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Abstract

Rapidly-exploring random trees (RRTs) are data struc-
tures and search algorithms designed to be used in con-
tinuous path planning problems. They are one of the
most successful state-of-the-art techniques as they of-
fer a great degree of flexibility and reliability. How-
ever, their use in other search domains has not been
thoroughly analyzed. In this work we propose the use
of RRTs as a search algorithm for automated planning.
We analyze the advantages that this approach has over
previously used search algorithms and the challenges of
adapting RRTs for implicit and discrete search spaces.

Introduction

Automated planning is an area in Artificial Intelligence that
deals with the realization of plans or sequences of actions
to achieve some goal. Problems in automated planning are
formalized as an initial state and a set of goals that must
be made true. Actions are defined as a set of operators with
preconditions and effects. In the particular case of propo-
sitional planning, propositions are modeled with predicates
related to objects, states and goals are represented by sets of
propositions that are true and actions make true or false the
propositions appearing in their effects.

Currently most of the state-of-the-art planners are based
on the heuristic forward search paradigm first employed by
HSP (Bonet and Geffner 2001). While this represented a
huge leap in performance compared to previous approaches,
this kind of planners also suffer from a series of short-
comings. In particular, certain characteristics of the search
space of planning problems hinder their performance. Large
plateaus for both g and 4 values, numerous transpositions in
the search space and areas in which the heuristic function
is misleading represent the main challenges for these plan-
ners. Besides, the most successful planners use techniques
that increase the greediness of the search, which often ex-
acerbates this problem. A couple of examples of these ap-
proaches are pruning techniques like helpful actions intro-
duced by FF (Hoffmann 2001) and greedy search algorithms
like EHC used by FF and greedy best-first search used by
HSP and Fast Downward (Helmert 2006).
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Motion planning is an area closely related to automated
planning. Problems in motion planning consist on finding a
collision-free path that connects an initial configuration of
geometric bodies to a final configuration. Some examples
of motion planning problems are robotics, animated simu-
lations, drug design and manufacturing. A broad range of
techniques have been used in this area, although the cur-
rent trend is to use algorithms that sample randomly the
search space due to their reliability, simplicity and consis-
tent behavior. Probabilistic roadmaps (PRMs) (Kavraki et al.
1996) and rapidly-exploring random trees (RRTs) (LaValle
and Kuffner 1999) are the most representative techniques
based on this approach.

Algorithms based on random sampling have two main
uses: multi-query path planning, in which several problems
with different initial and goal configurations must be solved
in the same search space, and single-query path planning,
in which there is only a single problem to be solved for a
given search space. In the case of single-query path plan-
ning, RRT-Connect, a variation of the traditional RRTs used
in multi-query path planning, is one of the most widely
used algorithms. RRT-Connect builds a tree from the ini-
tial and the goal configurations by iteratively extending to-
wards sampled points while trying to join the newly created
branches with the goal or with a node belonging to the op-
posite tree. This keeps a nice balance between exploitation
and exploration and is on average more reliable than previ-
ous methods like potential fields, which tend to get stuck in
local minima.

Single-query motion planning and satisficing planning
have many similarities. However, bringing techniques from
one area to the other is not straightforward. The main dif-
ference between the two areas is the defining characteristics
of the search space. In motion planning, the search space
of these problems is a bi-dimensional or three-dimensional
explicit continuous space, whereas in automated planning is
a multi-dimensional implicit discrete space. This has lead
to both areas being developed without much interaction be-
tween them despite the potential benefits of an exchange of
knowledge between the two communities.

In this work, we try to bridge the gap between the two
areas by proposing the use of an RRT in automated plan-
ning. The motivation is that RRTs may be able to over-
come some of the shortcomings that forward search plan-



Figure 1: Progressive construction of an RRT.

ners have while keeping most of their good properties. First,
some background and an analysis of previous works will
be given. Next, the advantages of using RRTs in automated
planning will be presented and a description of how to over-
come some problems regarding their implementation will be
given. Some experimentation will be done to back up our
claims and finally some conclusions and future lines of re-
search will be added.

