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Abstract—In this paper we present a formally verified validator
for planning problems and their solutions. We formalise the se-
mantics of a fragment of PDDL (∨,¬,→,= in the preconditions,
typing and constants) in the Higher-Order Logic theorem prover
Isabelle/HOL. We then construct an efficient plan validator and
mechanically prove it correct w.r.t. our semantics. We argue that
our approach provides a superior compromise in constructing
validators where one can have the best of two worlds: (i) clear and
concise semantics w.r.t. which the validator is built thus helping
to avoid bugs (unlike existing validators, which we show have
bugs) and (ii) an optimised implementation whose performance
is competitive with mainstream unverified validators.

I. INTRODUCTION

Since their earliest days, AI planning systems have had a lot
of interaction with theorem provers. First-Order Logic (FOL)
theorem provers were used in [1], [2], and, more recently,
propositional satisfiability solvers in [3], [4]. However, most
of that work was focused on using theorem provers to solve
planning problems, i.e. to produce plans.

In this work we argue that theorem proving technology can
excel in filling needs for the planning community, other than
producing plans. One obvious such need is validating whether
a plan actually solves a planning problem. Since in many cases
large transition systems underlie planning problems, and (can-
didate) plans can be substantially long, manual validation is
infeasible. Furthermore, the need for validation is exacerbated
if the application in which those plans are used is safety-
critical. This motivates the need for automatic plan validators
that verify whether a sequence of actions indeed achieves the
goal of a planning problem.

This issue is addressed by validators for different planning
formalisms, most notably VAL [5], which validates plans for
problems specified in PDDL2.1 [6]. It was later extended
[7] to cover processes and events. However, VAL’s C++
implementation uses many performance oriented optimisations
that sometimes obfuscate the relation between the semantics
of PDDL and the actual implementation, which might cause
the implemented semantics to not be equivalent to the intended
semantics. One attempt to remedy this is Patrik Haslum’s IN-
VAL1 validator for PDDL. It is written in Common Lisp, with
the intent of closely resembling the semantics of PDDL [6],
[8]. This, however, comes at the cost of performance: in
our experiments INVAL is substantially slower than VAL.
Moreover, although Common Lisp may be more concise
than C++ in describing the semantics of PDDL, it is still a

1https://github.com/patrikhaslum/INVAL

Semantic Definition / Size VAL INVAL Isabelle/HOL
Apply Action 75 23 3
Action Enabled in State 67 69 15
Well-Formed Action Instance 87 77 25
Plan is Valid 224 163 50

Table I: Sizes in lines of code(LOC) of the specification of different
definitions. This table is only indicative, since different validators
support different features. However, whenever we could, we only
count LOC contributing to the STRIPS fragment in VAL and INVAL.
E.g. in INVAL, we count no lines that apply relative or assign effects.

programming language. Thus, it requires the semantics to be
specified as executable programs instead of the mathematically
more concise and abstract specifications which are used in
pen-and-paper specification. Again, this has the potential of
introducing differences between the implemented and the
intended semantics.

Indeed, there are bugs in both VAL and INVAL. There
are domains, instances and buggy plans that are mistakenly
accepted as correct plans by VAL. Furthermore, there are
domains, instances and plans that are all correct, but trigger
non-termination for INVAL and segmentation faults for VAL,
thus rendering them practically incomplete.2

In this work we argue that theorem provers and formal meth-
ods technology are an excellent fit to alleviate: (i) having to
choose between clear semantics and efficient implementations,
and (ii) having to trust the equivalence of the implemented
semantics and the pen-and-paper semantics. Languages used
by theorem provers, like Higher-Order Logic (HOL) [9], [10]
and Dependent Type Theory [11], [12], allow for the use
of standard mathematical constructs that are not necessarily
executable, like set comprehensions. Thus, they enable a
formal specification of the semantics that is far more concise
and elegant than what is possible in in any programming
language (see Table I). This reduces the chance of having bugs
in the specified semantics. More importantly, theorem provers
allow for proving that sanity checking properties hold for
the specified semantics. It also allows mechanising soundness
theorems associated with pen-and-paper semantics. Having
those properties mechanised is substantially more reliable
than mere visual inspection, and thus gives a much stronger
indication on the equivalence between the formally specified
and the pen-and-paper semantics.

