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Abstract. Mcta is a directed model checking tool for concurrent sys-
tems of timed automata. This paper reviews Mcta and its new devel-
opments from an implementation point of view. The new developments
include both heuristics and search techniques that define the state of the
art in directed model checking. In particular, Mcta features the pow-
erful class of pattern database heuristics for efficiently finding shortest
possible error traces. Furthermore, Mcta offers new search techniques
based on multi-queue search algorithms. Our evaluation demonstrates
that Mcta is able to significantly outperform previous versions of Mcta
as well as related state-of-the-art tools like Uppaal and Uppaal/Dmc.

1 Introduction

Model checking of real-time systems is an interesting and important research
issue in theory and in practice. In this context, Uppaal [2, 3] is a state-of-the-
art model checker for real-time systems that are modeled as timed automata [1].
Uppaal offers several approaches to successfully tackle the state explosion prob-
lem. However, to efficiently find short error traces in large concurrent systems
of timed automata, additional search techniques are desired.

Mcta [19] is a tool for model checking large systems of concurrent timed
automata. Mcta is optimized for falsification, i. e., for the efficient detection
of short error traces in faulty systems. Therefore, Mcta applies the directed
model checking approach [9]. Directed model checking is a version of model
checking that applies a distance heuristic and a special search algorithm to guide
the search towards error states. Distance heuristics compute a numeric value
for every state s encountered during the search, reflecting an estimation of the
length of a shortest trace from s to an error state. These values are used by the
underlying search algorithm (e. g., the well-known A∗ algorithm [11, 12]) to guide
the search. Overall, most of the proposed distance heuristics can be computed
automatically based the description of the input system. Therefore, directed
model checking is a fully automatic approach as well. For the special setting
when admissible distance heuristics are applied (i. e., distance heuristics that
are guaranteed to never overestimate the real error distance), directed model
checking allows for optimal search, i. e., in this case, directed model checking
computes shortest possible error traces with the A∗ search algorithm. This is
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desirable because shorter error traces allow one to better understand the reason
for the bug.

In this paper, we review Mcta and its new developments from an implemen-
tation point of view. In particular, we provide an overview of Mcta’s lightweight
and flexible architecture. This architecture is tailored to engineering an efficient
model checker based on heuristic search methods. The current version of Mcta
(Mcta-2012.05 or Mcta-2012 for short) supports both optimal and subopti-
mal search methods. In the setting of optimal search, Mcta-2012 features a
powerful admissible pattern database heuristic. To get a feeling of the power of
Mcta-2012’s heuristic search methods in an optimal search setting, we provide
a snapshot of Mcta-2012’s performance in Table 1. The problems D1–D6 stem
from an industrial real-time case study (see Sec. 6 for details). A dash indicates
that the corresponding tool exceeded the memory limit of 4 GByte. We observe
that Mcta-2012 shows superior performance.

Table 1. Snapshot of Mcta-2012’s performance in an optimal search setting. The table
provides the best runtime in seconds for Mcta-2012, for Mcta-0.1 (corresponding to
the predecessor of Mcta-2012 that has been released in 2008 [19]), for Uppaal/Dmc,
and for Uppaal-4.0.13.

Instance Mcta-2012 Mcta-0.1 Uppaal/Dmc Uppaal-4.0.13

D1 10.2 81.2 84.7 90.5
D2 12.2 433.4 255.3 539.0
D3 12.3 487.0 255.6 548.4
D4 13.9 288.0 256.7 476.4
D5 60.1 – – –
D6 66.4 – – –

Furthermore, in the setting of suboptimal search, Mcta now features search
algorithms that extend classical directed model checking by applying a multi-
queue approach using several open queues instead of only one. This approach
can be applied with arbitrary distance heuristics.

Mcta is written in C++ and Python. It is released under the GPL and can
be obtained from the website http://mcta.informatik.uni-freiburg.de/.
The website particularly provides a binary of Mcta, the source code, relevant
benchmark problems, and related papers. Subsequently, when we want to dis-
tinguish between the new and the earlier version of Mcta, the new version is
called Mcta-2012, whereas the earlier version that corresponds to the last tool
paper [19] is called Mcta-0.1 (as also indicated on the website).