Background

In this paper we deal only with propositional planning,
which we formalize. We then overview the use of RRTSs in
motion planning.

Propositional Planning

Automated Planning is described as the task of generating
an ordered set of actions or plan that achieves a given set
of goals from an initial state. In this work the standard for-
malization of a planning problem is represented by a tuple
P=(S,A,I,G), where S is a set of atomic propositions (also
known as facts), A is the set of grounded actions derived
from the operators of the domain, 7/ C § is the initial state
and G C S the set of goal propositions. The actions that
are applicable depend on several propositions being true and
their effects can make propositions true of false, which is
commonly known as adding and deleting the propositions
respectively. Thus, in terms of a planning instance an action
would be defined as a triple {pre(a), add(a), del(a)} in which
a € A and pre(a), add(a), del(a) C S. Actions can have non-
unitary costs, but in this work we will disregard this fact
and consider all the actions as having a cost of 1, which
makes the quality metric the plan length. A distinction must
be made between satisficing planning, which revolves about
finding any solution plan, and optimal planning, in which an
optimal plan regarding some metric must be found. Again,
in this work we will focus only on satisficing planning.

Rapidly-exploring Random Trees

RRTs (LaValle and Kuffner 1999) were proposed as both
a sampling algorithm and a data structure designed to allow
fast searches in high-dimensional spaces in motion planning.
RRTs are progressively built towards unexplored regions of
the space from an initial configuration as shown in Figure 1.
Atevery step arandom ¢,y 4 configuration is chosen and for
that configuration the nearest configuration already belong-
ing to the tree ¢eqr 1S found. For this a definition of dis-
tance is required (in motion planning, the euclidean distance

Figure 2: Extend phase of an RRT.

is usually chosen as the distance measure). When the near-
est configuration is found, a local planner tries to join gneqr
with ¢,qnq With a limit distance €. If ¢,4,q Was reached, it
is added to the tree and connected with an edge to gpeqr-
If ¢ranag Was not reached, then the configuration g,,¢,, ob-
tained at the end of the local search is added to the tree in
the same way as long as there was no collision with an ob-
stacle during the search. This operation is called the Extend
step, illustrated in Figure 2. This process is repeated until
some criteria is met, like a limit on the size of the tree. Al-
gorithm 1 gives an outline of the process.

Once the RRT has been built, multiples queries can be is-
sued. For each query, the nearest configurations belonging
to the tree to both the initial and the goal configuration are
found. Then, the initial and final configurations are joined
to the tree to those nearest configurations using the local
planner and a path is retrieved by tracing back in the tree
structure.

The key advantage of RRTs is that in their building pro-
cess they are intrinsically biased towards regions with a low
density of configurations. This can be explained by looking
at the Voronoi diagrams at every step of the building process.
The Voronoi regions of every node are larger when the area
around that node has not been explored. This way, the prob-
ability of a configuration being sampled in an unexplored re-
gion are higher as larger Voronoi regions will be more likely
to contain the sampled configuration. This has the advan-
tage of naturally guiding the tree while just performing uni-
form sampling. Besides, the characteristics of the Voronoi
diagram are an indicative of the adequateness of the tree:
for example, a tree whose Voronoi diagram is formed by
regions of similar size covers uniformly the search space,
whereas large disparities in the size of the regions mean that
the tree may have left big areas of the search space unex-
plored. Apart from this, another notable ch aracteristic is that
RRTs are probabilistically complete, as they will cover the
whole search space as the number of sampled configurations
tends to infinity.

