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Abstract

Generalized planning is about finding plans that
solve collections of planning instances, often infi-
nite collections, rather than single instances. Re-
cently it has been shown how to reduce the plan-
ning problem for generalized planning to the plan-
ning problem for a qualitative numerical problem;
the latter being a reformulation that simultaneously
captures all the instances in the collection. An
important thread of research thus consists in find-
ing such reformulations, or abstractions, automati-
cally. A recent proposal learns the abstractions in-
ductively from a finite and small sample of transi-
tions from instances in the collection. However, as
in all inductive processes, the learned abstraction is
not guaranteed to be correct for the whole collec-
tion. In this work we address this limitation by per-
forming an analysis of the abstraction with respect
to the collection, and show how to obtain formal
guarantees for generalization. These guarantees,
in the form of first-order formulas, may be used
to 1) define subcollections of instances on which
the abstraction is guaranteed to be sound, 2) ob-
tain necessary conditions for generalization under
certain assumptions, and 3) do automated synthesis
of complex invariants for planning problems. Our
framework is general, it can be extended or com-
bined with other approaches, and it has applications
that go beyond generalized planning.

1 Introduction
Generalized planning is about finding plans that solve a
whole collection of instances of planning problems rather
than finding a plan for a single instance as in classical plan-
ning [Srivastava et al., 2008; Hu and De Giacomo, 2011;
Srivastava et al., 2011b; Belle and Levesque, 2016; Segovia
et al., 2016]. In its simplest form, the instances in the
collection share a common pool of actions and observable
features [Hu and De Giacomo, 2011; Bonet et al., 2017],
yet other formulations consider relational domains where
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the actions and features in the instances result of ground-
ing a collection of actions and atom schemas with different
sets of objects [Boutilier et al., 2001; Wang et al., 2008;
Srivastava et al., 2011a; van Otterlo, 2012].

A recent proposal for handling relational domains casts the
problem of generalized planning as the problem of solving a
single abstraction, or reformulation, that captures all the in-
stances in the collection [Bonet and Geffner, 2018]. This ab-
straction however involves qualitative numerical features, in
addition to the standard boolean features, that are defined in
terms of the objects in the states and their relationships. The
actions in the abstraction tell how the features change their
values when actions are applied. Qualitative rather than ex-
act numerical features are used to avoid undecidability issues
[Helmert, 2002]. The change for such features is only quali-
tative as they only specify whether the numerical feature in-
creases, decreases, or remain unchanged. Under such effects,
the problem of solving the abstraction, and hence the gener-
alized planning problem, can be reduced to the problem of
solving a single fully observable non-deterministic (FOND)
problem [Geffner and Bonet, 2013].

This formulation of generalized planning is appealing as it
leverages the existing FOND planners to solve, in one shot,
a complete (often infinite) class of problems, but it requires
the right set of features and the right abstraction. Bonet et al.
[2019a] learn the abstraction inductively from a small sam-
ple of transitions from instances in the collection. The ab-
straction is guaranteed to generalize when the sample is suffi-
ciently general and diverse, but, as far as we know, there have
been no attempts to automatically check whether the learned
abstraction is sound for the collection.

In this work we bridge this gap by providing a general
framework for the synthesis of guarantees for generaliza-
tion. The guarantees are in the form of first-order formu-
las that provide sufficient conditions for generalization: ev-
ery instance whose reachable states satisfy the formulas is
guaranteed to be handled correctly by the abstraction. We
only address the synthesis of such formulas and defer to fu-
ture work the problem of verifying whether the formulas are
satisfied on the reachable states of a given instance. Nonethe-
less, the automatically synthesized formulas have a rich and
complex structure, and they often express novel and interest-
ing invariants on well-known benchmarks. For example, in
Blocksworld, the classical problem of moving blocks with a
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gripper, one such formula says that every tower must end in a
clear block, a formula that thus forbids the existence of “cir-
cular towers”; we are not aware of any other approach for
invariant synthesis that is able to produce such a formula.

Our contributions are the following: 1) a crisp theoreti-
cal foundation for the synthesis of formulas only using as in-
put the relational planning domain and the abstraction, 2) the
obtained formulas define subcollections of instances that are
guaranteed to be handled correctly by the abstraction, 3) un-
der additional assumptions, necessary conditions for general-
ization are obtained, and 4) the synthesis also provides candi-
dates for invariants that would then need to be verified.

The paper is organized as follows. The next section pro-
vides background on the feature-based account for general-
ized planning. First-order structures and abstractions are dis-
cussed in Sect. 3. The framework for generalization and the
synthesis algorithm are given in Sect. 4 and 5. Sect. 6, dis-
cusses necessary conditions and the synthesis of invariants.
The paper concludes with examples and a discussion.

2 Background
2.1 Collections of Instances
We consider collections Q of grounded STRIPS instances
P = (F,A, I,G) where F is a set of atoms (propositions),
A is a set of actions, and I ⊆ F and G ⊆ F describe the
initial and goal states of P . It is assumed that all instances
in Q result from grounding a common domain D with a set
of objects, particular to each instance, and descriptions of the
initial and goal situations. As it is standard, D specifies the
constant and predicate symbols that define the propositions
via the grounding process, and it also contains lifted action
schemas that generate the set A of grounded actions. Q(D)
denotes the class of all grounded instances for domain D.
Hence, Q ⊆ Q(D) as all instances in Q come from D.

