TRANSIT:
Ultrafast Shortest-Path Queries
with Linear-Time Preprocessing

Holger Bast Stefan Funke Domagoj Matijevic

Max-Planck-Institut fir Informatik, Saarbriicken, Germany

{bast,funke,dmatijev} at mpi-inf dot mpg dot de

Abstract

We introduce the concept of transit nodes, as a means for preprocessing a road network,
with given coordinates for each node and a travel time for each edge, such that point-to-point
shortest-path queries can be answered extremely fast.

The transit nodes are a set of nodes, as small as possible, with the property that every
shortest path that is mon-local in the sense that it covers a certain not too small euclidean
distance passes through at least on of these nodes. With such a set and precomputed distances
from each node in the graph to its few, closest transit nodes, every non-local shortest path query
becomes a simple matter of combining information from a few table lookups.

For the US road network, which has about 24 million nodes and 58 million edges, we achieve
a worst-case query processing time of about 10 microseconds (not milliseconds) for 99% of all
queries. This improves over the best previously reported times by two orders of magnitude.

1 Introduction

The classical way to compute the shortest path between two given nodes in a graph with given
edge lengths is Dijkstra’s algorithm [5]. The asymptotic running time of Dijkstra’s algorithm is
O(m + nlogm), where n is the number of nodes, and m is the number of edges. For graphs with
constant degree, like the road networks we consider in this paper, this is O(nlogn). While it is still
an open question, whether Dijktra’s algorithm is optimal for single-source single-target queries in
general graphs, there is an obvious Q(n + m) lower bound, because every node and every edge has
to be looked at in the worst case. Sublinear query time hence requires some form of preprocessing
of the graph. For general graphs, constant query time can only be achieved with superlinear space
requirement; this is due to a recent result by Thorup and Zwick [16]. Like previous works, we
therefore exploit special properties of road networks, in particular, that the nodes have low degree
and that there is a certain hierarchy of more and more important roads, such that further away
from source and target the more important roads tend to be used on shortest paths.

Our benchmark for most of this paper will be the US road network, which has about 24 million
nodes and 58 million edges. On this network, a good implementation of Dijkstra’s algorithm on
a single state-of-the-art PC takes on the order of seconds, on average, for a random query. Note
that for a random query, source and target are likely to be far away from each other, in which case
Dijkstra’s algorithm will settle a large portion of all nodes in the network before eventually reaching
the target. For most of this paper, edge lengths will be travel times, so that shortest paths are
actually paths with minimum travel time. We will continue to speak of shortest, however, because

N e L traiatialie meregialstanel] rizettel
.. 3)
i 0\

Figure 1: Transit nodes (red/bold dots) for a part of a city (center, dark) when travelling far
(outside the light-gray area).

that is more familiar and to stress the wider applicability of our transit node idea. At the end of
the paper we will also present results for unit edge lengths and when the length of an edge is the
euclidean distance between its endpoints, and results for the road network of Western Europe.

2 Our results

We present a new algorithm, coined TRANSIT, which can answer non-local shortest path queries
extremely fast, by combining information from a small number of lookups in a table. On the US road
network, we achieve an average query processing time of around 10 microseconds (not milliseconds)
for 99 % of all queries, when only the length (travel time) of the shortest path is required. The
remaining 1 % of the queries are local in the sense that source and target are geometrically very
close to each other. We also provide a simple algorithm for dealing with the few local queries
efficiently. However, the focus of this work is on the non-local queries. In fact, we prefer to view
our transit node approach as a filter: the vast majority of all queries can be processed extremely
fast, leaving only a small fraction of local queries, which can be processed by any other method.
Note that already Dijktra’s algorithm can process the local queries by orders of magnitudes faster
than arbitrary random queries.

Our processing times for the non-local queries beat the best previously reported figure of about 1
millisecond, due to Sanders and Schultes [14], by two orders of magnitude. When the full path, with
all its edges, is to be output, we achieve an average query processing time of about 5 milliseconds
on the US road network. We remark that all of the previous, more sophisticated algorithms use
some form of edge compression, which does not easily allow them to output the edges along the
shortest path.

The basic idea of TRANSIT is as follows. For a given road network, compute a small set of

transit nodes with the property that every shortest path that covers a certain not too small euclidean
distance passes through at least one of these transit nodes. For every node in the given graph, then
compute a set of closest transit nodes, with the property that every shortest path starting from that
node and passing through a transit node at all (which it will if it goes sufficiently far), will pass
through one of these closest transit nodes. These sets of closest transit nodes turn out to be very
small: about 10 on average for our choice of transit nodes on the US road network. This allows us
to precompute, for each node, the distances to each of its closest transit nodes. Also, the overall
number of transit nodes turns out to be small enough so that we can easily precompute and store
the distances between all pairs of transit nodes.

A non-local shortest path query can then easily be answered as follows. For a given source
node src and target node trg, fetch the precomputed sets of closest transit nodes T',. and T},
respectively. For each pair of transit nodes ts € T and tyy € Ty compute the length of the
shortest path passing through these nodes, which is d(src,t) + d(tsrc, tirg) + d(trg, t). Note that
all three distances in this sum have been precomputed. The minimum of these || - |T4y| lengths
is the length of the shortest path.

