions of positive and negative conditions; I � P is the ini-
tial state; and G, the goals, is a satisfiable conjunction of
positive and negative conditions.

That is, P is the set of conditions that are relevant. Any
state, e.g., the initial state I, can be specified by a subsetS � P, indicating that p 2 P is true in that state if p 2 S,
and false otherwise. O is the set of the operators that can
change one state to another; allowing negative precondi-
tions is a minor deviation from standard STRIPS (Fikes &
Nilsson 1971). S � P is a goal state if the goals G is true
of S.

An operator may be applied to a state if its preconditions
are true of that state. If an operator is applied to a state, then
the only changes in the new state from the old state is that
the operator’s postconditions become true.

For example, one propositional operator in the blocks-
world is to move block A from on top of block B to on top
of block C. This can be formulated as:clear(A) ^ on(A;B) ^ clear(C) ):on(A;B) ^ on(A;C) ^ clear(B) ^ :clear(C)
where the) separates the preconditions on the left from the
postconditions on the right.

Propositional planning is PSPACE-complete in general
(Bäckström & Nebel 1995; Bylander 1994; Erol, Nau, &
Subrahmanian 1995) (NP-complete if plans are limited to a
polynomial number of steps), so it appears very unlikely that
there is a polynomial-time algorithm for planning. How-
ever, several recent results suggest that there might be al-
gorithms that work well on average over a variety of plan-
ning domains. Graphplan (Blum & Furst 1995) and Satplan
(Kautz & Selman 1996) are two new algorithms that have
been empirically shown to be efficient on many instances.
Work on partial-order planning algorithms has led to heuris-
tics that lead to good empirical results (Gerevini & Schubert
1996). In addition, a theoretical analysis shows that certain
kinds of random planning instances are generally easy on
average (Bylander 1996).

From Planning to Linear Programming
A linear programming instance is defined by a set of vari-
ables, an objective function (a linear function of the vari-
ables), and a set of linear constraints (linear inequalities and
equalities) on the variables. A feasible solution satisfies the
linear constraints. An optimal solution satisfies the linear
constraints and maximizes the objective function (Hillier &
Leiberman 1974) (switching to minimization is trivial).

The translation from planning instances is based on re-
stricting the length of the plan and mapping conditions and
operators at each time point to variables, e.g., truth val-
ues for conditions are mapped to 0 and 1, an operator at
a given time point maps to a value of 1 if it is applied at
that time point, otherwise 0. If p is a condition, a variable
is needed for each time point from 0 (the initial state) to
time point l (the final state). These variables are denoted byp(0); : : : ; p(l). If op is an operator, variables are needed for0 to l � 1; these are denoted by op(0); : : : ; op(l � 1).

The objective function is maximized if the goal is true at
the last time point. The linear constraints encode the pre-
and postconditionsof each operator at each time step as well
as the frame axioms.

For example, consider the following planning instance.P = fa; b; c; dgO = fa ^ b ) c ^ :d; b ^ c ) a ^ dg. Call the two
operators op1 and op2, respectively.I = fa; bgG = c ^ d

The goal can be achieved in two time steps by first applyingop1, which leads to the state fa; b; cg, followed by applyingop2, which results in the goal state fa; b; c; dg.
Assuming that a plan of length 2 is called for, the objec-

tive function is realized as follows:

maximize c(2) + d(2)
When both c and d are true at time point 2, this corresponds
to c(2) = 1 and d(2) = 1.

The initial state is specified by assigning values to condi-
tions at time point 0.a(0) = 1 b(0) = 1c(0) = 0 d(0) = 0

At most one operator is allowed at each time point. This
is specified by:1 � op1(0) + op2(0) 1 � op1(1) + op2(1)

An operator cannot be applied unless its preconditionsare
true. Here are the inequalities for time point 0.a(0) � op1(0)b(0) � op1(0) + op2(0)c(0) � op2(0)
One inequality can represent the fact that b is a precondition
for both op1 and op2.