Another advantage of using theorem provers for building
validators is that the implementation of the validator needs not
be the same as the specified semantics. Indeed, an optimised

2We describe the bugs we found in more detail in the experiments section.
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implementation of the validator with low level performance
oriented trickery can be used. The equivalence between the
implementation and the specification is formally proved within
the theorem prover. This allows for the runtimes of our
validator to compete with VAL, and be much faster than
INVAL, despite our semantics specification in HOL being
substantially more concise than that of INVAL, let alone VAL.

Contributions: (i) (Section II) In Isabelle/HOL, we for-
malise the semantics of a propositional STRIPS like formalism
for ground actions, but we add to it equality, negation, disjunc-
tions and implication in the preconditions. We roughly follow
the semantics of STRIPS by Lifschitz [13], adapting it to the
extra features that we support and removing from it practically
irrelevant features like non-atomic effects. (ii) (Section III) We
define the semantics of a fragment of PDDL (i.e. the notion
of action schemata and typing) on top of our formalisation
of ground actions. Our fragment includes the PDDL flags
:strips, :typing, :negative-preconditions, :disjunctive-precondi-
tions, :equality, :constants, and :action-costs. (iii) (Section IV)
We prove theorems about the formalised semantics that serve
as sanity checks. (iv) (Section V) We specify an optimised
validator in Isabelle/HOL, and prove it correct w.r.t. our for-
malised semantics. Using Isabelle’s code generator [14], [15],
we extract an executable validator as Standard ML [16] pro-
gram. It is much faster than INVAL and competitive with VAL.
To the best of our knowledge, this is the first formally verified
plan validator. The Isabelle sources of our development can be
downloaded at: http://home.in.tum.de/~mansour/verval.html.

A. Isabelle/HOL

Isabelle/HOL [10] is a theorem prover based on Higher-
Order Logic. Roughly speaking, Higher-Order Logic can be
seen as a combination of functional programming with logic.
Isabelle/HOL supports the extraction of the functional frag-
ment to actual code in various languages [14].

Isabelle’s syntax is a variation of Standard ML combined
with (almost) standard mathematical notation. Function ap-
plication is written infix, and functions are usually Curried
(i.e., function f applied to arguments x1 . . . xn is written as
f x1 . . . xn instead of the standard notation f(x1, . . . , xn)).
We explain non-standard syntax in the paper where it occurs.

Isabelle is designed for trustworthiness: following the LCF
approach [17], a small kernel implements the inference rules
of the logic, and, using encapsulation features of ML, it
guarantees that all theorems are actually proved by this small
kernel. Around the kernel, there is a large set of tools that
implement proof tactics and high-level concepts like algebraic
datatypes and recursive functions. Bugs in these tools cannot
lead to inconsistent theorems being proved, but only to error
messages when the kernel refuses a proof.

II. MECHANISING THE SEMANTICS OF GROUND ACTIONS

In this section, we formalise a semantics of ground actions,
i.e. STRIPS extended with disjunction, negation, and equality
in the preconditions and goals. We follow the definitions by
Lifschtiz [13], whenever possible. In Section III, we use this
formalisation as a basis for our PDDL semantics.

A. Formalising the Abstract Syntax

First, we define basic concepts like atoms, predicates, and
formulae. These concepts are also used for defining PDDL
semantics, so we follow Kovacs’ [18] PDDL grammar where
appropriate. In Isabelle/HOL, Kovacs’ abstract syntax can
elegantly be modelled as algebraic data types. E.g. consider
the following abstract syntax rules from Kovacs’.