RRT-Connect

After seeing how successful RRTs were for multi-query
motion planning problems, a variation for single-query
problems called RRT-Connect was proposed (Kuffner and
LaValle 2000). The modifications introduced were the fol-
lowing:



Algorithm 1: Description of the building process of an
RRT
Data: Search space S, initial configuration g;;,;;, limit
€, ending criteria end
Result: RRT tree
begin
tree <— Qinit
while — end do
Grand <— sampleSpace(S)
Gnear <— findNearest(tree, ¢rand, S)
Qnew jOin(Qneam drand; €, S)
if reachable(gnew ) then
L addCon figuration(tree, Gnear, qnew)

L return tree

e Two trees are grown at the same time by alternatively ex-
panding them. The initial configuration of the trees are the
initial and the goal configuration respectively.

e The trees are expanded not only towards randomly sam-
pled configurations but also towards the nearest node of
the opposinte tree with a probability p.

e The Expand phase is repeated several times until an obsta-
cle is found. The resulting nodes from the local searches
limited by € are added to the tree. This is called the Con-
nect phase.

Growing the trees from the initial and the goal config-
uration gives the algorithm its characteristic single-query
approach. The Connect phase was added after empirically
testing that the additional greediness that it introduced im-
proved the performance in many cases. A common variation
is also trying to extend the tree towards the opposing tree
after every ¢y, is added from that g,,,, configuration when
sampling randomly. This helps in cases in which both trees
are stuck in regions of the search space which are close as
per the distance measure but in which local searches consis-
tently fail due to obstacles.

Previous Work

Although RRTs have not been frequently used in areas other
than motion planning, there is previous work in which RRTs
have been employed for problems relevant to automated
planning. In particular, an adaptation of RRTs for discrete
search spaces and a planning search algorithm similar to
RRT-Connect have been proposed.

RRTs in Discrete Search Spaces

Although RRTs were designed for continuous search spaces,
an attempt to implement them for search problems in dis-
crete search spaces has been proposed (Morgan and Bran-
icky 2004). The main motivation of this work was adapting
the RRTs for grid worlds and similar classical search prob-
lems. In this work the main challenges of adapting the RRT
were analyzed, in particular the need of defining an alterna-
tive measure of distance when finding the nearest node of
the tree to a sampled state and the issues related to adapting

a local planner that substitutes the Expand phase of the tra-
ditional RRTs. The alternative to the widely used euclidean
distance that was proposed was an ad-hoc heuristic estima-
tion of the cost of reaching the sampled state from a given
node of the tree. As for the local planners, the limit e that was
used to limit the reach of the Expand phase was substituted
by a limit on the number of nodes expanded by the local
planner. In this case, once the limit € was reached the node
in the local search with the best heuristic estimate towards
the sampled space was chosen and either only that node or
all the nodes on the path leading to it were added to the tree.

While the approach was successful for the proposed prob-
lems, there are two main problems that make it impossi-
ble to adapt it to automated planning in a straightforward
way. First, the search spaces in the experimentation they
performed are explicit whereas in automated planning the
search space is implicit. This adds an additional complexity
to the sampling process that must be dealt with in some way.
Second, the heuristics for both the distance estimation and
the local planners were designed individually for every par-
ticular problem and thus are not useful in the more general
case of automated planning.

RRT-Plan

Directly related to automated planning, the planner RRT-
Plan (Burfoot, Pineau, and Dudek 2006) was proposed as
a randomized planning algorithm inspired by RRTs. In this
case the EHC search phase of FF (Hoffmann 2001), a deter-
ministic propositional planner, was used as the local planner.
The building process of the RRT was similar to the one pro-
posed for discrete search spaces, that is, to impose a limit on
the number of nodes as € and add the expanded node closest
to the sampled state to the tree. In this case though the tree
was built only from the initial state due to the difficulty of
performing regression in automated planning.

The key aspects in this work are two: the computation of
the distance necessary to find the nearest node to the sam-
pled or the goal state, and sampling in an implicit search
space. In RRTs one of the most critical points is the com-
putation of the nearest node in every Expand step, which
may become prohibitively expensive as the size of the tree
grows with the search. The most frequently used distance es-
timations in automated planning are the heuristics based on
the reachability analysis in the relaxed problem employed
by forward search planners, like the h,qq heuristic used by
HSP (Bonet and Geffner 2001) and the relaxed plan heuristic
introduced by FF (Hoffmann 2001). The problem with these
heuristics is that, although computable in polynomial time,
they are usually still relatively expensive to compute, to the
point that they usually constitute the bottleneck in satisfic-
ing planning. To avoid recomputing the heuristic from every
node in the tree every time a new local search toward s a
state is done the authors propose caching the cost of achiev-
ing every proposition whenever a new node is added to the
tree. This way, by adding the costs of the propositions that
form the sampled state h,4¢q can be obtained without need-
ing to perform the reachability analysis.