2.2 Abstractions
The boolean and numerical features are used to build uniform
abstractions for the instances in Q. Such instances, although
sharing a common relational domain, may differ substantially
in the number of actions, objects, and observables.

A boolean feature φ for Q is a function that maps each
instance P ∈ Q and state s for P (reachable from the initial
state of P ) into a truth value φ(P, s) ∈ {>,⊥}. A numerical
feature is a function φ that maps P and s into a non-negative
integer φ(P, s). When P or s are clear from context we may
simplify notation. The set of features for Q is denoted by F .
For boolean features f , an F -literal is either f or ¬f , while
for numerical features n, an F -literal is n > 0 or n = 0.

An abstraction for Q is a tuple Q̄ = (F,AF , IF , GF )
where F is a set of features, AF is a set of abstract actions,
and IF and GF describe the abstract initial and goal states in
terms of the features. An abstract action ā is a pair 〈Pre; Eff〉
where Pre is a collection of F -literals, and Eff is a collection
of effects for F . Effects for boolean features are denoted by
F -literals, while effects for numerical features n correspond
to increments or decrements denoted by n↑ or n↓ respectively.
The items IF and GF denote consistent sets of F -literals. It

is assumed that the effects of actions and GF are consistent
sets of literals, and that IF is maximal consistent.1

The pair (IF , GF ) of initial and goal states in the abstrac-
tion Q̄ = (F,AF , IF , GF ) complies with Q when (IF , GF )
complies with each instance P in Q. The pair (IF , GF )
complies with the instance P when the initial state of P is
consistent with IF , and if s is a state in P that is consis-
tent with GF , then s is a goal state for P . A state s in P
is consistent with IF (resp. GF ) iff s̄ ∪ IF (resp. s̄ ∪ GF )
is consistent, where s̄ denotes the boolean valuation of F on
s; i.e., s̄ = {f : f(s)=>} ∪ {¬f : f(s)=⊥} ∪ {n=0 :
n(s)=0} ∪ {n>0 : n(s)>0}. If the pair (IF , GF ) for the
abstraction Q̄ complies with P , we write Q̄ ∼ P .

Following Bonet and Geffner [2018], an abstraction Q̄ is
sound for Q if it complies with Q and each action ā in AF is
sound (for Q). An abstract action ā = 〈Pre; Eff〉 is sound iff
for each instance P inQ and reachable state s in P where Pre
holds in s̄, ā represents at least one action a from P in s. The
abstract action ā represents the action a in the state s iff 1) the
preconditions of a and ā both hold in s and s̄ respectively, and
2) the effects of a and ā over F are similar; namely,
a) for any boolean feature f in F , if f changes from true to

false (resp. false to true) in the transition s  res(a, s)
(where res(a, s) is the state that results of applying a in
s), then ¬f ∈ Eff (resp. f ∈ Eff),

b) for any boolean feature f in F , if f (resp. ¬f ) is in Eff,
then f is true (resp. false) in res(a, s), and

c) for each numerical feature n in F , n ↓ (resp. n ↑) ap-
pears in Eff if and only if n(P, res(a, s)) < n(P, s) (resp.
n(P, s) < n(P, res(a, s))).

We write ā ∼P,s a to denote that the abstract action ā repre-
sents the action a in the (reachable) state s of P . In such a
case, we also say that a instantiates ā in s. When there is no
confusion about P , we simplify notation to ā ∼s a.

Soundness links plans for Q̄ with generalized plans: if π̄ is
a plan that solves an abstraction Q̄ that is sound forQ andP is
an instance inQ, then any execution (a0, a1, . . .) spawned by
π̄ on P reaches a goal state for P . The execution (a0, a1, . . .)
is spawned by π̄ on P iff 1) ai instantiates π̄(s̄i) in si, for
i ≥ 0, 2) s̄i is the boolean valuation of si, for i ≥ 0, 3) si+1 =
res(ai, si), for i ≥ 0, and 4) s0 is the initial state of P .

Example. Consider the collection Qclear with all Blocks-
world instances with goal clear(A) where A is a fixed block.
The domain Dclear has no explicit gripper, contains a single
constant A, and has two action schemas: Newtower(x, y) to
move block x from block y to the table, and Move(x, y, z)
to move block x from block y onto block z. An abstraction
for Qclear is Q̄clear = (F,AF , IF , GF ) where F = {n}
and n is the feature that counts the number of blocks above
A, AF = {ā} where ā = 〈n>0;n ↓〉, IF = {n>0}, and
GF = {n=0}. It is easy to check that Q̄clear is sound
and solved by the plan π̄clear that executes ā whenever n>0.
An action Newtower(x, y) or Move(x, y, z) that “removes”

1A set S of F -literals is consistent if for any boolean feature f , S
excludes either f or ¬f , and for any numerical feature n, S excludes
either n > 0 or n = 0. S is maximal consistent if it is consistent,
and S ∪ {L} is not consistent for any F -literal L /∈ S.
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a block from above A in state s is an action that instantiates
ā in s. Notice that Qclear 6= Q(Dclear) since, for example,
Q(Dclear) contains instances that have “circular towers”.