The truth value of a condition will remain the same un-
less an operator makes it true or false. Here are the (not yet
correct) equalities for the transition from time point 0 to 1.



a(1) = a(0) + op2(0)b(1) = b(0)c(1) = c(0) + op1(0)d(1) = d(0) + op2(0)� op1(0)
The problem with these equalities is that a postcondition of
an operator might already be true (unless the preconditions
specify otherwise). This problem is resolved with additional
variables that represent these possibilities. The equalities
above are changed to:a(1) = a(0) + op2(0)� op2a(0)b(1) = b(0)c(1) = c(0) + op1(0)� op2c(0)d(1) = d(0) + op2(0)� op2d(0)� op1(0) + op1d(0)
When an additional variable equal to 1, it represents the situ-
ation where the corresponding postcondition is already true
before the operator is applied. For example, if d is already
true before op2 is applied at time 0, then this is represented
by op2d(0) = 1. Similarly, if :d is already true before op1
is applied at time 0, then this is represented by op1d(0) = 1.

Also, each additional variable must not be larger than the
corresponding operator variable:op2a(0) � op2(0) op1d(0) � op1(0)op1c(0) � op1(0) op2d(0) � op2(0)

Finally, the precondition inequalities need to be modified
and extended:a(0) � op1(0) + op2a(0)1� a(0) � op2(0)� op2a(0)b(0) � op1(0) + op2(0)c(0) � op2(0) + op1c(0)1� c(0) � op1(0)� op1c(0)d(0) � op2d(0) + op1(0)� op1d(0)1� d(0) � op1d(0) + op2(0)� op2d(0)
These are needed so that an additional variable is not larger
than the corresponding condition variable. For example,op2a(0) = 1 represents the situation where a is true be-
fore op2 is applied at time 0, so op2a(0) cannot exceeda(0). Similarly, op2(0) � op2a(0) = 1 represents the sit-
uation where a is false before op2 is applied at time 0, soop2(0)� op2a(0) cannot exceed 1� a(0).

Often, negative preconditions are added to operators if
possible to avoid the creation of additional variables. This
increases the efficiency of the linear programming heuristic.

Finally, all variables must be constrained to lie between0 and 1, inclusive. The integer programming instance re-
quires that each variable be either 0 or 1; the relaxed linear
programming instance allows any value between 0 and 1.

An Admissible Heuristic
When a planning instance is translated to a set of linear con-
straints as done above, then the planning instance has a so-
lution plan with a given length or less if and only if the

corresponding integer programming instance has a “solu-
tion” (meaning that the objective function attains a value
corresponding to all goals being true). This translates one
NP-hard problem into another, which by itself is not much
progress. The hope is that a solution for the easier relaxed
instance corresponds to a solution for the planning instance.

If the relaxed instance with plan length l has a solution,
but not the relaxed instance with plan length l� 1, then the
minimum length plan must be at least l steps long. l cannot
be an overestimate because there is a integer programming
solution for the true length l�, which implies a relaxed solu-
tion for plan length l� as well. Thus, relaxed instances with
varying plan lengths can be used as an admissible heuristic.
However, a solution to a relaxed instance does not even im-
ply that the planning instance is solvable.

For the simple planning instance above, it turns out that
there is no solution to the relaxed instance with plan length
1, and the only solution with plan length 2 is the integer so-
lution with op1(0) = 1 and op2(1) = 1. In general though,
one might not be so lucky.

Suppose that the planning instance has the additional op-
erators op3 � a ) :b ^ c and op4 � b ) :a ^ d. Be-
cause op3 and op4 conflict with each other, the goal cannot
be reached using just op3 and op4. However, the relaxed
instance with these additional operators permits the nonin-
teger solution op3(0) = op4(0) = op3(1) = op4(1) = 0:5.op3(0) = 0:5 leads to b(1) = 0:5, which allows op4(1) =0:5. Similarly, op4(0) = 0:5 results in a(1) = 0:5, which
allows op3(1) = 0:5. The goals c and d are “achieved”
halfway at the first time point, and fully at the second time
point.

This “superposition” of operators in relaxed solutions is a
major reason why the heuristic can lead to poor results. As
described below in the empirical results , the tower of Hanoi
domain is pathologic in this regard.

Partial-Order Planning

The above translation from planning instances to linear pro-
gramming instances can be used fairly directly as an admis-
sible heuristic for searching in the space of world states. For
example, for forward progression, the only change is that
the initial state changes from a parent state to a child state.

However, for partial-order planning, i.e., search in the
space of partially-ordered operators, additional linear in-
equalities are needed to represent ordering constraints.
There is also the problem of plan refinement (Kambhampati,
Knoblock, & Yang 1995). See (Weld 1994) for an introduc-
tion to partial-order planning.