Given an algorithm for length-only shortest path queries, one can easily compute the edges
along the shortest path using a few length-only shortest path queries per edge on the shortest path.
To see this, assume we have already found a portion of the shortest path from the source to a node
u. To find the next edge on the path, we simply launch a length-only shortest path query for each
of the adjancent nodes of u. Given the length of the portion of the shortest path we already know,
its total length, and the length of the edges adjacent to u, it is then easy to tell which of these
edges is next on the shortest path.

We want to stress that there are natural applications, where length-only shortest path queries are
good enough, and not all the edges along the path are required. For example, most car navigation
systems merely have a local view of the road network (if any). In that case it suffices to know
the next few edges on the shortest path, and these can be computed by just a few length-only
shortest-path queries, as described above.

We decribe TRANSIT in more detail in Section 4.

3 Related Work

We give a quick survey of work directly relevant to the problem of preprocessing road networks for
subsequent fast shortest-path querying.

Gutman in [8] proposes a general concept of edge levels. Consider an edge e that appears ”in
the middle” of a shortest paths, shortest with respect to travel time, between two nodes that are
a certain distance d apart, distance with respect to some arbitrary other metric, e.g., euclidean
distance. Then the level of e is the higher, the larger d is. Gutman defines levels with respect
to euclidean distance, but he notes that any metric can be used for the discrimination of the ”in
the middle” property. He presents simple algorithms which compute upper bounds for the edge
levels and instruments those to obtain more efficient exact shortest path queries on moderate-size
road networks. Due to the use of the euclidean metric as classifying metric, his approach allows
for several variants of Dijkstra, in particular a natural goal-directed (unidirectional) version as well
as efficient one-to-many shortest path queries. The — compared to later work — less competitive
running times, both for the preprocessing phase as well as the queries are mostly due to the lack
of an efficient compression scheme, which — in particular for the networks induced by higher level
edges — improves the processing time considerably.

Later Sanders and Schultes have adopted a different classifying metric for their so-called Highway-
Hierarchies [13]. In an ordinary Dijkstra computation from a source src, say that the rth node
settled has Dijkstra rank r with respect to src. Sanders and Schultes say that the level of an edge
(u,v) is high if it is on a shortest path between some src and trg such that v has high Dijkstra rank
with respect to src and u has high Dijkstra rank with respect to trg. They achieve an improvement
of an order of magnitude both in preprocessing time as well as in query times, mainly because of a
highly efficient compression and pruning scheme in the higher levels of the network. The output of
the algorithm is a path containing compressed edges, though, and it is not clear how much effort
in both time and space is necessary to uncompress those edges. Their variant is also inherently
bidirectional, so both goal-direction as well as one-to-many queries are not easily added.

Goldberg et al. in [7] combine edge levels with a compression scheme and they use lower bounds,
based on precomputed distances to a few landmarks, to allow for a more goal-directed search. They
report running times comparable to those of [13]. Their space consumption is somewhat higher
though, because every node in the network has to store distances to all landmarks.

More recently, Sanders and Schultes [14] have presented the so far best combination of pre-
processing and query time. They show how to preprocess the US road network in 15 minutes,
for subsequent query times of, on the average, 1 millisecond. As mentioned before, this scheme
outputs only the shortest path distance. While we could not yet come close to their extremely fast
preprocessing time, our length-only scheme beats their query time by two orders of magnitude.

Mohring et al. [11, 9], and, in independent work, Lauther [10] explored edge signs as a means
to achieve very fast query times. Intuitively, an edge sign says whether that edge is on a shortest
path to a particular region of the graph. In an extreme case, an edge could have a sign to every
node on the shortest path to which it lies. A shortest path query could then be answered by simply
following the signs to the target without any detour. However, to precompute these perfect signs
requires an all-pairs shortest-path computation, which takes quadratic time and would be infeasible
already for a small portion of the whole road network, say the network of California. It is shown in
[11, 9] and [10] how to cut down on this preprocessing somewhat, by putting up signs to sufficiently
large regions of the graph, but precomputation of those signs is still prohibitive for large networks.

Most recently, following the first appearance of our paper, Sanders and Schultes have combined
the transit node idea with highway hierarchies [15]. They report to have worked independently
on similar ideas, but with a five times larger number of closest transit nodes (called access nodes
in their work) per node. Note that the average query time of any scheme based on the transit
node idea grows quadratically in the average number of closest transit nodes per node. The idea
of precomputing all-to-all distances between a small subset of all nodes was already used in [14],
to terminate local searches when they ascended far enough in the hierarchy. Prompted by our
formulation of the transit node idea and the observation that an average of about 10 closest transit
nodes per node suffice for a road network like that of the US, Sanders and Schultes were able to
develop their ideas further to achieve very fast processing times on the order as we report them in
this paper. They achieve these processing times for both non-local and local queries. (We would
get a similar result by using the original highway hierarchies as a fallback for the local queries, but
their implementation is more integrated as it uses highway hierarchies both for the local queries
and for the computation of transit nodes.) Their preprocessing is an order of magnitude faster
than what we report in this paper. The price is a more complex algorithm and implementation,
and an increased space consumption. More details on the comparison between both approaches,
our simple geometric one and the one based on highway hierarchies, are given in a joint follow-up

paper [2].