2.3 Inductive Learning and Concepts
Bonet et al. [2019a] show how an abstraction can be learned
from a sample of transitions and a collection F of candidate
features. In their approach, each feature in F is associated
with a concept C that is obtained from a set of atomic con-
cepts, and a concept grammar [Baader et al., 2003].2

In general, a concept for Q may be thought of as a func-
tion C that maps instances P in Q and states s in P into
sets C(P, s) of tuples of objects. Concepts define features:
boolean features fC that denote whether C(P, s) is non-
empty, and numerical features nC that denote the cardinality
of C(P, s). The concepts by Bonet et al. are limited to deno-
tations that are subsets of objects rather than object tuples.

3 First-Order Abstractions
We deal with formulas in first-order logic that are built from
a signature σ = σ(D) given by the relational domain D. The
constants defined in D appear as constant symbols in σ, and
the predicates defined in D appear as relational symbols of
corresponding arity in D. The signature also contains binary
relations p+ and p∗ for the binary predicates p inD. As usual,
L(σ) denotes the class of well-formed formulas over σ.

First-order formulas are interpreted over first-order struc-
tures, also called interpretations. We are only interested in
structures that are associated with states. A state s provides
the universe Us of objects and the interpretations for the con-
stant and relational symbols in D. The interpretations for p+

and p∗, for the binary predicates p, are provided by the tran-
sitive and reflexive-transitive closure of the interpretation of
p provided by s. We write ϕ(x̄) to denote a formula whose
free variables are among those in x̄. If ϕ(x̄) is a formula, s
is a state in P , and ū is a tuple of objects in Us of dimen-
sion |x̄|, s � ϕ(ū) denotes that the interpretation provided by
s satisfies ϕ when the variables in x̄ are interpreted by the
corresponding objects in ū.

For a concept C characterized by ΨC(x̄), the extension of
C for s in P is Cs = C(P, s) = {ū : s � ΨC(ū)}. We
assume that all features correspond to concepts whose char-
acteristic functions are first-order definable:
Definition 1 (First-Order Abstraction). Let D be a planning
domain and let σ = σ(D) be the signature for D. A concept
C is (first-order) D-definable if ΨC(x̄) belongs to L(σ). A
feature f is D-definable if f is given by a concept C that is
D-definable. An abstraction Q̄ = (F,AF , IF , GF ) is a first-
order abstraction for D if each feature f in F is D-definable.

When D is clear from the context, we just say that Q̄ is a
first-order abstraction without mentioning D. The applicabil-
ity of an abstract action ā in a first-order abstraction Q̄ on a
state s can be decided with a first-order formula Pre(ā).

Example. The abstraction Q̄clear is a first-order abstraction
because F = {n} and n is the cardinality of the concept C

2We do not consider the distance features [Bonet et al., 2019a]
as it is not clear how to express them in first-order logic.

given by ΨC(x) = ∃y(on(x, y) ∧ on∗(y,A)). However, C
is also given by Ψ′C(x) = on+(x,A). As usual, both repre-
sentations may yield different results although being logically
equivalent; more about this below.

4 Conditions for Generalization
Let Q̄ = (F,AF , IF , QF ) be a first-order abstraction for D.
We look for conditions to establish the soundness of Q̄ for a
generalized problem Q ⊆ Q(D). In particular, we aim for
conditions of the form G = {Φā : ā ∈ AF } where Φā =
∃z̄
(∨

i Ψai
ā (z̄)

)
is associated with the abstract action ā and

satisfies the following:
– ai is an action schema in D,
– z̄ is a tuple of variables that represent the parameters of the

action schemas in D (these are existentially quantified on
the objects of the given state s in problem P ), and

– if ō is a tuple of objects of dimension |z̄| such that s �
Pre(ā) ∧ Ψai

ā (ō), where s is a reachable state in problem
P ∈ Q(D), then the ground action ai(ō) instantiates the
abstract action ā in the state s (i.e., ā ∼s ai(ō)).

The idea is that Ψai
ā (ō) suffices to establish ā ∼s ai(ō) di-

rectly from Pre(ā) and the (lifted) domain D without using
any other information about the reachability of state s (e.g.,
invariant information for reachable states). On the other hand,
such formulas would be “accompanied” by assumed condi-
tions Pre(ā) ⇒ ∃z̄

(∨
i Ψai

ā (z̄)
)

on the reachable states that
together with the above properties provide the guarantee:
Definition 2 (Guarantee). Let D be a planning domain and
let Q̄ = (F,AF , IF , GF ) be a first-order abstraction. A guar-
antee for Q̄ is a set G = {Φā = ∃z̄

(∨
i Ψai

ā (z̄)
)

: ā ∈ AF }
of formulas for each abstract action ā in Q̄. The guarantee is
valid in instance P ∈ Q(D) iff for each state s ∈ P (reach-
able or not) and tuple ō of objects in P , if s � Pre(ā)∧Ψai

ā (ō)
then ā ∼s ai(ō). The guarantee G is valid for D iff it is valid
for each problem P in Q(D).
Theorem 3 (Soundness). Let D be a planning domain, let
Q̄ = (F,AF , IF , IF , GF ) be a first-order abstraction, and let
G = {Φā = ∃z̄

(∨
i Ψai

ā (z̄)
)

: ā ∈ AF } be a guarantee forD.
If G is valid, then Q̄ is a sound abstraction for the generalized
problem Q = {P ∈ Q(D) : Q̄ ∼ P and Pre(ā)⇒ Φā holds
in the reachable states in P}.