<name> ::= <letter> <any char>*
<predicate> ::= <name>
<atomic formula (t)> ::= (<predicate> t*)
<atomic formula (t)> ::= (= t t)

Those rules are modelled as follows in Isabelle/HOL as
follows.
type_synonym name = string
datatype predicate = Pred (name: name)
datatype ’t atom = predAtm (predicate: predicate) (arguments: "’t list")

| Eq (lhs: ’t) (rhs: ’t)
That is, our abstract syntax does not detail the structure of

names, but models them as strings. For predicates, we use
a datatype with a single constructor 〈 Pred 〉, which contains
a 〈 name 〉. The Isabelle notation 〈 name: 〉 defines a selector
function, i.e. 〈 name p 〉 is the name of predicate 〈 p 〉. For
atomic formulae, which we call atoms here, we use a datatype
with two constructors, one per rule in the grammar. Moreover,
the parameter 〈 t 〉 in Kovacs’ grammar is modelled as a type
parameter 〈 ’t 〉. E.g. 〈object atom 〉 is the type of ground atoms,
and 〈 term atom 〉 is the type of atoms over terms.

To model formulae, we use an existing Isabelle/HOL for-
malisation of propositional logic by Michael and Nipkow [19].
Formulae are parameterised over atoms, and consist of the
standard connectives ∧,∨,→,¬ and ⊥ (i.e. falsum). For
example, the type 〈 object atom formula 〉 represents ground
formulae.

An effect is a pair of sets of formulae to be added and
deleted. We restrict the formulae to predicate atoms only, since
non-atomic effects are practically irrelevant.
datatype ’t effect = Effect

(adds: "’t atom formula list")
(dels: "’t atom formula list")

The restriction on the add and delete formulae to predicate
atoms is modelled by a well-formedness condition. A ground
action (a.k.a. operator) consists of a precondition and an effect.
datatype ground_action = Ground_Action

(precondition: "object atom formula")
(effect: "object ast_effect")

B. The Semantics of STRIPS + Negation and Equality

We define a world model to be a set of ground formulae.
type_synonym world_model = "object atom formula set"
States resulting from action execution are “basic’ world

models containing only predicate atoms instead of arbitrary
formulae.

definition "wm_basic M ≡ ∀ a∈M. is_predAtom a"
To define entailment, the basic world model is closed by

adding the negations of all predicates not in the basic model,
as well as all equalities and inequalities:
definition close_world :: "world_model ⇒ world_model" where

"close_world M =
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M ∪ {¬(Atom (predAtm p as)) | p as. Atom (predAtm p as) /∈ M}
∪ {Atom (Eq a a) | a. True} ∪ {¬(Atom (Eq a b)) | a b. a6=b}"

We write 〈M c||== ϕ 〉 for 〈close_world M ||= ϕ 〉, where
||= is propositional logic entailment from Michael and Nip-
kow [19].

An effect is applied to a basic world model by first removing
the delete-predicates, and then adding the add-predicates.
fun apply_effect :: "object ast_effect ⇒ world_model ⇒ world_model"

where "apply_effect (Effect a d) s = (s - set d) ∪ (set a)"
Note that fun in Isabelle/HOL allows pattern matching and

(terminating) recursive definitions.
A valid ground action sequence α1 . . . αn connecting an

initial world model M =M1 and a world model Mn+1 =M ′

is a sequence of actions such that there are intermediate models
Mi, each Mi entails the precondition of αi (the action is
enabled), and Mi+1 is obtained from Mi by applying the effect
of αi. In Isabelle/HOL, this is most elegantly modelled as a
recursive function, leaving implicit the intermediate models:
fun ground_action_path

:: "world_model ⇒ ground_action list ⇒ world_model ⇒ bool"
where

"ground_action_path M [] M’ ←→ (M = M’)"
| "ground_action_path M (α#αs) M’ ←→ M c||== precondition α
∧ (ground_action_path (apply_effect (effect α) M) αs M’)"

III. FORMALISED SEMANTICS OF A PDDL FRAGMENT

We now specify semantics of (a fragment of) PDDL, by
adding action schemata and types to the semantics of ground
actions. An action schema (sometimes simply called action) is
parameterised over object-valued variables. Substituting these
variables for actual objects yields a ground action. Moreover, a
hierarchical type system restricts the applicability of predicates
to objects. We first formalise the abstract syntax of PDDL
following Kovacs’ grammar, and then define its semantics.