- e =
e a1 0TI

Figure 2: Transit neighborhood of a cell in a 64 x 64 subdivision of the US.

In retrospect, the work of [12] (which later became [3]) can be taken as another alternative
to computing transit nodes. In a nutshell, they use a hierarchy of separators to partition a given
road network (making use of its almost-planarity). Their separator nodes could be taken as transit
nodes, in which case local queries would be those with both endpoints in the same component.
However, just like for the early attempts of Sanders and Schultes, this approach gives rise to an
inherently much larger number of closest transit nodes (access nodes), which implies one to two
orders of magnitude larger preprocessing time, space consumption and query processing times.

4 The TRANSIT algorithm

4.1 Intuition

The basic intuition behind our approach is very simple: imagine you live in a big city and intend
to travel long-distance by car. What you will observe is that irrespectively of where your final
destination is (as long it is reasonably far away) and where exactly you live in the city, there will
be few roads via which you will actually leave the urban area when travelling on a shortest path
to your destination. In Figure 1 we have depicted these roads for the center part of a city. No
matter where you start your journey inside the central region (in dark) — if your final destination
lies outside the light-grey area and you travel on a shortest path, you will pass through one of the
14 marked roads (red/bold dots). This property, that long-distance trips (where the length is to
be seen relative to the ”starting region”) pass through few transit nodes, is in fact to some degree
invariable to scale. The example in Figure 1 shows the transit nodes for a cell in a 256 x 256
subdivision of the road network of the US; there are 14 of them. Figures 2 and 3 show transit
nodes (or more precisely transit neighborhoods by which we compute transit nodes) for cells of a
64 x 64 and 1024 x 1024 subdivision of the US respectively. They exhibit 17 and 8 transit nodes
respectively.

In essence our approach is then to compute an (in our case geometric) subdivision of the
network into cells and determine their transit nodes, such that the total number of transit nodes is
o(y/n). This allows us to precompute all pairwise distances between transit nodes and store them
in sublinear space. Furthermore each node stores distances to the transit nodes of its resident cell.
At query time a simple lookup yields the exact distance between any source-target pair provided
they are not too close to each other.

]
y s . oo
®ca Cleg +2
L e ® p Se
® eCB C2e +1
[L ! ° e,
) b ® cc c3 0
§ hd :o . L J . o
. J c? b4 o CD Ca o -1
¢ ° e® @ oe
[® o CE C5 -2
b b oo oo
) ®

Figure 4: Definition and computation of transit nodes in the grid-based construction.

4.2 Computing the Set of Transit Nodes

Consider the smallest enclosing square of the set of nodes (coming with x and y coordinate each),
and the natural subdivision of this square into a grid of g x g equal-sized square cells, for some
integer g. We define a set of transit nodes for each cell C as follows. Let Sinner and Sguter be the
squares consisting of 5 x 5 cells and 9 x 9, respectively, each with C' at their center. Let E¢ be
the set of edges which have one endpoint inside C', and one outside, and define the set Vo of what
we call crossing nodes by picking for each edge from E¢ the node with smaller id. Define Viyuter
and Vipner accordingly. See the left side of Figure 4 for an illustration. The set of closest transit
nodes for the cell C' is now the set of nodes v from Vinher with the property that there exists a
shortest path from some node in Vo to some node in Vyyuter which passes through v. The overall
set of transit nodes is just the union of these sets over all cells. It is easy to see that if two nodes
are at least four grid cells apart in either horizontal or vertical direction, then the shortest path
between the two nodes must pass through one of these transit nodes. Also note that if a node is a
transit node for some cell, it is likely to be a transit node for many other cells, each of them two
cells away, too.

A naive way to compute these sets of transit nodes would be as follows. For each cell, compute
all shortest paths between nodes in Vo and Viuter, and mark all nodes in Viner that appear on at

least one these shortest paths. Figure 4 will again help to understand this. But such a computation
would take several days even for a relatively coarse grid like the 128 x 128 grid.

As a first improvement, consider the following simple sweep-line algorithm, which runs Dijkstra
computations within a radius of only three grid cells, instead of five, as in the naive approach.
Consider one vertical line of the grid after the other, and for each such line do the following. Let v
be one of the endpoints of an edge intersecting the line. We run a local Dijkstra computation for
each such v as follows: let Cley be the set of cells two grid units left of v and which have vertical
distance of at most 2 grid units to the cell containing v. Define Clign accordingly. See Figure 4,
right; there we have Cleep = {CA,CB,CC,CD,CE} and Chigny = {C1,C2,C3,04,C5}. We start
the local Dijkstra at v until all nodes on the boundary of the cells in Cle; and Ciigpy respectively
are settled; we remember for all settled nodes the distance to v. This Dijkstra run settles nodes
at a distance of roughly 3 grid cells. After having performed such a Dijkstra computation for all
nodes v on the sweep line, we consider all pairs of boundary nodes (vr,vg), where vy, is on the
boundary of a cell on the left and vg is on the boundary of a cell on the right and the vertical
distance between those cells is at most 4. We iterate over all potential transit nodes v on the sweep
line and determine the set of transit nodes for which d(vr,v) 4+ d(v,vg) is minimal. With this set
of transit nodes we associate the cells corresponding to vy, and vg, respectively.