The remainder of the paper is organized as follows. In Sec. 2, we give the
preliminaries that are needed for this work. In Sec. 3, we present Mcta’s basic
architecture, based on which the newly developed components and their imple-
mentation are described in detail in Sec. 4 and Sec. 5. Furthermore, an exper-
imental evaluation is given in Sec. 6. Finally, we conclude the paper in Sec. 7
and give an overview of next development steps.
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2 Preliminaries

In this section, we introduce the preliminaries that are needed for this paper.
In Sec. 2.1, we give a brief introduction to the timed automata formalism. In
Sec. 2.2, we describe the classical directed model checking approach that Mcta
is based on.

2.1 Timed Automata

We consider a class of timed automata that is extended with bounded integer
variables. A timed automaton A consists of a finite set of locations and a set
of edges that connect (some of) A’s locations. Every location features a clock
invariant represented as a conjunction of clock constraints x ≺ n for a clock
x and an integer n ∈ N, where ≺∈ {<,≤}. Furthermore, edges are annotated
with guards, effects and a synchronization label from a global synchronization
alphabet Σ. The guard of an edge consists of a clock and an integer guard,
consisting of clock and integer constraints, respectively. The effect of an edge
consists of a list of clocks (to be reset) and a list of integer assignments. A
(parallel) system of timed automata is defined as a set M = {A1, . . . ,An} of
timed automata.

The operational semantics of a system M of timed automata is defined as
follows. As the explicit size of M’s state space is infinite, we use a symbolic
representation of the state space that is sound and complete. This representation
is based on zones. In this setting, a global state consists of a discrete part and a
symbolic part. It is defined as a tuple s = 〈L, V, Z〉, where L is a function that
evaluates for every automaton inM the current location in s and V is a function
that evaluates for every integer variable the current value in s. L and V define
the discrete part of s. Furthermore, Z is the zone of s, i. e., a conjunction of
clock constraints that describes the possible values of the clock variables in s. Z
defines the symbolic part of s. We define a transition inM either as a set of one
edge that has a special internal void label (asynchronous communication), or as
a set of two edges from different automata with the same synchronization label
from Σ. Guards and effects of transitions are defined accordingly. A transition
t is applicable in a state s if the location, integer and clock guards of t are
satisfied in s. In this case, the successor state t[s] of s is defined as the state
s where the locations and the integer values are first changed according to the
effect of t, and the zone of t[s] is defined as an update of the zone of s according
to the clock guard and the clock resets of t. Finally, the resulting zone of t[s]
is maximized while preserving consistency with the location invariants of the
destination locations of t. The resulting state space of M is called the zone
graph of M.

2.2 Directed Model Checking

In general, depending on the distance heuristic and the search algorithm, directed
model checking influences the order in which the state space is traversed. For a
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system of timed automataM, directed model checking is performed on the zone
graph of M. The basic model checking algorithm of Mcta is shown in Fig. 1.

1 function dmc(M, h, ϕ):
2 open = empty priority queue
3 closed = ∅
4 open.insert(s0, priority(h, s0))
5 while open 6= ∅ do:
6 s = open.getMinimum()
7 if s |= ϕ then:
8 generateErrorTrace(s)
9 closed = closed ∪ {s}

10 for each transition t of M that is applicable in s do:
11 if t[s] 6∈ closed then:
12 open.insert(t[s], priority(h, t[s]))
13 return True

Fig. 1. Mcta’s basic directed model checking algorithm

For a given system M, a distance heuristic h, and an error property ϕ (i. e.,
a negated invariant property), Mcta performs a reachability algorithm on the
zone graph ofM. Therefore, Mcta maintains a priority queue open that contains
encountered states for which the successor states have not yet been computed,
and a closed list that contains the explored states, i. e., the states for which the
successor states have already been computed. Starting with the initial state s0,
Mcta iteratively computes successor states and evaluates them with a priority
function. For all encountered states, the priority function computes a priority
value which is determined by the distance heuristic h and the applied search
algorithm. According to the priority value, Mcta iteratively removes a best
state s from open and checks if s is an error state (line 6–8). If this is the case,
an error trace in generated by back-tracing from s (therefore, Mcta additionally
stores information in the states about how they have been reached). If s is not an
error state, s is stored in closed, and the successors of s are computed, evaluated
and inserted into open if they are not already explored.