Regarding sampling, RRT-Plan does not sample the
search state uniformly but rather chooses a subset of propo-



sitions from the goal set and uses it as ¢,qpq. This is due
to the fact that, although sampling a state by choosing ran-
dom propositions in automated planning is trivial, determin-
ing whether a given sampled state is reachable and whether
the goal is reachable from the sampled space is PSPACE-
complete, as it is as hard in terms of computational complex-
ity as solving the original problem itself. This problem is
avoided by the sampling technique of RRT-Plan in the sense
that, if the problem is solvable, the set of goal propositions
is reachable and hence so it is any of its possible subsets. In
addition, RRT-Plan performs goal locking, i.e., when a goal
proposition that conformed a given sampled state is achieved
any subsequent searches from the added g,.,, node and its
children nodes are not allowed to delete it.

Whereas RRT-Plan effectively addresses the problem of
sampling states in implicit search spaces, the way of doing it
limits most of the advantages RRTs have to offer. By choos-
ing subsets of the goal set instead of sampling uniformly the
search space the RRT does not tend to expand towards unex-
plored regions and thus loses the implicit balance between
exploration and exploitation during the search that charac-
terizes them. In fact, by choosing this method RRT-Plan ac-
tually benefits from random guesses over the order of the
goals instead of exploiting the characteristics of RRTs. As
a side note, this could actually be seen as a similar method
to the problem partitioning techniques that the authors that
discovered landmarks proposed (Hoffmann, Porteous, and
Sebastia 2004) (even more so taking into account that goals
are landmarks themselves) albeit with the possibility in this
case to recover from wrong orderings.

RRTs in Automated Planning

Motivated by the success of RRTs in motion planning, in
this work we propose an implementation for their use in au-
tomated planning. We show the advantages they have over
traditional forward search planners and analyze the difficul-
ties that must be overcome when adapting them for planning
problems.

Motivation

As mentioned in the introduction, during the last years there
has been a big improvement in performance in the area of
propositional planning. The most representative approach
among those that contributed to this improvement is the
use of forward search algorithms along with reachability
heuristics and other associated techniques. However, for-
ward search planners suffer from several problems that de-
tract from their performance. These problems are related
mainly to the characteristics of the search space that most
common planning domains present. Search spaces in auto-
mated planning tend to have big plateaus both in terms of g
and A value. The high number of transpositions and the high
branching factor that appear in many domains aggravate this
fact. Forward search planners that use best-first search algo-
rithms are particularly affected by this, as they consider to-
tal orders when generating new nodes and are mostly unable
to detect symmetries and transpositions du ring the search.
It has been demonstrated that techniques that increase the
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Figure 3: Simple example of a best-first search algorithm
greedily exploring an & plateau due to the heuristic ignoring
the obstacles. Advancing towards some randomly sampled
state like q,qnq can alleviate this problem.

greediness of the search algorithm like helpful actions from
FF and look-ahead states from YAHSP (Vidal 2004) tend
to partially alleviate these problems; however, even though
reachability heuristics have proved to be relatively reliable
for the most part, in some cases they can also be quite mis-
guided and thus this increased greediness can be disadvan-
tageous at times.

Figure 3 shows a typical example of a best-first search al-
gorithm getting stuck in a & plateau due to inaccuracies in
the heuristic. In this example the euclidean distance used as
heuristic ignores the obstacles. Because of this, the search
advances forward until the obstacle is found. Hence, the
search algorithm must explore the whole striped area before
it can continue advancing towards the goal. This shows the
imbalance between exploitation and exploration this kind
of approaches have. This problem has been previously an-
alyzed (Linares Lopez and Borrajo 2010), but it is still one
of the main shortcomings of best-first search. To partially
address this issue it is interesting to consider expanding
nodes towards randomly sampled states so a more diverse
exploration of the search space is done. In this example,
a bias that would make the search advance towards ¢,qnq
could avoid the basin flooding phenomenon that greedier ap-
proaches suffer from.