It is not hard to see that two such sweeps, one vertical and one horizontal, will compute
exactly the set of transit nodes defined above (the union of all sets of closest transit nodes). The
computation is space-efficient, because at any point in the sweep, we only need to keep track of
distances within a small strip of the network. The consideration of all pairs (vy,vg) is negligible
in terms of running time. As a further improvement, we first do the above computation for some
refinement of the grid for which we actually want to compute transit nodes. For the finer grid, we
consider only those sweep lines, which also lie on the coarser grid. When computing the transit
nodes for the coarser grid, we can then restrict ourselves to nodes from the sets of transit nodes
computed for the finer grid. This easily generalizes to a sequence of refinements. In our experiments
we used grids with 2% x 2¢ cells.

4.3 Computing the Distance Tables

For each node v, the distances to the closest transit nodes of its cell can be easily memorized from
the Disjktra computations which had these transit nodes as source. A standard all-pairs shortest-
path computation gives us the distances between each pair of transit nodes. Since the number of
transit nodes is small (less than 8000 for the US road network, using a 128 x 128 grid), this takes
negligible time. The space consumption of these distance tables is discussed in Sections 4.7 and 4.8
below.

4.4 Shortest-path queries (length only)

We next describe how to compute the length of the shortest path between a given source node src
and a given target node trg, based on the preprocessing described in the previous two subsections.
We here give a description for the scenario where we have precomputed only a single level of transit
nodes. The extension to a hierachy of grids is straightforward, and will be explained in Section 4.7.

0. If src and trg are less than four grid cells (with respect to the grid used in the precomputation)
apart, compute the distance from src to trg via an algorithm suitable for local shortest-

path queries; a number of possibilities are described in Section 4.6. Otherwise, perform the
following steps:

1. Fetch the lists T, and T}, of the closest transit nodes for the grid cells containing src¢ and
trg, respectively. Also fetch the lists of precomputed distances d(sre,tspe),tsre € Tsre and
d(S, ttrg)a ttrg € Ttrg-

2. For each pair of te. € Ty and t4y € T}y compute the sum of the lengths of the shortest
path from src to tg., from ty. to tiy, and from ty, to trg, which is d(sre, tore) + d(tore, tirg) +
d(tirg, trg). Note that we may have tg. = tyy, in which case d(tge,tiy) = 0.

3. Compute the length of the shortest path from src to trg as the minimum of the |Tsy| - |Tipg]
distances computed in step 2.

The algorithm is easily seen to be correct. Steps 1-3 will only be executed if source and target
are more than four grid cells apart. Then, by the definition of the transit nodes in Section 4.2, the
shortest path between source and target must pass through at least one transit node. But then, by
the definition of closest transit nodes, the shortest path from src to trg will pass through one of the
closest transit node of src as well as through one of the closest transit nodes of trg. The shortest
path will therefore be among those tried in step 2, and we pick the shortest of these.

Since we have precomputed the distances from each node to its closest transit nodes and the
distances between each pair of transit nodes, steps 1-3 take time O(|Tsy| - [Thy|). The average
number of closest transit nodes of a node is a small constant — about 10 for the US road network.

4.5 Shortest-path queries (with edges)

In this subsection, we describe how we can enhance the procedure given in the previous subsection
to also output the edges along the shortest path from a given source node src to a given target
node tryg.

Assume that we have executed the procedure from the previous subsection, that is, we already
know the length of the shortest path from src to trg. Assume that we have already found the
part of the shortest path from src¢ to some u (initially, w = src). Let d(u, trg), which we can
compute as d(src, trg) — d(src,u), be the length of the part of the path which we have not found
yet. Then the next node on the shortest path is that node v adjacent to u with the property that
d(u, trg) = c(u,v) 4+ d(v, trg). This node can therefore be easily identified from the nodes adjacent
to u, if only we can compute the distances d(v, trg). But these are just instances of the problem
we solved in the previous subsection: given two nodes, compute the length of the shortest path
between them.

As described so far, the computation of d(v, trg) would resort to the special algorithm for local
shortest-path queries when v and trg are less than four grid cells apart. We can avoid this, if we
compute the shortest path from src only until four grid cells away from trg, and, symmetrically,
compute the shortest path from ¢rg until four grid cells away from src. This will give us the full
path if src and trg are at least eight grid cells apart. Otherwise, there is no way around runnning
the local algorithm.

4.6 Dealing with the Local Queries

If source and target are very close to each other (less than four grid cells apart in both horizontal
and vertical direction for length-only shortest-path queries; less than eight grid cells apart in that

way when computing the edges along the path), we cannot compute the shortest path via the
transit nodes. This makes sense intuitively: there is hardly any hierarchy of roads in an area like,
for example, downtown Manhattan, and a shortest path between two locations within the same
such area will mostly consist of (small) roads of the same kind. In such a situation, no small set of
transit nodes exist.