Ordering constraints are mapped to linear constraints as
follows. Suppose steps s1 and s2 are instances of op-
erators op1 and op2, respectively. Suppose that step s1
is ordered before step s2. With plan length l, variabless1(0); : : : ; s1(l � 1); s2(0); : : : ; s2(l � 1) are created.s1(i) = 1 means that s1 is applied before or at time point i.
All variables are restricted to the [0; 1] range. This leads to:



s1(0) � op1(0)s2(0) � op2(0)s1(l � 1) = 1s2(l � 1) = 1s1(i) � s1(i� 1) � op1(i) for 1 � i � l � 1s2(i) � s2(i� 1) � op2(i) for 1 � i � l � 1s2(0) = 0s2(i) � s1(i � 1) for 1 � i � l � 1
The first four constraints are boundary conditions. The fifth
and sixth constraints relate the values of the step variables
to the operator variables. The last two constraints represent
the ordering; s2(0) must be 0, and s2(i) cannot be higher
than s1(i � 1). If an operator is used for more than one
step, then the first, second, fifth, and sixth constraints above
should sum all the appropriate step variables.

Empirical Study
I implemented a partial-order causal-link propositional
planner based on the POP algorithm in (Weld 1994). During
the search, the linear programming heuristic is evaluated as
needed for each node. That is, the current node is known to
have a heuristic value h, and all other open nodes are only
known to be � h or � h+ 1.

Flaw selection was done in two parts. First, flaws are
found by (temporarily) linearizing the steps, attempting to
minimize the number of steps with false preconditions. If
this resulted in a solution plan, there is no need to explicitly
add causal links for any remaining open conditions. Second,
the flaw is selected from those found based on a simplified
form of the LCFR strategy (Joslin & Pollack 1994). Threats
were given priority over open conditions. Open conditions
with the fewest available operators were preferred. The
planner is implemented in Lucid Common Lisp.

Although linear programming is polynomial (Khachiyan
1979; Karmarkar 1984), solving a linear programming in-
stance requires considerable time with currently known al-
gorithms. I used the CPLEX Barrier Solver linear program-
ming algorithm (CPLEX 1995).

Algorithms
I compared the implemented algorithm, called Lplan (Lin-
ear Programming Planning), to Graphplan (Blum & Furst
1995), Satplan (Kautz & Selman 1996), and UCPOP (Pen-
burthy & Weld 1992). The intention of this empirical study
was to make this comparison based on finding optimal plans
(minimum number of operators) for propositional STRIPS
planning instances. The other algorithms were applied ac-
cordingly.

Graphplan is based on searching a data structure called
the planning graph for a solution plan. In general, Graph-
plan allows multiple operators at each time point as long as
there is no conflict between the operators. However, this
might result in a plan with a non-optimal number of oper-
ators, so for the study, the operators were preprocessed so
that one operator is allowed per time point. Additional pre-
processing was necessary if an instance had negative pre-
conditions in its operators. Other parameters of Graphplan
were maintained at default values.

Lplan Graphplan Satplan UCPOP
Towers Visits Time Time Time Visits Time

2 4 0.42 0.02 0.02 39 0.03
3 12 3.97 0.07 5.44 5246 13.20
4 ? ? 1.21 ? ? ?
5 ? ? 15.50 ? ? ?
6 ? ? 251.00 ? ? ?

Table 1: Performance of the planning algorithms on the
tower of Hanoi domain

Satplan is based on converting planning instances to
propositional formulas, and then performing a randomized
search for a satisfying assignment. Because the intent is to
study propositional planning in general, the input to Satplan
is based on a linear encoding of the operators (Kautz & Sel-
man 1992). It should be noted, though, that for a specific
domain, a suitably encoded domain theory can increase Sat-
plan’s efficiency (Kautz & Selman 1996), The default pa-
rameters of the randomized search algorithm were used as
is except for adjusting the number of “tries,” i.e., the num-
ber of times a search is attempted starting from a random
assignment to the propositional formula. The running time
of Satplan shown below does not include preprocessing of
propositional formulas. Satplan was only run for the opti-
mal plan length.

UCPOP is a causal-link partial-order planner that uses
general action schemas. Nevertheless, propositional oper-
ators were input to UCPOP; this did not appear to decrease
efficiency. To ensure that UCPOP finds optimal plans, the
search heuristic is the number of plan steps, which leads to
a uniform cost search. ZLIFO was turned on in this study.