A. Abstract Syntax

A term is an object or a variable.
datatype "term" = VAR variable | CONST object

A type is a list of type names (Either-type).
datatype type = Either (primitives: "name list")

An action schema has a name and a list of typed parameters,
as well as a precondition and an effect, which are defined over
terms (instead of objects for ground actions).
datatype ast_action_schema = Action_Schema

(name: name)
(parameters: "(variable × type) list")
(precondition: "term atom formula")
(effect: "term ast_effect")

Finally, an action of a plan is a name (referencing an action
schema) and a list of (argument) objects:
datatype plan_action = PAction (name: name) (args: "object list")

Similarly, we model the remaining abstract syntax, based
on Kovacs’ grammar3. We only display the top-level entities
for a PDDL domain and instance here:
datatype ast_domain = Domain

(types: "(name × name) list")
(predicates: "predicate_decl list")
(consts: "(object × type) list")
(actions: "ast_action_schema list")

datatype ast_problem = Problem
(domain: ast_domain)
(objects: "(object × type) list")
(init: "object atom formula list")
(goal: "object atom formula")

3We sometimes use slightly different names than Kovacs.

A domain consists of a list of type declarations, which are
pairs of declared types and supertypes, as well as predicate
declarations, constant declarations, and action schemas. A
problem refers to a domain, and additionally contains object
declarations, as well as an initial state and a goal. A well-
formedness condition will restrict the formulae of the initial
state to be only predicate atoms4.

B. Well-Formedness

The next step towards specification of a PDDL semantics
is to define well-formedness criteria. For example, we require
that action names are unique and that all predicates occurring
in formulae or effects have been declared and are applied to
type-compatible terms.

While many of the well-formedness conditions are straight-
forward, some leave room for ambiguities that have to be
resolved in a formal specification. For example, Kovacs’
grammar formally allows for types being declared with an
Either-supertype. The semantics of this is not clear; different
validators seem to have different interpretations of what this
means, and thus, we do not support this feature. In our
semantics of typing each type declaration 〈 tn – tn’ 〉 introduces
an edge tn← tn′ in a subtype relation, where tn and tn′ are
type names. A term of (Either-) type oT can be substituted at
a parameter position expecting type T iff every type name in
oT is reachable from some type name in T via the following
subtype relation.
definition of_type :: "type ⇒ type ⇒ bool" where

"of_type oT T ≡ set (primitives oT) ⊆ subtype_rel∗ ‘‘ set (primitives T)"
Here, 〈* 〉 denotes reflexive transitive closure, and 〈 ‘‘ 〉 is the

image of a set under a relation.

C. Execution Semantics

Finally, we define the semantics of plans within our frag-
ment of PDDL: by instantiating the action schema referenced
by a plan action we obtain a ground action, which is then
applied to the world model using the execution semantics
defined in Section II. Additionally, we check that each plan
action is well-formed, i.e. that its arguments’ types can be
substituted for the action schema’s parameter types. Note that
we assume an implicitly fixed PDDL instance P with domain
D for the following definitions.
definition plan_action_path

:: "world_model ⇒ plan_action list ⇒ world_model ⇒ bool" where
"plan_action_path M πs M’ =

((∀π ∈ set πs. wf_plan_action π)
∧ ground_action_path M (map resolve_instantiate πs) M’)"

In this definition, we first ensure that every plan action is
well-formed. Then, we resolve and instantiate the actions of
the plan, obtaining a sequence of ground actions, which is
checked against the basic semantics for ground actions.