At this point, it is important to note that the algorithm in Fig. 1 should be
read on a conceptual, rather than on an implementation level. For example, on
an implementation level, the closed list is a special kind of hash table (rather
than a set) that supports a certain inclusion test for states. We will come back
to these points in Sec. 3, specifically for a discussion on Mcta’s data structures,
distance heuristics and search algorithms.

3 Mcta’s Architecture and Features

In this section, we give an overview of Mcta’s overall architecture and Mcta’s
features. Therefore, in Sec. 3.1, we present a high-level overview of the modules
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Mcta consists of. In Sec. 3.2 and Sec. 3.3, we specifically describe Mcta’s
distance heuristics and search algorithms.

3.1 Mcta’s Basic Architecture

Mcta consists of the modules parser, system, search, and heuristics. The input
of Mcta consists of a file that contains a description of the timed automata
system, and a file that contains the property to check. The property to check
is a CTL formula of the form ∃♦ϕ, where ϕ is a conjunction of constraints
that speaks about automata and variables (i. e., ϕ describes the error states).
Currently, Mcta supports a part of Uppaal’s input language.

The parser module of Mcta uses Uppaal’s timed automata parser library
(UTAP), which is released under the LGPL and freely available at http://www.
uppaal.org/. After parsing the input, Mcta generates an internal representa-
tion of the input system and the property. The corresponding algorithms and
data structures to build this representation are part of the system module. The
system representation is used by the search module which performs a search on
the zone graph of this representation using a distance heuristic and a search al-
gorithm (according to the algorithm given in Fig. 1). Mcta offers several kinds
of distance heuristics and search algorithms (see Sec. 3.2 and Sec. 3.3 for an
overview). In our setting, a distance heuristic is a function h : S → N ∪ {∞}
that returns for each state of S an estimation of its error distance. The distance
heuristics are implemented in the heuristics module. The overall architecture of
Mcta is depicted in Fig. 2.

parser system

searchheuristics

System

Property SAT

Error Trace

UTAP UDBM

Fig. 2. Mcta’s basic architecture

The search module is central to Mcta. It consists of the search engine, which
implements the global while loop of Fig. 1, and uses dedicated data structures for
states, for the open queue and for the closed list. For the internal representation
of zones, Mcta uses Uppaal’s difference bound matrices library (UDBM), which
is released under the GPL and freely available at http://www.uppaal.org/.
The open queue and the closed list are special kinds of hash tables. Overall,
the design of the search engine is lightweight, which is supposed to simplify
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the implementation of new search algorithms. Furthermore, the interface to the
heuristics module is intended to simplify the implementation of new distance
heuristics.

3.2 The Heuristics Module

The heuristics module of Mcta-2012 features several distance heuristics to guide
the search. To estimate the error distance of a state s, the distance heuristics
compute an abstract error trace π# that starts in an abstraction of s, and use
the length of π# as the estimation for the length of a concrete error trace from
s. We give a short description of the different approaches in the following.

1. The dU and dL distance heuristics [8] are based on the local graph distances
of the automata of the input system. Synchronization, integer variables and
clock variables are ignored.

2. The hL and hU distance heuristics [17] are based on the monotonicity ab-
straction, which abstracts the original semantics of the system. The mono-
tonicity abstraction assumes that variables are set-valued and, once they
obtain a value, keep this value forever. The sets that contain the collected
values grow monotonically over transition application, hence the name of
the abstraction. The hL and hU distance heuristics compute abstract error
traces based on this abstraction.