Proof. Let P be a problem in Q, let s be a reachable state in
P , and let ā be an abstract action that is applicable in s̄. Since
Q̄ ∼ P , we only need to show ā ∼s a for some action a. By
definition of Q, s � Φā where Φā = ∃z̄

(∨
i Ψai

ā (z̄)
)
. Hence,

there is a tuple ō of objects such that s � Pre(ā) ∧Ψai
ā (ō) for

some schema ai inD. Then, by Definition 2, ā ∼s ai(ō).

5 Synthesis
For a feature f defined by concept C we need to track its
value along transitions s  res(a(ō), s). Let Ψa

C(z̄, x̄) be a
formula that defines at state s the extension of C in the state
res(a(ō), s) that results of applying a(ō) in s; i.e.,

s � Ψa
C(ō, ū) iff ū ∈ Cres(a(ō),s)
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where ū is a tuple of objects. For example, a boolean feature
f defined by C goes from true to false in s  res(a(ō), s)
iff Cs 6= ∅ and Cres(a(ō),s) = ∅ iff s � ∃x̄(ΨC(x̄)) and
s′ � ¬∃x̄(ΨC(x̄)) iff s � ∃x̄(ΨC(x̄)) ∧ ∀x̄(¬Ψa

C(ō, x̄)).
Since the concept C may be defined in terms of relations

p∗ or p+ that denote the transitive closure of p, and that tran-
sitive closure is not first-order definable [Vardi, 1982], it is
not always possible to track in first-order logic the change of
denotation for p∗ or p+ after an action changes the denota-
tion of p. Hence, we settle for a “logical approximation” of
Ψa
C(z̄, x̄) in terms of necessary and sufficient conditions:

SaC(z̄, x̄) ⇒ Ψa
C(z̄, x̄) ⇒ Na

C(z̄, x̄) .

A base for synthesis provides approximations for all the
atoms in the language L(σ):
Definition 4 (Base for Synthesis). A base for synthesis for
domainD is a set T that contains formulas TX(a, p)(z̄, x̄) for
X∈{N,S}, action schemas a(z̄) ∈ D, and predicates p ∈ D
of arity |x̄|. It also contains formulas TX(a, pc)(z̄, x, y) for
X∈{N,S}, action schemas a(z̄) ∈ D, binary predicates p ∈
D, and at least one of c = ∗ or c = +. These formulas should
provide necessary and sufficient conditions as follows. For
any problem P in Q(D), state s in P , tuple ō such that a(ō)
is applicable at s, tuple ū, objects u and v, and c ∈ {∗,+}:

s � TS(a, p)(ō, ū) ⇒ ū ∈ Cres(a(ō),s)
p

⇒ s � TN (a, p)(ō, ū) ,

s � TS(a, pc)(ō, u, v) ⇒ (u, v) ∈ Cres(a(ō),s)
pc

⇒ s � TN (a, pc)(ō, u, v)

where Csp ={ū : s � p(ū)} and Cspc ={(u, v) : s � pc(u, v)}
are the concepts associated with p and pc respectively.

The approximation for the atoms in L(σ) that is provided
by the base T is lifted over all first-order formulas. Indeed,
the following structural induction gives necessary and suffi-
cient conditions Na

ϕ(z̄, x̄) and Saϕ(z̄, x̄) for any concept C
defined in terms of formula ϕ. For X∈{N,S}:
– Xa

p (z̄, x̄)=TX(a, p)(z̄, x̄) where p is a predicate of arity
|x̄|, or p = qc for some binary predicate q, and c ∈ {∗,+},

– Xa
ϕ◦ψ(z̄, x̄) = Xa

ϕ(z̄, x̄) ◦Xa
ψ(z̄, x̄) where ◦ ∈ {∧,∨},

– Na
¬ϕ(z̄, x̄) = ¬Saϕ(z̄, x̄) and Sa¬ϕ(z̄, x̄) = ¬Na

ϕ(z̄, x̄), and

– Xa
Qyϕ(z̄, x̄) = QyXa

ϕ(z̄, x̄, y) where Q ∈ {∃, ∀}.
The base provides approximations for either p∗ or p+, or
both. In the former case, this is enough since one of
the closures can be expressed in terms of the other; e.g.,
on+(x, y) ≡ ∃z(on(x, z) ∧ on∗(z, y))).

Below we propose a general base for synthesis of formulas.
With this base, the formulas Na

ϕ and Saϕ are identical except
when ϕ contains a transitive closure. Hence, except for such
ϕ, both formulas are necessary and sufficient.
Theorem 5 (Lift). Let T be a base for synthesis for domain
D, let a = a(z̄) be an schema in D, and let ϕ(z̄, x̄) be a
first-order formula in L(σ(D)). Then, for any instance P in
Q(D), state s for P , and tuples ō and ū of objects in P :

s � Saϕ(ō, ū) ⇒ res(a(ō), s) � ϕ(ō, ū) ⇒ s � Na
ϕ(ō, ū) .