With the above definition, it is straightforward to define a
valid plan as a plan that transforms the initial world model 〈 I 〉

to a world model 〈M’ 〉 that entails the problem’s goal:
definition valid_plan :: "plan ⇒ bool" where

"valid_plan πs ≡ ∃M’. plan_action_path I πs M’ ∧ M’ c||== (goal P)"

4Kovacs grammar also allows negated atoms and equalities here, which,
however, is meaningless under our closed world assumption.
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IV. PROVING PROPERTIES ABOUT THE SEMANTICS:
SANITY CHECKING THEOREMS

Traditionally, validators specify semantics (usually in the
form of an implementation) and trust that the specified se-
mantics are what they are supposed to mean at face value;
the only check one could do is visual inspection. Here, we
demonstrate that specifying semantics in a theorem prover
allows proving sanity checking theorems within the theorem
prover about the specified semantics, instead of mere visual
inspection. Admittedly, the theorem statements are still trusted
only visually, but it is established as a plausible premise that
proving such sanity checking theorems reduces the chance of
bugs remaining unnoticed, e.g. Norrish’s seminal formalisation
of the C-language’s semantics [20].

One sanity checking theorem we prove in Isabelle/HOL
concerns the soundness of closing the world-model. It states
that for a formula without negation, implication, nor equality,
our entailment is the same as entailment without closing the
model. This shows that our ground action semantics generalise
standard STRIPS without negation and equality.

Another sanity check shows that executing a well-typed plan
preserves well-formedness of the world model. Here, a world
model is well-formed if it is basic, and all its predicates are
declared and applied to type-compatible declared objects. This
is a sanity check for our well-formedness conditions: it proves
that they are strong enough to ensure nothing odd will happen
to the world model during execution.

A more involved sanity check confirms that our execution
semantics of ground actions are sound, in the sense used by
Lifschitz [13]. Lifschitz introduced the notions of abstract
states and abstract actions, and derived conditions on ground
actions and world models allowing their execution to be
simulated by executing abstract actions on abstract states.
Since the execution semantics of abstract actions are an
alternative formulation of the execution semantics of ground
actions, then showing a simulation between the two semantics
is a form of validation reducing the possibility of having
bugs. We model abstract states in Isabelle/HOL as valuations,
i.e. functions from atoms to truth values. While Lifschitz
assumed that the concept of an abstract state satisfying a
formula is readily defined, we formalise that concept using the
syntactic entailment operator defined in the logic of Michael
and Nipkow [19], in which they use 〈 s |= ϕ 〉 to denote that
a valuation 〈 s 〉 entails a formula 〈ϕ 〉. However, we extend
the entailment operator of their logic to include equalities and
denote this new entailment by 〈s |== ϕ 〉. Lifschitz, and we,
define abstract actions as partial functions from abstract states
to abstract states. However, we model partiality of actions
using the 〈option 〉 type in Isabelle.

To demonstrate the simulation, we define mappings from
world-models to abstract states and from ground actions to
abstract actions. A world-model 〈M 〉 is mapped to an abstract
state 〈s 〉 if ∀ϕ∈close_world M. s |== ϕ. Let α be a ground
action with precondition 〈pre 〉, and effects 〈add 〉 and 〈del 〉. α
is mapped to an abstract action f if for any abstract state s,
〈 s |== pre 〉 implies that there is an s′ s.t. f(s) = s′ (i.e.
the abstract action is well-defined on s), and that for any

atom 〈atm 〉 (i) if 〈atm /∈ del 〉 and 〈s |== atm 〉, then 〈s’ |==

atm 〉, and (ii) if 〈 atm /∈ add 〉 and 〈 s |== ¬ atm 〉, then 〈 s’
|== ¬ atm 〉, and (iii) if 〈 atm ∈ add 〉, then 〈 s’ |== atm 〉w,
and (iv) if 〈 atm ∈ del 〉 and 〈 atm /∈ add 〉, then 〈 s’ |== ¬
atm 〉. Those two mappings are analogous to the mappings
by Lifschitz. However, since, unlike Lifschitz, we support
negations, implications and equalities in the precondition we
use an entailment operator with equality, and we add the
articles ii and iii to the action mapping. Also since we restrict
ground action effects to atoms, we omit the condition stating
that every non-atomic effect in 〈add 〉 is a tautology from the
action mapping. Using our mappings we show the required
simulation between ground actions/world models and abstract
actions/states as a theorem in Isabelle/HOL equivalent to the
theorem in Section 4 in Lifschitz’s paper.