The good news is that most shortest-path algorithms are much faster when source and target
are close to each other. In particular, Dijkstra’s algorithm ist about a thousand times faster for
local queries, where source and target are at most four grid cells apart, for an 128 x 128 grid laid
over the US road network, than for arbitrary random queries (most of which are long-distance).
However, the non-local queries are roughly a million times faster and the fraction of local queries
is about 1 %, so the average running time over all queries would be spoiled by the local Dijkstra
queries.

Instead, we can use any of the recent sophisticated algorithms to process the local queries.
Highway hierarchies, for example, achieve running times of a fraction of a millisecond for local
queries, which would then only slightly affect the average processing time over all queries. The
drawback is that we would need the full implementation of another method, and that this method
requires additional space and precomputation time.

For our experiments in Section 5, we used a simple extension of Dijkstra’s algorithm using
geometric edge levels and shortcuts, as outlined in Section 3. This extension uses only six additional
bytes per node. An edge has level [if it is on the middle of a shortest path, where the sum of the
euclidean lengths of the edges along that path are above a certain monotonic function f(I). For
each node u, we insert at most two shortcuts as follows: consider the unique level, if any, where u
lies on a chain of degree-2 nodes (degree with respect to edges of that level); on that level insert a
shortcut from u to the two endpoints of this chain. In each step of the Dijkstra computation for a
local query, then consider only edges above a particular level (depending on the current euclidean
distance from source and target), and make use of any available shortcuts suitable for that level.
This algorithm requires an additional 5 bytes per node.

4.7 Multi-Level Grid

In our implementation as described so far, there is an obvious tradeoff between the size of the
grid and the percentage of local queries which cannot be processed via precomputed distances to
transit nodes. For a very coarse grid, say 64 x 64, the number of transit nodes, and hence the table
storing the distances between all pairs of transit nodes, would be very small, but the percentage of
local queries would be as large as 10 %. For a very fine grid, say 1024 x 1024, the percentage of
local queries is only 0.1 %, but now the number of transit nodes is so large, that we can no longer
store, let alone compute, the distances between all pairs of transit nodes. Table 1 gives the exact
tradeoffs, also with regard to preprocessing time, for the US road network. The average query
processing time for the non-local queries is around 10 microseconds, independent of the grid size.
To achieve a small fraction of local queries and a small number of transit nodes at the same
time, we employ a hierarchy of grids. We briefly describe the two-level grid, which we used for our
implementation. The generalization to an arbitrary number of levels would be straightforward.
The first level is an 128 x 128 grid, which we precompute as described so far. The second level
is an 256 x 256 grid. For this finer grid, we compute the set of all transit nodes as described, but
we compute and store distances only between those pairs of these transit nodes, which are local
with respect to the 128 x 128 grid. This is a fraction of about 1/200th of all the distances, and can

H |7 ‘ |7| x |7|/node ‘ avg. |A] ‘ % global queries | preprocessing

64 x 64 2042 0.1 114 91.7% 498 min
128 x 128 7426 1.1 114 97.4% 525 min
256 x 256 24 899 12.8 10.6 99.2% 638 min
512 x 512 89 382 164.6 9.7 99.8% 859 min
1024 x 1024 || 351484 2545.5 9.1 99.9% 964 min

Table 1: Number |7| of transit nodes, space consumption of the distance table, average number
|A] of closest transit nodes per cell, percentage of non-local queries (averaged over 100 000 random
queries), and preprocessing time to determine the set of transit nodes for the US road network.

be computed and stored in negligible time and space. Note that in this simple approach, the space
requirement for the individual levels simply add up. A more sophisticated approach to multi-level
transit node routing is described in [2].

Query processing with such a hierarchy of grids is straightforward. In a first step, determine
the coarsest grid with respect to which source and target are at least four grid cells apart in either
horizonatal or vertical direction. Then compute the shortest path using the transit nodes and
distances computed for that grid, just as described in Sections 4.4 and 4.5. If source and target are
at most four grid cells apart with respect to even the finest grid, we have to resort to the special
algorithm for local queries.

4.8 Reducing the Space Further

As described so far, for each level in our grid hierarchy, we have to store the distances from each
node in the graph to each of its closest transit nodes. For the US road network, the average number
of closest transit nodes per node is about 11, independent of the grid size, and most distances can
be stored in two bytes. For a two-level grid, this gives about 44 bytes per node.

To reduce this, we implemented the following additional heuristic. We observed that it is not
necessary to store the distances to the closest transit nodes for every node in the network. Consider
a simplification of the road network where chains of degree 2 nodes are contracted to a single edge.
In the remaining graph we greedily compute a vertexr cover, that is, we select a set of nodes such
that for every edge at least one of its endpoints is a selected node. Using this strategy we determine
about a third of all nodes in the network to store distances to their respective closest transit nodes.
Then, for the source/target node v of a given query we first check whether the node is contained in
the vertex cover, if so we can proceed as before. If the node is not contained in the vertex cover, a
simple local search along chains of degree 2 nodes yields the desired distances to the closest transit
nodes. The average number of distances stored at a node reduces from 11.4 to 3.2 for the 128 x 128
grid of the US, without sigificantly affecting the query times. The total space consumption of our
grid data structure then decreases to 16 bytes per node.