RRTs incrementally grow a tree towards both randomly
sampled states and the goal. Because of this, they are less
likely to suffer from the same problem as best-first search
algorithms. Their main advantages that they have over other
algorithms in automated planning are the following:

e They keep a better balance between exploration and ex-
ploitation during the search.

e Local searches minimize exploring plateaus, as the maxi-
mum size of the search is limited.

e They use considerably less memory as only a relatively
sparse tree must be kept in memory.

e They can employ a broad range of techniques during local
searches.

The alternation of random sampling and search towards
the goal that single-query RRTs have is their most character-
izing aspect. Thanks to this, they do not commit to a specific
area of the search space, but instead search is performed over
several areas at the same time. This way they tend to recover
better than best-first search from falling into local minima.



Besides, even though the local search may fall in a plateau,
the number of nodes that will be expanded is limited and
thus not much effort will be wasted in those cases.

In terms of memory, the worst case is the same for best-
first search algorithms and RRTs. However, RRTs must keep
in memory only the tree and the nodes from the current lo-
cal search. Trees are typically much sparser than the area
explored by best-first algorithms, which makes them much
more memory efficient on average. Memory is usually not a
problem in satisficing planning because of the time needed
for the heuristic computation, although in some instances it
can be an important limiting factor.

Implementing the RRT

Because of the differences in the search space, adapting
RRTs from motion planning to automated planning is not
trivial. In this work we propose an implementation partially
based on RRTs for discrete search spaces and RRT-Plan with
some changes critical to their performance.

Sampling The main reason why RRTs have not been stud-
ied in automated planning is probably the difficulties of
sampling in the search space. RRT-Plan circumvented this
fact by substituting uniform sampling with subsets of goals.
However, this negates some of the advantages that RRTs
have. Here we propose the use of uniform sampling along
with two techniques to reduce the odds of obtaining an un-
reachable state.

When sampling a state, two facts must be considered:
first, the sampled state must be reachable from the initial
state, and second, the goal must be reachable from the sam-
pled state. Checking whether this is true is as hard as solv-
ing the problem itself, so an approximative approach must
be used instead. One of the previously used techniques for
this purpose is the concept of mutual exclusivity between
propositions (Haslum and Geffner 2000). A static relation
of mutual exclusivity between propositions (or static mu-
tex) is a set of propositions M = (po,...,pn) for which
there is no reachable state s C S such that all the elements
in M are true. Static mutexes may not suffice to detect all
the unreachable sets of propositions in the search space but
in many domains they are able to prune most unreachable
states. This is a similar approach to the one used by evolu-
tionary planners that decompose the problem using sampling
techniques (Bibai et al. 2010).

Again, computing all the static mutexes for a given prob-
lem is PSPACE-complete. Nevertheless, there are two meth-
ods that allow the computation of a subset of the mutexes of
the problem in reasonable time: invariant synthesis (Helmert
2009) and A" (Haslum and Geffner 2000). Invariant syn-
thesis uses information from the operators of the problem
to find groups of monotonicity invariants. These are sets of
propositions from which only one proposition can be true at
a time, which means that they are mutex between them. On
the other hand, "™ gives a lower bound of the distance from
the initial state to a state in which any set of m propositions
are true. If this bound is infinite, those propositions are mu-
tex. The complexity of the computation of these sets grows
exponentially with the number of propositions in the set,

so usually only sets of 2 propositions are used to find mu-
texes. These methods yield different mutexes. The invariant
synthesis is usually much faster, as it only uses information
from the domain definition, although h? exploits informa-
tion from the initial state, which may prove essential to find
additional mutexes.