3. A pattern database heuristic based on downward pattern refinement [18].
We do not go into detail here but refer the reader to Sec. 4.

Compared to the earlier version Mcta-0.1, the hU heuristic and the pattern
database heuristic based on downward pattern refinement are new developments.

3.3 The Search Module

In this section, we focus on a description of Mcta’s search algorithms that are
the essential part of the search module. The search algorithms make use of the
estimated error distances provided by the distance heuristic.

1. The standard greedy search algorithm [22] and A∗ search algorithm [11,
12], including the uninformed search algorithms depth-first and breadth-first
search.

2. The notion of useless transitions provides an approach to evaluate transitions
(rather than just evaluating states) [25, 26]. Transitions t are called useless
in a state s if no shortest error trace starts in s with t. This criterion is
approximated such that it can be computed efficiently. For this approach,
the current version of Mcta maintains two open queues q0 and q1, where q1
maintains states that are reached by a useless transition, and q0 maintains
the remaining states. The q1 queue is accessed only if q0 is empty.
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3. Iterative-context bounding [20] is an approach that stems from the area
of software model checking. In our setting, it corresponds to an iterative
deepening search algorithm that prefers states that are reached with low
number of context switches, i. e., with a low number of transition applications
of different automata.

4. Context-enhanced directed model checking [24] is a further technique to
additionally prioritize transitions during directed model checking. Similar to
the iterative context bounding algorithm, it gives preference to states that
are reached by a transition that interferes with previously applied transitions.
In contrast, context switches are defined and exploited in a different way.

In comparison to Mcta-0.1, the implementation of the iterative context-
bounding approach and the implementation of context-enhanced directed model
checking are new developments. Both of these algorithms are based on multiple
open queues. We will describe their implementation in Sec. 5.

4 Mcta’s Pattern Database Heuristics

In this section, we describe Mcta’s implementation for pattern database (PDB)
heuristics in general, and the implementation of an extended version of down-
ward pattern refinement in particular. We assume the reader is roughly familiar
with pattern databases, and only give a short introduction. Pattern database
heuristics are a class of admissible distance heuristics that come from the area
of Artificial Intelligence [4, 7]. For an input system M and a subset P of the
system components of M (the so-called pattern), a pattern database PDB is a
data structure that contains the abstract states ofM|P , whereM|P denotes the
projection abstraction of M that is obtained by abstracting away all systems
components that are not contained in P. Furthermore, for all abstract states
in the PDB, the corresponding abstract error distance is stored. The PDB is
computed once prior to directed model checking. During directed model check-
ing, the PDB is used as a distance heuristic hP by mapping every encountered
concrete state s to a corresponding abstract state s#. The distance value hP(s)
of s is defined as the corresponding abstract error distance of s#.

4.1 Mcta’s Architecture for Pattern Databases

Assuming that a pattern P is given, we present Mcta’s framework for the com-
putation of pattern databases (see Sec. 4.2 how Mcta computes a suitable pat-
tern). Mcta performs three steps to compute the pattern database for P: Ab-
stracting the system, then computing the entire abstract state space S#, and
finally, computing the abstract error distances for the abstract states in S#.

Abstracting the System First, for the given input systemM and the pattern
P, Mcta computes a projection abstraction of M based on P by abstracting
away all system components that do not occur in P. Therefore, Mcta applies
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the abstractor tool which also comes with the current Mcta-2012 release. The
abstractor tool works as follows. For integer and clock variables v to be ab-
stracted, the abstractor removes v from the guards and effects of the transitions
of M. If there is an edge with an effect such that the new value of v depends
on a variable in P, then v is abstracted away, too. Moreover, for an automaton
A to be abstracted, the abstractor replaces A with a new automaton A′ that
only consists of one location. Moreover, A′ contains loop edges for all edges of
A where the guard is abstracted, but the effects and synchronization labels are
kept. Doing so, we obtain an overapproximationM|P of the original systemM.