As a last sanity check, we show that our semantics of types
and action schema instantiation do not affect soundness, i.e.
we show that a well-formed instantiation of a well-formed
domain can be simulated by abstract states and actions. A
minor challenge is devising concrete mappings from PDDL
world models to abstract states and the other way around, as
well as as from PDDL plan actions to abstract actions.

V. A FORMALLY VERIFIED PLAN VALIDATOR

Using the Semantics of the fragment of PDDL defined in
Section III, we concisely write down a PDDL plan validator.
Given a problem 〈P 〉 and plan 〈πs 〉, the validator checks that
the problem is well-formed and the plan is valid:
validator P πs ≡ wf_problem P ∧ valid_plan P πs

However, this specification depends on several abstract
mathematical concepts that we used in our semantics, e.g. sets
and reflexive transitive closures. While these are well-suited
for an elegant specification, they cannot be directly executed.
Thus, we prove that our abstract specification is equivalent to a
concrete, algorithmic one, for which Isabelle/HOL can extract
actual code. This refinement approach gives us the best of
two worlds: a concise semantics and an efficient checker that
provably implements the semantics.

Our refinement proceeds in two steps. First, we replace
abstract specifications by algorithms defined on abstract math-
ematical types like sets. Second, we replace the abstract types
by concrete (verified) data structures like red-black trees. The
second step is automated by the Containers Framework [15].
We exemplify some of the refinements below.

For reflexive transitive closure, we use a (general purpose)
DFS algorithm. We define
definition of_type_impl G oT T

≡ (∀ pt∈set (primitives oT). dfs_reachable G (op=pt) (primitives T))

Here, the 〈G 〉 parameter will be instantiated by the tabulated
successor function of the subtype graph, which is only com-
puted once and passed as extra parameter to all subsequent
functions (λ-lifting). We prove
lemma of_type_impl_correct: of_type_impl STG oT T ←→ of_type oT T

Above, 〈STG 〉 is the actual tabulated subtype graph defined
w.r.t. the implicitly fixed domain D.

Another crucial refinement summarises the enabledness
check and effect application of a plan action. This way, the
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action has to be instantiated only once. Moreover, we use an
error monad to report human-readable error messages:
definition en_exE2 where

en_exE2 G mp ≡ λ(PAction n args) ⇒ λM. do {
a ← resolve_action_schemaE n;
check (action_params_match2 G mp a args) (ERRS ’’Par. mism.’’);
let ai = instantiate_action_schema a args;
check (holds M (precondition ai)) (ERRS ’’Precondition not satisfied’’);

Error_Monad.return (apply_effect (effect ai) M)}

Here, 〈G 〉 will again be instantiated by the subtype relation,
and 〈mp 〉 will be instantiated by a map from object names to
types. The following lemma justifies the refinement:
lemma (in wf_ast_problem) en_exE2_return_iff:

assumes wm_basic M
shows en_exE2 STG mp_objT a M = Inr M’

←→ plan_action_enabled a M ∧ M’ = execute_plan_action a M

That is, for a basic world model 〈M 〉 and plan action 〈a 〉, the
function 〈en_exE2 STG mp_objT a M 〉 will return 〈 Inr M’ 〉,
if and only if the action is enabled and its execution yields
〈M’ 〉. Otherwise, it returns 〈 Inl msg 〉 with a human readable
error message. Again, 〈 STG 〉 is the actual subtype relation,
and 〈mp_objT 〉 is the actual mapping from objects to types.