As noted earlier, tracking the change of boolean features f
defined by concepts C is easy since f is true or false at s iff
Cs is non-empty or empty respectively. Tracking the quali-
tative numerical changes is more challenging, however. For
example, f increases in the transition s s′ iff |Cs| < |Cs′ |.
This condition is difficult to capture because the extension of
C may increase size by the result of a small change, as sim-
ple as one new element entering the set, or by a large change
involving many elements. The case of local, small, changes
is common and easy to define:
Definition 6 (Monotonicity). LetD be a domain and let P be
an instance in Q(D). A concept C for Q(D) is monotone in
P if for every reachable state s in P , and action a(ō) that
is applicable in s, either C(P, s) ⊆ C(P, s′), C(P, s) ⊇
C(P, s′), or C(P, s) = C(P, s′) for s′=res(a(ō), s). A first-
order abstraction Q̄ is monotone for P if each feature f in Q̄
is defined by a concept C that is D-definable and monotone.

Necessary and sufficient conditions for the change of value
of monotone features f along transitions s  res(a(z̄), s),
for action schema a(z̄), are provided by the formulas:

Xinc
C (z̄) = ∃x̄(¬Ψ ∧Xa

Ψ) ,

Xdec
C (z̄) = ∃x̄(Ψ ∧ ¬X̂a

Ψ) ,

Xeq
C (z̄) = ∀x̄(Ψ⇒ Xa

Ψ) ∧ ∀x̄(X̂a
Ψ ⇒ Ψ) ,

Xtrue
C (z̄) = ∃x̄(Xa

Ψ(z̄, x̄)) ,

Xfalse
C (z̄) = ∀x̄(¬X̂a

Ψ(z̄, x̄))

where C is the concept that defines f , X∈{N,S} denotes a
necessary or sufficient condition, Ψ and Xa

Ψ denote ΨC(x̄)

and Xa
ΨC

(z̄, x̄) respectively, and N̂a
Ψ = SaΨ and ŜaΨ = Na

Ψ.
For example, SdecC (z̄) = ∃x̄(Ψ ∧ ¬Na

Ψ). If s � SdecC (ō),
there is object tuple ū such that s � Ψ(ū) ∧ ¬Na

Ψ(ō, ū); i.e.,
ū ∈ Cs and ū /∈ Cres(a(ō),s). For monotone features, the
only possibility is Cres(a(ō),s) ( Cs which means that the
feature decreases in the transition s res(a(ō), s).

For obtaining sufficient conditions for general features, the
first two formulas from above are strengthen as

SincC (z̄) = ∀x̄(Ψ⇒ SaΨ) ∧ ∃x̄(¬Ψ ∧ SaΨ) ,

SdecC (z̄) = ∀x̄(Na
Ψ ⇒ Ψ) ∧ ∃x̄(Ψ ∧ ¬Na

Ψ)

where the added conjunct enforces that the feature defined by
the concept C is indeed monotone. For the remaining cases,
the formulas for sufficiency correspond to those above.
Lemma 7. Let C be a concept characterized by formula
ΨC(x̄), and let s be a state in P ∈ Q(D) on which the action
a(ō) is applicable. Then,

s � SincC (ō) ⇒ Cs ( Cs
′
⇒ |Cs| < |Cs

′
| ,

s � SdecC (ō) ⇒ Cs ) Cs
′
⇒ |Cs| > |Cs

′
| ,

s � SeqC (ō) ⇒ Cs = Cs
′
⇒ |Cs| = |Cs

′
| ,

s � StrueC (ō) ⇒ Cs
′
6= ∅ ⇒ |Cs

′
| > 0 ,

s � SfalseC (ō) ⇒ Cs
′

= ∅ ⇒ |Cs
′
| = 0

where s′ = res(a(ō), s) is the result of applying a(o) in s.
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Reference Formula

BX(a, p)(z̄, x̄) [[p(x̄) ∈ Post]] ∨ (p(x̄) ∧ [[¬p(x̄) /∈ Post]])

BN (a, p∗)(z̄, x, y) p∗(x, y) ∨ ∃uv
(
[[p(u, v) ∈ Post]] ∧ p∗(x, u) ∧ p∗(v, y)

)
(action adds at most 1 p-atom)

p∗(x, y) ∨ ∃uv
(
[[p(u, v) ∈ Post]] ∧ (p∗(x, u) ∨ p∗(v, y))

)
(action adds 2 or more p-atoms)

BS(a, p∗)(z̄, x, y) (x = y) ∨
(
p∗(x, y) ∧ ∀uv([[¬p(u, v) ∈ Post]]⇒ u = v)

)
Table 1: General base B for synthesis of any domain D. Post(a(z̄)) is abbreviated by Post. X ∈ {N,S}. There are two versions of the
necessary condition for p∗; one for actions that add at most one atom p(u, v), and the other for actions that add two or more atoms of this
form. The first version uses a conjunction, p∗(x, u) ∧ p∗(v, y), while the second version replaces it with a disjunction.

We have expressed how the value of individual features
changes in transitions. Before providing the complete synthe-
sis, we need to express the value of preconditions of abstract
actions, and how the actions affect the different features.

Preconditions of abstract actions ā on features f = fC
are expressed by Pre(ā)C = > if there is no precondition
on f , Pre(ā)C = ∃x̄(ΨC(x̄)) if f is boolean (resp. nu-
meric) and Pre(ā) contains f (resp. f > 0), and Pre(ā)C =
∀x̄(¬ΨC(x̄)) if f is boolean (resp. numeric) and Pre(ā) con-
tains ¬f (resp. f = 0).