10

5 Implementation and Experiments

5.1 Experimental results

We tested all our schemes on the US road network, publically available via http://www.census/
gov/geo/www/tiger. This is a graph with 24,266,702 nodes and 58,098,086 edges, and an average
degree of 2.4. Edge lengths are travel times. We implemented our algorithms in C++ (compiled
with gee 3.3.5 -O3) and ran all our experiments on a Dual Opteron Machine with two 2.4 GHz
processors, 8 GB of main memory, running Linux 2.6.14 (64 bit). Table 2 gives a summary of
our experimental results. Experiments on the DIMACS benchmark collections and for other edge
lengths than travel time are provided in Section 5.2

non-local (99%) local (1%) all queries preprocessing space per node

12 us 5112 pus 63 us 15h 21 bytes

Table 2: Average query time (in microseconds), preprocessing time (in hours), and space consump-
tion (in bytes per node) for our new algorithm TRANSIT, for the US road network.

TRANSIT achieves an average query time of 12 microseconds for 99% of all queries. Together
with our simple algorithm for the local queries, described in Section 4.6, we get an average of 63
microseconds over all queries. This overall average time could be easily improved by employing a
more sophisticated algorithm, e.g. the one from [14], for the local queries, however at the price of
a larger space requirement and a more complex implementation. The space consumption of our
algorithm is 21 bytes per node, which comes from 16 bytes per node for the distance tables of the
two grids (Section 4.7) plus 5 bytes per node for the edge levels and shortcuts for the local queries
(Section 4.6).

If we also output the edges along the shortest path, our average query processing becomes about
5 milliseconds (which happens to be the average processing time for the local queries, too). This
is still competitive with the processing times reported in [14] and its closest competitors [13] [6]
[7]. All of these schemes, do not output edges along the shortest path, because they use some kind
of compression of subpaths. In their most recent works, Sanders and Schultes have resolved this
problem [4] [15].

Many previous works provided a figure that showed the dependency of the processing time of a
query on the Dijkstra rank of that query, which is the number of nodes Dijkstra’s algorithm would
have to settle for that query. The Dijkstra rank is a fairly natural measure of the difficulty of a
query. For TRANSIT, query processing times are essentially constant for the non-local queries,
because the number of table lookups required varies little and is completely independent from
the distance between source and target. Table 3 therefore gives details on which percentage of the
queries with a given Dijkstra rank are local. Note that for both the 128 x 128 grid and the 256 x 256
grid, all queries with a Dijkstra rank of 2° = 512 or less are local, while all queries with Dijkstra
rank above 22! 2000000 are non-local.

5.2 Results for the DIMACS benchmark data

We also conducted experiments with additional benchmark data as provided by the DIMACS
shortest path challenge website [1]. We used the same kind of machine as specified at the beginning

11

grld size S 29 210 211 212 213 214 215 216 217 218 219 220 Z 221

128 x 128 || 100% | 100% | 100% | 99% | 99% | 99% | 98% | 94% | 85% | 64% | 29% | 5% 0%
256 x 256 || 100% | 99% | 99% | 99% | 97% | 94% | 84% | 65% | 36% | 12% | 1% | 0% 0%

Table 3: Estimated fraction of queries which are local with respect to the given grid, for various
ranges of Dijkstra ranks. The estimate for the column labeled 2" is the average over 1000 random
queries with Dijkstra rank in the interval [27,27+1).

of the previous section. For the sake of comparability with the results of other authors, Table 4
gives the results of the DIMACS core benchmark on such a machine.

Clearly, the efficacy of our grid-based approach does not depend on the metric used for comput-
ing the shortest paths; that is, for a given road network and resolution of the grid — say 128 x 128
the fraction of all queries that are considered ’long range’ does not change when varying the edge
weights. What does change, though, is the number of transit nodes necessary to provide correct
answers to these long range queries. In particular, when travel times are replaced by Euclidean
distances or unit distances, the property of road networks to canalize traffic is weakened, hence the
number of transit nodes necessary for a certain grid size increases. Likewise the average number
of closest transit nodes per node increases and hence the query times; the increase is more pro-
nounced for Euclidean edge weights compared to unit weights. In our benchmarks for the additional
datasets we restricted to one level of transit nodes and only report the results for the non-local
queries, which, for all the experiments in Table 5 and 6, were 97% of all queries.

Table 5 show our results for different metrics and (sub)networks of the road network of the
US. The astute reader will notice a difference in the number of transit nodes as well as in the
preprocessing and average query time between the figures of Table 1 (TIGER data) and Table 5
(DIMACS data). This difference is due to the fact that the conversion from road types to speeds
(and hence travel times) which we used for the TIGER data is different from the conversion used
for the DIMACS data. In our conversion the difference in speed between slow and fast roads is more
pronounced, and hence the canalizing property of the network with our travel times is stronger (fast
roads are even more attractive). For the CTR network with euclidean edge lengths, the number
of transit nodes for the 128 x 128 grid was too large, so we provided the results for a 64 x 64 grid
instead.