Even after using mutexes there are cases in which a state is
not reachable or the goal is not reachable from that state. For
example, a sampled state in Sokoban may contain a block in
a corner which is not a goal location. While this sampled
state may not violate any mutex, it is a dead end as the block
is effectively unmovable and thus the goal is not reachable.
To address this problem a regular reachability analysis can
be done both from the initial state and from the sampled
state. If some proposition in either the sampled state or the
goal is unreachable then the sampled state can be safely dis-
carded. This is again a non-complete method, but in cases
such as the aforementioned one it may be useful.

In this work we use a SAS+ representation of the prob-
lem (Béckstrom and Nebel 1995). Taking this into account,
the sampling method works as follows: first, a SAS+ in-
variant is chosen at random; then, all the propositions mu-
tex with previously chosen propositions are discarded; after
that, a proposition from those belonging to the SAS+ in-
variant is randomly chosen and added to the state. This is
repeated until all SAS+ invariants have been chosen. If no
propositions are left when taking out propositions of some
invariant that were mutex with the already chosen proposi-
tions it means that the partial state is unreachable and the
process is restarted from scratch. Once a complete state is
obtained, a reachability analysis is done from the initial state
towards the sampled state and from the sampled state to-
wards the goal state. If some proposition is unreachable then
the state is discarded.

Distance estimation One of the most expensive steps in
an RRT is finding the closest node to a sampled state. Be-
sides, the usual distance estimation in automated planning,
the heuristics derived from a reachability analysis, are also
computationally costly. RRT-Plan solved this by caching
the cost of achieving a proposition from every node of the
tree and using that information to compute h,qq. Despite
being an elegant and efficient solution, this has the prob-
lem that only h,44 can be computed using that information.
hqqaq tends to greatly overestimate the cost of achieving the
goal set and other heuristics of the same kind, like the re-
laxed plan heuristic used by FF, are on average more accu-
rate (Fuentetaja, Borrajo, and Linares Lopez 2009). Because
of that, in our implementation best supporters, that is, ac-
tions that first achieve a given proposition in the reachability
analysis, are cached. This allows to compute not only h,qq
by adding the costs of the best supporters of the sampled
propositions but also other heuristics like the relaxed plan
heuristic by tracing back the relaxed plan using the cached
best supporters. The time of computing the heuristic once
the best supporters are known is usually very small com-
pared to the time needed to perform the reachability analy-
sis, so this approach allows to get more accurate (or diverse)
heuristic estimates without incurring in a significant over-



head.

Tree construction RRTs can be built in several ways. The
combination of the Extend and Connect phases, the possibil-
ity of greedily advancing towards the goal instead of sam-
pling with a probability p, the way new nodes are added
(only the closest node to the sampled state or all the nodes
on the path to that state),... allow for a broad set of different
options. In this work we have chosen to build the tree in the
following way: the tree is built from the initial state; every
node in the tree contains a state, a link to its parent, a plan
that leads from its parent to the state, and the cached best
supporters for every proposition; e limits the number of ex-
panded nodes in every local search; there is a probability p of
advancing towards the goal and a probability /-p of advanc-
ing towards a sampled state; when performing a local search,
only the closest node to the goal state (a sampled state or the
original goal itself) is added to the tree when the goal state
has not been reached; after adding a new node ¢,,¢,, from lo-
cal search towards a sampled state, a new local search from
Gnew 1O Qgoa 18 performed. Algorithm 2 describes the whole
process.

Algorithm 2: Search process of the proposed RRT

Data: Search space S, limit ¢, initial state g, goal
4goal

Result: Plan solution

begin

tree <— Qinit

while — goal Reached() do

if p < random() then
Grand $— sampleSpace(S)
Gnear <— findNearest(tree, ¢rand, S)
Qnew < jOin(Qneara Grand; €, S)
addNode(tree, Anear Qnew)
Qneargoa < Qnew

else
| Gnearyon ¢ findNearest(tree, qzoal, S)