Finally, we obtain a refined checker 〈check_plan 〉 and prove
the following theorem that it is sound w.r.t. the semantics.
lemma check_plan_return_iff:

check_plan P πs = Inr () ←→ wf_problem P ∧ valid_plan P πs

For a problem P and an action sequence πs, our executable
plan checker 〈check_plan 〉 returns Inr () if and only if the
problem and its domain are well-formed, and the plan is valid.5

Otherwise, it returns Inl msg with some error message.
During the refinement steps, we prove correct many algo-

rithms and data structures. However, these details are irrelevant
for understanding the final correctness theorem: if one believes
that the right hand side of the equivalence, which only depends
on the abstract semantics, correctly specifies a well-formed
problem and valid plan, and believes in the soundness of
Isabelle, then this theorem states that the left hand side (the
checker) is a plan validator.

Isabelle/HOL’s code generator can generate implementa-
tions of computable functions in different languages. We
generate a Standard ML [16] implementation of 〈check_plan 〉

and combine it with a parser and a command line interface
(CLI) to obtain an executable plan validator. Note that the
parser and CLI are trusted parts of the validator, i.e. there is
no formal correctness proof that the parser actually recognises
the desired grammar and produces the correct abstract syntax
tree, nor that the CLI correctly forwards the arguments to
〈check_plan 〉 and correctly displays the result.

A. Empirical Evaluation

Our validator currently supports the PDDL flags :strips,
:typing, :negative-preconditions, :disjunctive-preconditions,
:equality, :constants, and :action-costs, which are enough to
validate the vast majority of the International Planning Com-
petition benchmarks and their solutions. We use our validator,
in addition to VAL and INVAL, to validate PDDL problems
and plans from previous International Planning Competitions

5Note: the problem P is now an explicit parameter.

(IPC). We validate plans generated by Fast-Downward [21].
Table II shows the runtimes of our validator, VAL, and INVAL
for different IPC benchmark domains, and for each domain
shows how many plans were labelled as valid. There are two
main goals for this experiment. First, we investigate whether
there are differences in the validation outcomes of VAL,
INVAL, and our validator, and whether such differences are
due to bugs. For the IPC benchmarks, observed differences
were primarily due to segmentation faults by VAL, which
happened with 111 instances. Another difference is that both
VAL and INVAL allow an empty list of object declarations of
the form 〈 - type 〉 in the problem, while our validator expects
at least one object, which conforms to Kovacs’ grammar. This
showed up in a problem from the WoodWorking domain.

However, for non-IPC benchmarks, we found bugs in both
VAL and INVAL that did not show up in the IPC benchmarks:
VAL erroneously identifies distinct atoms during its precon-
dition check. Consider a domain with a predicate 〈P 〉 and an
instance of that domain with objects 〈OA 〉, 〈OB 〉, 〈O 〉, and
〈 AOB 〉. An action with precondition 〈 (P OA OB) 〉 will
be satisfied by an atom 〈 (P O AOB) 〉 in the state. Based
on that, we construct examples where VAL would report an
incorrect plan to be valid. Another issue with VAL is that it
sometimes reports a valid plan to be invalid, if it has an action
with no preconditions. INVAL does not terminate for domains
with cyclic type dependencies if its type-checker is enabled.

The fact that these bugs are not detected via testing on
the IPC benchmarks strengthens the argument for the use of
formal verification to develop AI planning tools, especially if
the main purpose of those tools is to add confidence in the
correctness of plans and planning systems, as is the case with
validators.6

The second purpose of our experiments is comparing the
performance. Table II shows that our validator is much faster
than INVAL on all benchmarked domains. The runtimes of our
validator are even comparable to VAL. This, however, is rather
impressive when compared to other pieces of verified software.
For example, the verified model-checker in [22] is about 400
times slower than the unverified Spin model-checker [23].
This performance is the result of several rounds of profiling
to identify hotspots and performance leaks, and adjusting the
refinements (and their correctness proofs) accordingly.