Tower of Hanoi
For the tower of Hanoi domain, the operators were encoded
in the following manner:on(d3; t1)^ :on(d3; t2)^ on(d1; t3) ^ on(d2; t3)) on(d3; t2)^ :on(d3; t1)
where d3 refers to disk 3 (disk 1 is the smallest) and t1
refers to tower 1. Note that the operator has a negative pre-
condition :on(d3; t2). Otherwise, Lplan must create ad-
ditional variables because it does not know whether or noton(d3; t2) is true before the operator is applied. Negative
preconditions were omitted for UCPOP.

Table 1 gives the results for the tower of Hanoi domain
from 2 to 6 disks. Visits is the number of nodes visited.
Time is given in seconds. As can be seen, Graphplan was
able to find solutionsup to 6 disks (plan length = 63). Lplan,
Satplan, and UCPOP were unable to find a solution to the 4
disk instance. Lplan and UCPOP were halted after 100; 000
node visits. Satplan was halted after 100; 000 tries.

The difficulty for Lplan is that the linear programming
heuristic is pathologically bad for this domain. For n � 3
disks, the heuristic gives a value of 2n for the distance from
the initial state to the goal state. However, the shortest plan
requires 2n � 1 steps, so the heuristic is exponentially bad



10

100

1000

10000

5 6 7 8 9 10 11 12 13 14

M
ed

ia
n 

V
is

its

Number of Blocks

Lplan
UCPOP

0.01

0.1

1

10

100

1000

5 6 7 8 9 10 11 12 13 14

M
ed

ia
n 

T
im

e

Number of Blocks

Lplan

UCPOP
Satplan

Graphplan

Figure 1: Empirical results for random blocks-world instances. The first graph is for Lplan and UCPOP only.

for this domain. The heuristic gives a low value because
the relaxed instance allows a disk to be halfway on a tower,
and disks that are halfway on can be freely moved past each
other.

Random Blocks-World Problems
For the blocks-world domain, random blocks-world in-
stances (Slaney & Thiébaux 1996) are generated for 5
blocks up to 14 blocks. A random block-world instance for
a given number of blocks selects a random initial state and
goal state from a uniform distribution of possible blocks-
world states.

The number of operators in each instance was reduced.
E.g., if block A is initially on block B, and the goal state
has A on C, then only three operators are needed to moveA: move A from B to the table, move A from the table toC, and move A from B to C. This reduces the number of
operators for n blocks from O(n3) to 3n or less. Except for
UCPOP, the operators included a negative precondition cor-
responding to each positive postcondition.

100 instances were generated for each number of blocks.
Figure 1 illustrates the results. The first graph shows the me-
dian number of nodes visited by Lplan and UCPOP. The sec-
ond graph shows the median running time for all four algo-
rithms. The y-axes are logarithmically scaled. Lplan usu-
ally visits a very small portion of the search space, but uses
significant time per node visit. Of all the algorithms, Graph-
plan is clearly much faster and appears to have the smallest
exponential growth (the slope of its line is lowest). How-
ever, Lplan’s exponential growth appears to be lower than
Satplan and UCPOP.

Random Planning Instances
Random planning instances are generated by randomly gen-
erating operators (Bylander 1996). The advantage of ran-
dom planning instances is that it is not possible to take un-
fair advantage of domain-specific characteristics. A possi-
ble disadvantage is that determining solvability of these in-
stances is known to be easy on average if there are few or

many operators. It is not known whether finding optimal
plans for random planning instances is hard on average.

The experiment used 10 conditions, 2 precondi-
tions/operator, and 2 postconditions/operator. The pre-
and postconditions are randomly selected and randomly
negated. Initial states and goals are randomly generated.
No goal is true in the initial state. The number of goals
were varied from 1 to 10. The number of operators were
varied from 1 to 50. 10 instances were generated for each
number of goals and operators, leading to 5000 instances.
2360 of these instances had solution plans. The empirical
results are specific to solvable instances.

Figure 2 shows the results with respect to the number of
goals. The first graph shows the median number of nodes
visited by Lplan and UCPOP. The second graph shows
the median running time for each algorithm. The y-axes
are logarithmically scaled. Again, Lplan usually visits a
very small portion of the search space. Lplan outperforms
UCPOP when there 5 or more goals. The median run-
ning time of Satplan was faster than Graphplan, but this
would not be true if Satplan’s preprocessing time were in-
cluded. Lplan appears to have larger exponential growth
than Graphplan and Satplan. In the future, I intend to ob-
tain results for larger random planning instances.