Table 6 show our results for the road network of Western Europe (n = 18,010,173, m =
42,560, 279). A particularity of this network is a number of very slow ferry connections. Without
special treatment of the corresponding edges (we tried a few heuristics but then decided to leave
the data as is), the preprocessing time goes up significantly. This is so, because whenever one of
the local Dijkstra computations in our transit node precomputation (Section 4) has to settle a node
that can only be reached via a very long (slow) path, then almost all nodes in the network will be
settled in that computation. Like this, the ferry connections give rise to a significant number of
very time-consuming global Dijkstra computations in our precomputation. In Table 6, note that
the problem indeed does not occur for unit edge lengths (in which case a ferry connection costs
just as much as any other edge), and that it is worst for the travel time metric (relative to other
edges, travel time along a ferry connection is worse than euclidean length).

In general, the space-efficiency of our approach improves with growing network size, the reason
for that being that there is only little correlation between the number of transit nodes necessary

12

metric
graph #nodes #edges time distance
NY 264346 733846 59.47 62.09
BAY 321270 800172 66.08 72.17
COL 435666 | 1057066 96.44 | 100.48
FLA 1070376 | 2712798 | 238.27 | 257.97
NW 1207945 | 2840208 | 282.40 | 328.19
NE 1524453 | 3897636 | 407.42 | 457.07
CAL 1890815 | 4657742 | 469.54 | 544.74
LKS 2758119 | 6885658 | 731.10 | 836.44
E 3598623 | 8778114 | 1042.63 | 1241.10
W 6262104 | 15248146 | 1988.49 | 2401.79
CTR | 14081816 | 34292496 | 8934.93 | 9906.62

Table 4: Query times (ms) for the DIMACS core experiment (Opteron 240, 2.4 GHz, Linux 2.6.14,
gee 3.3.5, 64bit)

for a 128 x 128 grid and the size of the respective road network. In fact the number of transit nodes
can be even larger for subnetworks if they exhibit a worse canalizing property or the respective
subnetwork covers more area of the square grid area (as observed for some subnetworks of the US).
For amortizing the cost of storing the all-pairs distance table over the transit nodes, a large network
size is beneficial. In particular, if the complete road network of the whole world was available, the
per-node space requirement to store a transit node data structure of the same granularity would
be considerably lower than for the US road network and still the same fraction of queries could
be processed via a few table lookups. In that case one could provably even afford to create and
store transit nodes based on a 512 x 512 grid which would resolve 99.8% of all queries by fast
table-lookups.

5.3 Graphical User Interface

We have gone to quite some pain to implement a relatively comfortable graphical user interface
(GUI) for displaying our road networks plus a number of additional elements. The GUI is im-
plemented in C++ using the Gtkmm library, which gives instant response times for dragging and
zooming also for large road networks like that of the US. The GUI runs in its own thread, so that
user and redraw events can be interleaved with computation and other code.

The GUI supports seamless dragging and zooming with the mouse (wheel), as one knows it, for
example, from tools like Google Earth. This is very convenient for navigating in a large network
quickly, but that was also the part that cost us the most work. The graph has to be divided into
relatively small chunks, and only those chunks must be drawn which are actually visible from the
current perspective and position. Also, there have to be priorities between edges, because always
drawing all edges tends to clutter up the display and is an efficiency problem, too. The GUI also
supports the drawing of custom objects, like cross hairs (to visualize important locations), arrows
along roads (to visualize something like edge signs), etc.

13

* superfast2

T H|
|

[Global View

[] Crosshairs [] EdgeSets J

Graph [] EdgeSet o

[] Edgesetl

[] Edgeset 2

[] Edgeset 11

[] Edgeset 3

[] Edgeset 12

[] EdgeSeta

EdgeSet 13

[] EdgeSets

Edgeset 14

[] EdgeSet &

[] Edgeset 7 EdgeSet 15

Level-

[] Edgeset 10

Detail
L098s8|

Figure 5:

Screenshot of our interactive graphical user interface.

14

6 Conclusions

Transit nodes are a simple, yet powerful idea: they reduce the shortest-path computation for all but
a small fraction of local queries to a few table lookups. In this paper we have focused on presenting
this idea and giving a simple geometric algorithm realizing that idea.

The algorithms in this paper work for undirected graphs. A generalization to directed graphs
is not trivial but feasible. The highway hierarchies from Sanders and Schultes, in particular their
combination with the transit node idea [15], also work for directed graphs.

A more difficult open problem is how to make our data structure dynamic, that is, how to
update our data structures in response to only small changes in the graph, like an increase of a
few edge lengths due to a traffic jam. None of the mentioned previous works on the problem has
tackled this problem so far, except for a trivial recomputation from scratch.

References

[1] The 9th DIMACS Implementation Challenge: Shortest Paths;
http://www.dis.uniromal.it/~challenge9/.