Qnewgoal < jOin(Qneargoal sy dgoal, € S)
| addNode(tree, gnearyour s Inewgon)

solution «— traceBack(tree, ¢goal)
L return solution

Experimentation

‘We run some experiments on a Dual Core Intel Pentium D at
3.40 Ghz running under Linux. We called our planner Ran-
dom Planning Tree (RPT). The maximum available memory
for RPT was set to 1GB and the time limit was 1800 seconds.
RPT was implemented on top of Fast Downward (Helmert
2006). Fast Downward itself was used as the local planner.
It was configured to use greedy best-first search with lazy
evaluation as its search algorithm. The heuristic is the re-
laxed plan heuristic used by FF (Hoffmann 2001). Preferred
operators and boosting were enabled. Mutexes were com-
puted by the invariant analysis Fast Downward’s translator

performs. Since RRTs are stochastic algorithms all the ex-
periments were done using the same seed for the pseudoran-
dom number generator so results would be reproducible. The
base planner we compare against is LAMA-2008 (Richter
and Westphal 2010), the winner of the International Plan-
ning Competition (IPC) held in 2008.

There are two critical parameters that affect the behav-
ior of RPT in our implementation: the limit on the number
of expanded nodes in the local search e and the probability
of expanding towards the original goal instead of towards
some sampled state p. In the experimentation we tried three
different combinations, one with ¢ = 10000 and p = 0.5, a
second one with e = 1000 and p = 0.5 and a third one with
€ = 10000 and p = 0.2. These configurations were called
RPT1, RPT2 and RPT3 respectively. For the case in which
e = 1000 (RPT2) we changed the default boosting value
of Fast Downward, which is 1000, to 100, as otherwise this
feature would never be used by the local planner. By experi-
menting with different versions we aim to understand which
are the factors that can have an impact on the performance of
the algorithm. In particular, RPT1 makes relatively large lo-
cal searches and tends to expand frequently towards the goal,
RPT2 makes smaller local searches with the same p value
and RPT3 makes large local searches but expands most of
the time towards sampled states instead of towards the goal.

The focus of this experimentation is coverage, that is, the
number of solved problems in each domain. Since RRTs
expand towards random states it is logical to expect worse
results in terms of quality than with a more traditional ap-
proach, so we did not consider quality as an important crite-
ria. The domains were the ones used in the last IPCs: IPC-
06, IPC-08 and IPC-08 learning track. Since there are two
versions of Sokoban (deterministic track and learning track)
we have called the one from the learning track Sokoban-L.
Some domains were left out due to some bugs. Table 1 sum-
marizes the obtained results.

As shown by the results, the performance of RPT varies
greatly depending on the domain. On average LAMA still
solves more problems; however, we found that the main rea-
son why RPT behaves much worse in some domains is that
the mutexes obtained from the invariant analysis are not rep-
resentative enough. A notable case is Sokoban, which has
two versions despite being essentially the same domain. In
the deterministic track version, RPT fares much worse than
LAMA, whereas in the learning track version the situation is
the opposite. This is due to the fact that in the deterministic
track version, the propositions obtained from instantiating
the predicate (at-goal ?s - stone) do not appear as mutex with
the stone being at a non-goal location, which leads to fre-
quently sampling unreachable states. Similar cases occur in
other domains. For example, in Matching-Blocksworld the
propositions obtained from instantiating the predicate (solid
?b - block) do not appear as mutex with some other block be-
ing on top of the non-solid one. h? is able to detect these mu-
texes because it uses information from the initial state, so our
guess is that combining both techniques (using Fast Down-
ward means basically that the invariant mutexes come for
free) would greatly improve the overall performance in those
cases. All in all, this confirms the importance that proper



[ Planners: [ LAMA [ RPTI | RPT2 | RPT3

|

Openstacks(30) 30 30 30 30
Pipesworld(50) 27 42 39 41
Rovers(40) 40 40 39 40
Storage(30) 18 22 24 25
TPP(30) 30 28 25 25
Trucks(30) 25 17 7 9
Elevators(30) 25 26 22 23
Parcprinter(30) 17 11 11 11
Pegsol(30) 30 30 30 30
Scanalyzer(30) 29 30 29 30
Sokoban(30) 22 10 5 8
Transport(30) 30 30 27 28
‘Woodworking(30) 29 16 16 16
Gold-Miner(30) 29 30 30 30
M-Blocksworld(30) 24 19 4 5
N-Puzzle(30) 26 26 15 15
Parking(30) 25 12 6 7
Sokoban-L(30) 18 30 30 30

| Total H 474 \ 449 \ 389 \ 403 H

Table 1: Comparison between LAMA and the different con-
figurations of RPT. Numbers between parenthesis represent
the total number of problems.

sampling has in implicit search spaces.