Conclusion
I have presented a new search heuristic for propositional
planning, which, to my knowledge, is the first non-trivial
admissible heuristic applicable to partial-order planning.
The heuristic is based on transforming planning instances
to integer programming instances, and solving the relaxed
linear programming instance. Empirical results show that
Lplan, a partial-order planner employing this heuristic, of-
ten visits a small number of nodes, but that evaluating the
heuristic is often time-consuming when compared to the
performance of Graphplan, Satplan, and UCPOP.

Future research will focus on more efficient use of the lin-
ear programming heuristic and more efficient versions of the
heuristic.



1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

M
ed

ia
n 

V
is

its

Number of Goals

Lplan
UCPOP

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

M
ed

ia
n 

T
im

e

Number of Goals

Lplan

UCPOP
Satplan

Graphplan

Figure 2: Empirical results for random planning instances. The first graph is for Lplan and UCPOP only.

Acknowledgments
I thank Subbarao Kamphampati for helpful comments. I
thank several people for making their software available:
Avrim Blum and Merrick Furst for Graphplan, Henry Kautz
and Bart Selman for Satplan, and Daniel Weld et al. for
UCPOP.

References
Allen, J.; Hendler, J.; and Tate, A., eds. 1990. Readings in
Planning. San Mateo, California: Morgan Kaufmann.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–655.
Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis. In Proc. Fourteenth Int. Joint
Conf. on Artificial Intellgence, 1636–1642.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69:161–204.
Bylander, T. 1996. A probabilistic analysis of proposi-
tional STRIPS planning. Artificial Intelligence 81:241–
270.
CPLEX Optimization, Inc., Incline Village, Nevada. 1995.
Using the CPLEX Callable Library.
Dean, T. L., and Wellman, M. P. 1991. Planning and Con-
trol. San Mateo, California: Morgan Kaufmann.
Ephrati, E.; Pollack, M. E.; and Milshtein, M. 1996. A cost
directed planner: Preliminary report. In Proc. Thirteenth
National Conf. on Artificial Intelligence, 1223–1228.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995.
Complexity, decidability, and undecidability results for
domain-independent planning. Artificial Intelligence
76:75–88.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Gerevini, A., and Schubert, L. 1996. Accelerating partial-
order planners: Some techniques for effective search con-

trol and planning. J. Artificial Intelligence Research 5:95–
137.
Hendler, J.; Tate, A.; and Drummond, M. 1990. AI plan-
ning: Systems and techniques. AI Magazine 11(2):61–77.
Hillier, F. S., and Leiberman, G. J. 1974. Operations Re-
search. San Francisco: Holden-Day.
Joslin, D., and Pollack, M. E. 1994. Least-cost flaw re-
pair: A plan refinement strategy for partial-order planning.
In Proc. Twelfth National Conf. on Artificial Intelligence,
1004–1009.
Kambhampati, S.; Knoblock, C. A.; and Yang, Q. 1995.
Planning as refinement search: A unified framework for
evaluating design tradeoffs in partial-order planning. Arti-
ficial Intelligence 76:167–238.
Karmarkar, N. 1984. A new polynomial time algorithm
for linear programming. Combinatorica 4:373–395.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proc. Tenth European Conf. on Artificial Intelligence,
359–363.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proc. Thirteenth National Conf. on Artificial Intelligence,
1194–1201.
Khachiyan, L. G. 1979. A polynomial algorithm in linear
programming. Soviet Mathematics Doklady 20:191–194.
Mcdermott, D. 1996. A heuristic estimator for means-ends
analysis in planning. In Proc. Third Int. Conf. on Artificial
Intelligence Planning Systems, 142–149.
Penburthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planning for ADL. In Proc. Third
Int. Conf. on Principles of Knowledge Representation and
Reasoning, 103–114.
Slaney, J., and Thiébaux, S. 1996. Linear time near-
optimal planning in the blocks world. In Proc. Thirteenth
National Conf. on Artificial Intelligence, 1208–1214.
Weld, D. S. 1994. An introduction to least-commitment
planning. AI Magazine 15(4):27–61.