VI. RELATED WORK AND CONCLUSIONS

In this work we provide the first formalisation, to our
knowledge, of STRIPS or any of its extensions in any theorem
prover. In the theorem prover Isabelle/HOL, we formalise
an extended version of STRIPS that allows for negations,
implications and equalities in the preconditions and on top
of that we formalise the semantics of a fragment of PDDL.
To our knowledge, the closest work to that in the planning
literature is McCarthy’s formalisation of STRIPS in Situa-
tion Calculus [24]. Using stepwise refinement techniques, we
created a competitive plan validator, for a PDDL fragment
containing most IPC problems, which is mechanically proved

6We note that all of these bugs were reported to the relevant bug trackers.
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VAL (Min/Max) INVAL (Min/Max) * (Min/Max)
logistics 0/.048(406) .080/.360(406) 0/.024(406)
elevators .004/.036(20) .104/.268(20) .004/.048(20)
rover 0/.088(70) .092/.856(70) 0/.116(70)
nomystery .004/.628(37) .120/49.916(50) .004/4.992(50)
zeno 0/.012(40) .084/.136(40) 0/.004(40)
hiking 0/.004(38) .096/.564(38) 0/.012(38)
TPP 0/.020(30) .088/.176(30) 0/.016(30)
Transport .008/.016(11) .088/.152(11) .008/.020(11)
GED .004/.020(40) .100/.328(40) 0/.020(40)
woodworking .004/.016(20) .096/.164(20) .008/.020(19)
visitall 0/.528(70) .084/50.992(70) 0/1.304(70)
openstacks 0/.188(60) .084/1.832(80) 0/.344(80)
satellite 0/0(10) .112/.136(10) 0/0(10)
scanalyzer 0/.016(40) .096/.144(60) 0/.012(60)
gripper 0/.004(22) .088/.152(22) 0/.004(22)
tidybot .004/.012(47) .092/.148(47) 0/.040(47)
storage 0/.008(19) .096/.136(19) 0/.004(19)
trucks 0/.004(2) .112/.116(2) 0/0(2)
parcprinter .004/.012(20) .088/.132(34) 0/.028(34)
pipesworld .004/.024(43) .084/.144(43) 0/.024(43)
pegsol .004/.008(40) .108/.200(60) 0/.012(60)
Parking 0/.008(80) .088/.500(100) 0/.008(100)
blocksworld 0/.004(10) .120/.140(10) 0/0(10)
floortile .004/.004(20) .080/.120(24) 0/.012(24)
barman .004/.012(42) .100/.168(42) 0/.016(42)
Thoughtful .004/.020(16) .136/.532(16) .004/.016(16)
childsnack 0/.004(10) .112/.144(10) 0/.012(10)

Table II: A table showing the maximum and minimum runtimes of
different validators on instances in different IPC domains and the
number of plans labelled as valid. The column headed by * is the
one for our validator.

correct w.r.t. the abstract PDDL semantics. To the best of our
knowledge, this is the first formally verified plan validator.

Stepwise refinement approaches were successfully used in
a variety of applications, e.g. the verified C compiler Com-
pCert [25], the verified kernel Sel4 [26], and a verified theorem
prover [27]. Applications closer to the topic of this work
include a verified SAT solver [28], a verified certificate checker
for SAT [29], and a verified model-checker [30].

A logical extension of this paper would be to include more
PDDL features like axioms [8] and durative actions [6]. How-
ever, the lack of consensus on their semantics in the planning
community poses a challenge to formalising them. Other ap-
plications of our semantics include proving the equi-solvability
of planning problems, or that certain decompositions hold for
a planning problem or domain, etc. Also, unsolvable planning
problems can be tackled by implementing a verified checker
for unsolvability certificates like the ones in [31]. A more
comprehensive approach to unsolvable planning would be
to implement a planner whose soundness and completeness
is formally verified. This could be done by verifying SAT
encodings for planning problems like Rintanen’s [4] and
upper bounds on plan lengths like the ones by Abdulaziz et
al. [32], [33]. This could then be combined with a verified SAT
solver [28] or an existing verified SAT certificate checker [29].
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