On the other hand, ā partitions the set of features according
to their type and the effects of ā on them:

∆inc
ā = {n ∈ F : n is numeric and n↑∈ Eff(ā)} ,

∆dec
ā = {n ∈ F : n is numeric and n↓∈ Eff(ā)} ,

∆eq
ā = {f ∈ F : f is not affected by ā} ,

∆true
ā = {f ∈ F : f is boolean and f ∈ Eff(ā)} ,

∆false
ā = {f ∈ F : f is boolean and ¬f ∈ Eff(ā)} .

Definition 8 (Synthesis). Let T be a base for synthesis for
domain D, and let Q̄ = (F,AF , IF , GF ) be a first-order ab-
straction forD. For abstract action ā inAF and schema a(z̄)
in D, we define the formula Ψa

ā(z̄) as

Pre(a(z̄)) ∧
∧

ϕ∈Chg

∧
fC∈∆ϕ

ā

Pre(ā)C ∧ SϕC(z̄)

where Chg={inc, dec, eq, true, false}. The guarantee for
Q̄ is G(T , Q̄) = {Φā = ∃z̄

(∨
a∈D Ψa

ā(z̄)
)

: ā ∈ AF }.
Theorem 9 (Main). Let T be a base for synthesis for domain
D, and let Q̄ = (F,AF , IF , GF ) be a first-order abstraction.
Then, G(T , Q̄) is a valid guarantee for D (cf. Definition 2).

We cannot yet provide a complete example because the
synthesis requires the conditions for the atoms in the language
that are given by the base for synthesis. We now provide one
such base, and apply it to the running example.

5.1 A General Base for Synthesis
The synthesis framework is parametrized by the base. Triv-
ial, non-informative, bases are easy to obtain: it is enough to
define sufficient and necessary conditions as⊥ and> respec-
tively for each atom in the language. We provide a simple,
general, and non-trivial base that can be used with any do-
main D. The conditions provided by two different bases, or
by the same base for different but logically equivalent formu-
las, do not need to be logically equivalent.

Table 1 shows a template for obtaining bases B(D) for any
domain D. No formula in the template involves the predicate
p+; i.e., all such predicates have been replaced by equivalent
formulas involving p∗. (Alternatively, we may define a base
that only resolves p+ and assumes that no formula contains
p∗.) Two versions for the necessary condition for p∗ are pro-
vided: one when the action a adds at most one atom p(u, v),
and the other when a adds two or more such atoms.

The formulas in Table 1 involve “bracket expressions” that
instantiate to first-order formulas. For schema a(z̄) and tuple
x̄, a bracket expression reduces to either to a logical constant
> or ⊥, or to an expression involving equality over the vari-
ables in z̄ and x̄, and the constant symbols in D. For exam-
ple, [[¬on(x, y) /∈ Post]] reduces to xy 6= z1z2 for the action
Newtower(z1, z2) since this action removes only on(z1, z2).

Theorem 10 (General Base). Let D be a planning domain.
The set B(D) is a base for synthesis for domain D.

Corollary 11. Let D be a domain and let Q̄ = (F,AF , IF ,
GF ) be a first-order abstraction for D. The guarantee
G(B(D), Q̄) is valid for D and, hence, Q̄ is a sound abstrac-
tion for the generalized problem Q = {P ∈ Q(D) : Q̄ ∼ P
and Pre(ā)⇒ Φā holds in the reachable states in P}.

Example. The abstraction Q̄clear = (F,AF , IF , GF ) has a
single feature n=nC for ΨC(x)=∃y(on(x, y) ∧ on∗(y,A)).
Dclear has two schemas a1 = Newtower(z1, z2) and a2 =
Move(z3, z4, z5). The condition SdecC (z1, z2) for a1 is equiv-
alent (after simplification) to

on(z1,z2) ∧ on∗(z2,A) ∧ ∀y(on(z1,y)∧on∗(y,A)⇒ y=z2).

The formula Ψa1
ā (z1, z2) is this formula conjoined with

clear(z1). For action a2, SdecC (z3, z4, z5) is

on+(z3,A) ∧ ¬on∗(z5,A) ∧
∀y(on(z3, y) ∧ on∗(y,A)⇒ y = z4) .

The formula Ψa2
ā (z1, z2) is this formula conjoined with

clear(z3), on(z3, z4), and clear(z5). The guarantee for ā
is Φā = ∃z̄

(
Ψa1
ā (z1, z2) ∨Ψa2

ā (z3, z4, z5)
)
.

By Corollary 11, Qclear is sound for instances with goal
clear(A) and reachable states that satisfy ∃x(on+(x,A))⇒
Φā. Namely, if there is a block above A, then either there are
blocks z1 and z2 such that z1 is clear and on z2, z2 is A or
above it, and z2 mediates any “path of blocks” from z1 to A,
or there are blocks z3, z4 and z5 such that z3 is clear, on z4,
and above A, z5 is clear and not equal to A or above it, and z4
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mediates any path from z3 to A. This formula indeed holds in
all “real instances” of Blocksworld. Q̄clear is then sound for
all of them, and the policy π̄clear that solves the abstraction
is a generalized plan for Qclear. A full derivation appears in
the extended version of this paper [Bonet et al., 2019b].