Regarding the different configurations of RPT, a notewor-
thy fact is that larger local searches dominate smaller ones in
all the domains but Storage. The reason behind this is that by
expanding only 1000 nodes some local searches do not have
enough margin to make a significant improvement. Actually,
with this e the new added nodes tend to be close to the node
that was used as the initial state for the local search, which
means that the tree explores the space at a much lower rate.
This may be related to the reasons that lead to the authors
of RRT-Connect to implement the Connect phase, which es-
sentially lets the local search continue as long as there is an
improvement.

Another important factor is the value of p. For the same
the configuration that tends to expand towards the goal more
frequently obtains better results in a consistent way. In fact
the same case as with the e value occurs: RPT1 dominates
RPT3 in all the domains but Storage. The additional greed-
iness of higher values of p seems to be useful in cases in
which an excessive exploration of the search space leads
to expanding a higher number of nodes, which causes less
greedy configurations to time out due to the time spent eval-
uating the expanded nodes.

In terms of expanded nodes in most cases the RPTs ex-
pand a higher number of nodes. This is because the random
sampling often makes them explore regions of the search
space irrelevant to the solution. This situation is reversed in
those instances in which the best-first search algorithm of
LAMA gets stuck in big plateaus. A straightforward com-
parison is difficult to do for two reasons though: first, in
many domains LAMA and RPT1 tend to solve different in-

stances, and second planners usually solve the problems ei-
ther very quickly or not at all, which means that for most
instances solved by both approaches LAMA solves the prob-
lem too quickly for the additional exploration of RPT to pay
off.

A relevant piece of information that can help to under-
stand the behavior of RPT is the number of branches that
were traced back when retrieving the solution plan. In most
cases the number of branches was low, ranging from 2 to 5
in most instances (in the smallest instances the local search
was able to reach the goal from the initial state for the con-
figurations with e = 10000). The size of the final tree is also
a good indicative of the behavior of the algorithm. Due to
the computational cost of evaluating the nodes, only a lim-
ited number of local searches can be performed before the
time limit is reached. This means that the size of the tree is
very small compared to the trees built in motion planning. In
our experiments only a few times the resulting tree contained
more than a hundred nodes when the instance was solved.

Conclusions and Future Work

In this paper, we have analyzed how to adapt RRTs for their
use in automated planning. Previous work has been studied
and the challenges that the implementation of RRTs in con-
texts other than motion planning posed have been presented.
In the experimentation we have shown that this approach
has potential, being able to outperform the state of the art in
some domains. Besides, we have identified the major flaws
of this approach, which may allow to obtain better results in
the future.

After this analysis several lines of research remain open.
First, some approaches like growing two trees at the same
time like in bidirectional search and the implementation of a
proper Connect phase are still unexplored. Besides, there is
abundant research currently done on RRTs related to avoid-
ing pathological cases and introducing biases that allow a
more advantageous sampling. These techniques can also be
studied for their use in automated planning so the overall
performance is improved.

From a more planning perspective, techniques like
caching the heuristic value of explored states to avoid re-
computation when they are expanded several times (Richter,
Thayer, and Ruml 2010) may prove interesting for this kind
of algorithms. Other interesting possibility is the usage of
portfolios of search algorithms or heuristics combined with
RRTs to compensate the flaws of best-first search algorithms
and RRTs.

As a last remark, another possible future line of research
includes adapting this algorithm for a dynamic setting in
which interleaving of planning and execution is necessary.
Inspired by real-time versions of RRTs (Bruce and Veloso
2006), this approach looks promising for domains in which
exogenous events and partial information may force the
planner to replan in numerous occasions.
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