[2] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time
shortest-path queries in road networks. In 9th Workshop on Algorithm Engineering and Fx-
periments (ALENEX’07), 2007.

[3] D. Delling, M. Holzer, K. Miiller, F. Schulz, and D. Wagner. High-performance multi-level
graphs. In DIMACS Implementation Challenge Shortest Paths, 2006.

[4] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Highway hierarchies star. In DIMACS
Implementation Challenge Shortest Paths, 2006.

[5] E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269-271, 1959.

[6] A. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph theory.
In 16th Symposium on Discrete Algorithms (SODA’05), pages 156-165, 2005.

[7] A. Goldberg, H. Kaplan, and R. Werneck. Reach for A*: Efficient point-to-point shortest
path algorithms. In 8th Workshop on Algorithm Engineering and Experiments (ALENEX’06),
2006.

[8] R. Gutman. Reach-based routing: A new approach to shortest path algorithms optimized for

road networks. In 6th Workshop on Algorithm Engineering and Experiments (ALENEX’04),
2004.

[9] E. Kohler, R. H. Méhring, and H. Schilling. Acceleration of shortest path and constrained
shortest path computation. In jth Workshop on FExperimental and Efficient Algorithm
(WEA’05), pages 126-138, 2005.

[10] U. Lauther. An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In Miinster GI-Tage, 2004.

[11] R. H. Mohring, H. Schilling, B. Schiitz, D. Wagner, and T. Willhalm. Partitioning graphs
to speed up dijkstra’s algorithm. In 4th Workshop on Experimental and Efficient Algorithm
(WEA’05), pages 189-202, 2005.

[12] K. Miiller. Design and implementation of an efficient hierarchical speed-up technique for
computation of exact shortest paths in graphs. Master’s thesis, University of Karlsruhe, 2006.

[13] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In 13th
European Symposium on Algorithms (ESA’05), pages 568-579, 2005.

15

[14] P. Sanders and D. Schultes. Engineering highway hierarchies. In 14th European Symposium
on Algorithms (ESA’06), pages 804-816, 2006.

[15] P. Sanders and D. Schultes. Robust, almost constant time shortest-path queries on road
networks. In DIMACS Implementation Challenge Shortest Paths, 2006.

[16] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 51(1):1-24,
2005.

16

graph | metric | Grid | # transit nodes | avg.# closest TNs | query time (us) | preproc

USA eucl 128x128 31 536 36 69.4 9h
USA travel | 128x128 10 084 14 17.8 7h
USA unit 128x128 17 699 22 30.3 9h
BAY eucl 128x128 13 269 13 11.6 | 20 min
BAY | travel | 128x128 10 077 8 9.1 | 20 min
BAY unit 128x128 10 314 9 9.2 | 20 min
CAL eucl 128x128 21 230 16 16.0 | 30 min
CAL travel | 128x128 15 087 9 8.9 | 30 min
CAL unit 128x128 15 747 11 10.6 | 30 min
E eucl 128x128 23 842 26 46.0 2h
E travel | 128x128 10 477 12 12.2 1h
E unit 128x128 13 915 15 19.0 1h
FLA eucl 128x128 9 937 14 12.3 | 10 min
FLA travel | 128x128 6 248 9 7.8 | 10 min
FLA unit 128x128 6 404 9 7.7 1 10 min
LKS eucl 128x128 20 222 30 46.1 1h
LKS travel | 128x128 7 447 12 12.2 | 30 min
LKS unit 128x128 10 257 16 17.5 1h
NE eucl 128x128 22 937 23 28.0 | 40 min
NE travel | 128x128 11 542 11 11.1 | 20 min
NE unit 128x128 13 675 13 13.1 | 25 min
NW eucl 128x128 23 963 15 14.8 | 35 min
NW travel | 128x128 19 429 10 10.2 | 30 min
NW unit 128x128 19 096 11 11.3 | 25 min
NY eucl 128x128 24 435 15 14.3 | 15 min
NY travel | 128x128 19 133 12 10.1 | 10 min
NY unit 128x128 18 598 12 10.3 | 10 min
W eucl 128x128 36 214 19 22.8 2h
W travel | 128x128 19 107 10 10.6 2h
W unit 128x128 25 554 14 15.2 1h
CTR eucl 64x64 24 359 39 88.2 12 h
CTR | travel | 128x128 24 540 14 17.5 6h
CTR unit 128x128 40 282 20 32 7.5h
COL eucl 128x128 13 199 14 11.5 | 10 min
COL | travel | 128x128 10 502 9 7.0 5 min
COL unit 128x128 10 686 10 7.9 5 min

Table 5: Results for (sub)networks of the US road network with three kinds of edge lengths: travel
time, euclidean length of the respective edge, and unit length.

graph | metric | Grid | # transit nodes | avg.# closest TNs | query time (us) | preproc

Europe | travel | 128x128 10 394 14 13 58h
Europe | eucl 128x128 20 126 38 56 29h
Europe unit 128x128 7 708 14 12 17h

Table 6: Results for the road network of Western Europe (including ferry connections).

17