6 Necessary Conditions and Invariants
The conditions provided by G are only sufficient; i.e., no con-
clusion about an abstraction Q̄ for instance P can be drawn
if some reachable state s in P satisfies Pre(ā) but not Φā.
For reasoning in such cases, one needs necessary rather than
sufficient conditions for soundness.

For obtaining necessary conditions, we need to assume that
the features in the abstraction are indeed monotone; i.e., their
value changes in a local manner along the transitions in any
instance P in Q(D). For example, under monotonicity, f
decreases in s res(a(ō), s) iff Cres(a(ō),s) ( Cs iff

s � ∃x̄(ΨC(x̄) ∧ ¬Ψa
C(ō, x̄))

(where C is the concept that defines f ) only if

s � ∃x̄(ΨC(x̄) ∧ ¬SaC(ō, x̄)) .

We obtain necessary conditions similarly as before:
Theorem 12 (Necessary Conditions). Let D be a domain, let
Q̄ be a first-order abstraction forD, and let P be an instance
in Q(D) such that Q̄ is sound and monotone for P . If s is a
reachable state in P , then

s � Pre(ā)⇒ ∃z̄
(∨

i Γaiā (z̄)
)

where Γaiā (z̄) is the formula

Pre(ai(z̄)) ∧
∧

ϕ∈{inc,dec,eq,>,⊥}

∧
fC∈∆ϕ

ā

Nϕ
C(z̄) .

Necessary conditions are useful for showing that Q̄ is not
sound for instance P : it is enough to find a reachable state
where the condition does not hold. On the other hand, we
cannot infer that Q is sound for P only if the necessary con-
dition does hold in P .

If the abstraction Q̄ is sound for Q, every instance P in
Q for which Q̄ is monotone must satisfy the necessary condi-
tions. Such conditions, that by definition hold in all reachable
states, are state invariants in P . Therefore, sufficient and nec-
essary conditions for the soundness of an abstraction Q̄ can
be regarded as candidates for invariants, which may then be
verified by a theorem prover in order to avoid an explicit enu-
meration of reachable states [Slind and Norrish, 2008].

7 Other Examples
In this section we present two additional examples. One for
a gripper problem with an arbitrary number of balls and grip-
pers, and the other about connectivity in directed graphs.

7.1 Gripper
We consider a domain D for Gripper with constants A (des-
tination) and B (origin) for the rooms, objects l and r for the
grippers, and objects bi for the different balls. The predicates

are at(r) and in(b, r) for the position of the robot and balls
in rooms, ca(b, g) to indicate when ball b is held by gripper
g, and fr(g) to indicate that gripper g is not holding any ball.
The action schemas are a1 = Move(r1, r2) for moving the
robot, and a2 = Pick(b, g, r) and a3 = Drop(b, g, r) for pick-
ing and dropping balls in rooms using specific grippers.

Bonet et al. [2019a] learn an abstraction that is made of a
boolean feature X , and numerical features B, C, and G:

– X = {r : at(r) ∧ r=A} tells whether the robot is in A,

– B = {b : ∃r(in(b, r) ∧ r 6=A)} counts the balls in B,

– C = {b : ∃g(ca(b, g))} counts the balls being held, and

– G = {g : fr(g)} counts the free grippers.

The abstract actions in abstraction Q̄gripper are:

– pick = 〈¬X,B > 0, G > 0;B↓, G↓, C↑〉,
– drop = 〈X,C > 0;C↓, G↑〉,
– go1 = 〈¬X,B = 0, C > 0, G > 0;X〉,
– go2 = 〈¬X,C > 0, G = 0;X〉,
– leave = 〈X,C = 0, G > 0;¬X〉.
Both, go1 and go2, move the robot from A to B. Go1 moves
the robot that still has room to pick more balls only when
there are no more balls to be picked at B; go2 moves the robot
when it cannot hold any more balls. The formulas Ψai

ā (z̄)
are ⊥ except for (conditions in Pre(ai) removed to fit space):

Ψa2

pick = ∀x[¬ca(b, x)] ∧ r 6= A ,

Ψa3

drop = at(A) ∧ ¬fr(g) ∧ (r=A ∨ ∃x[in(b, x) ∧ x 6=A]) ,

Ψa1

go1 = ∃xy[ca(x, y)] ∧ ∃x[fr(x)] ∧
∀xy[in(x, y)⇒ y = A] ∧ r1 6= A ∧ r2 = A ,

Ψa1

go2 = ∃xy[ca(x, y)] ∧ ∀x[¬fr(x)] ∧ r1 6= A ∧ r2 = A ,

Ψa1

leave = ∀xy[¬ca(x, y)] ∧ ∃x[fr(x)] ∧ r1 = A ∧ r2 6= A .

For example, Ψa1

pick = Ψa3

pick = ⊥ means that the abstract
pick action cannot be instantiated by any ground instance of
Move(r1, r2) or Drop(b, g, r): the first changes the feature X
that is not affected by pick, and the second increases G in
contradiction with the effect G↓.

On the other hand, Ψa2

pick = ∀x[¬ca(b, x)] ∧ r 6= A means
that the ground action Pick(b, g, r) instantiates the pick action
when r 6= A, otherwise the effect B ↓ is not achieved, and
when the ball b is not being held by any gripper x, otherwise
C↑ is not met. Ψa2

pick is logically implied at reachable states by
the preconditions of Pick(b, g,B) and the mutex information
that is polynomially computable. Indeed, the preconditions
are at(B), in(b,B) and fr(g), while the mutex invariants in-
clude ¬in(b, r) ∨ ¬ca(b, g) for any b, r, and g. Actually,
we can show that the mutex information is enough to show
Pre(ā)⇒ ∃z̄(

∧
i Ψai

ā ) for all the actions ā in the abstraction.
Hence, the abstraction is sound for any instance of Gripper.

7.2 Connectivity in Graphs
We now consider a graph problem that involves the connec-
tivity of two designated vertices s and t. The domain D has
constants s and t, a single binary predicate E(x, y), and a
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single action schema Link(x, y) that adds E(x, y) and has no
precondition. The exact form of the initial situation or goal is
not relevant in the following discussion.

The abstraction Q̄ defines two features: a boolean feature
conn that is true iff s and t are connected, and a numerical
feature n that counts the total number of edges in the graph.
These features are defined with the concepts:

conn = {(x, y) : E∗(x, y) ∧ x = s ∧ y = t} ,
n = {(x, y) : E(x, y)} .

There is a single abstract action ā = 〈;n↑〉. Since conn exists
as a feature in Q̄ and ā does not affect it, no instantiation of ā
may modify the st-connectivity of the graph. The guarantee
Φā for ā is then

∃z1z2

[
¬E(z1, z2) ∧ (E∗(s, z1) ∧ E∗(z2, t)⇒ E∗(s, t))

]
.

That is, a sufficient condition for Link(z1, z2) to instantiate ā,
and thus increase n and leave conn intact, is that there should
be no edge between z1 and z2, and there should be a path s 
t if there are paths s  z1 and z2  t. The first condition
entails that the number of edges in the graph indeed increases
after applying Link(z1, z2), while the second entails that the
truth value of conn does not change with the application of
the action: either it was true and remains true, or it was false
and remains false.

On other hand, the synthesis of the necessary condition
yields ¬E(z1, z2) which is quite weak. The reason is that
the formula BS(a, p∗) in Table 1 is not strong enough. A bet-
ter necessary condition is obtained when the following term
is added to the disjunction in BS(a, p∗):

∀uv[[¬p(u, v) /∈ Post]] ∧
∃uv([[p(u, v) ∈ Post]] ∧ p∗(x, u) ∧ p∗(v, y)) .

This term says that the action removes no edge from the
graph, and adds one edge (u, v) for existing paths x  u
and v  y. Clearly, if this condition is met, the graph has
a path x  y after the application of the action. The result-
ing base thus remains valid for any domain D and, in some
cases, it provides tighter conditions. Indeed, with this amend-
ment, the necessary condition becomes equal to the sufficient
condition Φā.

Finally, observe that these conditions are not invariants.
The reason is that the abstraction is not sound since there are
configurations (states) in which no edge can be added to the
graph without altering the st-connectivity. In such states, the
abstract action ā is still applicable, as it does not have any
precondition, but no Link(z1, z2) action instantiates it.

8 Discussion and Future Work
Abstractions for generalized planning can be inductively ob-
tained from small samples of transitions from one or several
instances of planning problems. Although there are no guar-
antees on the soundness of the abstractions, we have shown
that the abstractions contain usable information about the in-
tended planning instances. Indeed, by analyzing the abstrac-
tion with respect to the planning domain, we have shown how
to obtain formulas that capture some of the assumptions be-
ing made by the abstraction. These assumptions can be either

sufficient or necessary. A sufficient condition is a guarantee
for generalization. Necessary conditions may be used to show
that an instance is not captured by the abstraction.

Sufficient conditions may also be used to improve the
search for instantiations of an abstract action ā that is appli-
cable in a state s in instance P . In the worst case, one needs
to iterate over every grounded action a(ō) to find an instan-
tiation of ā. However, if P satisfies the sufficient condition,
it is enough to find a tuple of objects ō such that s � Φā(ō),
something that may be easier to find than to iterate over the
set of grounded actions.

The information provided by invariants has been exploited
in planning for different purposes and it is essential in some
planning paradigms. The automatic synthesis of invariants
is a computationally hard problem, and many of the exist-
ing techniques are based on a generate and test approach
that often yields an incomplete set of invariants [Fox and
Long, 1998; Gerevini and Schubert, 1998; Rintanen, 2000;
Rintanen, 2008; Helmert, 2009]. We have shown how to use
the synthesis of guarantees for abstractions as a method for
generating candidates for invariants. Hence, the computation
of abstractions for generalized planning may be relevant even
when the focus is to learn invariants rather than to solve gen-
eralized planning problems. As seen in the examples, some of
these invariants are quite complex and out-of-reach for state-
of-the-art methods for invariant synthesis.

There are clear directions for future work. First, come up
with better bases for translation, based on either p+ or p∗,
and understand better the strengths and weaknesses of dif-
ferent bases. Second, even though we are able to handle con-
cepts that are more general than those generated from concept
grammars, we are not yet able to accommodate distance fea-
tures as defined by Bonet et al. [2019a]. Finally, it may be the
time to bring theorem provers into the pipeline of generalized
planning: from samples we obtain abstractions Q̄ by an in-
ductive process, a solution π̄ for Q̄ is computed with a FOND
planner, and an instance P is then assured to be solved by π̄ if
P satisfies the guarantee for Q̄. The latter may be automated
with the help of theorem provers.
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