Computing the Abstract State Space Second, for the obtained abstrac-
tion M|P of the original system M, the entire reachable state space of M|P is
computed in a forward manner and dumped into a file. For the traversal of the
abstract state space, an extended version of the original search engine is used.
This extended version specifically takes into account that if a state s that is al-
ready in the closed list is encountered again (i. e., on a different trace), the (new)
transition that led to s is stored additionally. The abstract states and transitions
are stored in a serialized form. Moreover, abstract error states are stored with
a special error flag. Overall, we end up with a file that contains all the abstract
states (where abstract error states are specifically indicated) together with all
the abstract transitions.

Computing the Abstract Error Distances Finally, based on the file that
contains the abstract state space, we apply the external tool Pdbgen to generate
the final pattern database. Pdbgen comes with the current Mcta-2012 release
and computes the abstract error distances for a given abstract state space. This is
done in a backwards manner via a version of Dijkstra’s algorithm. More precisely,
Pdbgen starts by assigning the error distance zero to all the abstract error
states, and by assigning infinity to all the other states. In the following, Pdbgen
iteratively checks the predecessor states and updates the distance value if it is
reached more cheaply than before. The output is a file that contains the serialized
abstract states together with their abstract error distances. This is the pattern
database which can be fed into Mcta to be used as a distance heuristic. We
finally remark that, doing this 3-step process to compute the PDB, we avoid the
expensive regression operation on the zone graph.

4.2 Running Mcta with Extended Downward Pattern Refinement

To compute the pattern, Mcta uses the external tool Mcta-Pdb that is imple-
mented in Python. Mcta-Pdb acts as a wrapper around the pattern generator
Pdbgen and Mcta. More precisely, Mcta-Pdb first generates the underlying
pattern. The pattern is generated with an algorithm based on downward pattern
refinement [18]. In addition to the originally proposed hdpr distance heuristic,
Mcta-2012 applies explicit search in intermediate abstractions to deal with clock
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variables more explicitly. Doing so leads to a more-fine grained approach to se-
lect clocks than proposed in the original paper (where all clock variables have
been selected for the pattern by default). For the resulting pattern, the above
described 3-step process is performed. Finally, Mcta-Pdb calls Mcta with the
resulting pattern database. To apply Mcta with the pattern database heuris-
tic based on downward pattern refinement, select the following command line
parameters.

mcta-pdb --dprc --astar SYSTEM PROPERTY

5 Multi-Queue Search Algorithms

In this section, we describe Mcta’s implementation for multi-queue search al-
gorithms. After giving a brief conceptual description in Sec. 5.1, we present
Mcta’s general framework for this approach in Sec. 5.2. In the subsequent sec-
tions, we specifically describe the implementation of two multi-queue search al-
gorithms from the literature, namely iterative context bounding [20] in Sec. 5.3,
and context-enhanced directed model checking [24] in Sec. 5.4.

5.1 The General Approach

In the setting where not only a distance heuristic, but also an additional quality
measure to guide the search is available, there is the question of how to exploit
this additional information. In such cases, a popular approach is to maintain mul-
tiple open queues instead of only one. Within this approach, states are pushed
into different open queues according to the additional quality measure, and or-
dered in this queue according to the original distance heuristic. The “best” state
to explore next is then defined as the “best” state according to the distance
heuristic in the “best” open queue according to the additional quality measure.
For example, multi-queue approaches have been successfully applied in the area
of AI planning for combining distance heuristics [23] (i. e., in this case, the ad-
ditional quality measure is another distance heuristic), or for additionally evalu-
ating transitions rather than only evaluating states [13, 14, 25]. Furthermore, in
the area of model checking, similar approaches have been proposed to evaluate
transitions based on iterative context bounding [20], interference contexts [24],
and the notion of useless transitions [26].

For the rest of this section, we assume a setting where a distance heuristic
(to evaluate states) and a technique to evaluate transitions is available. The
idea is to exploit this additional information by preferably exploring states that
are estimated to be near to an error state (which corresponds to low distance
values as before) and that are reached by a transition that is estimated to guide
the search properly towards an error state. More precisely, the evaluation of
transitions determines the open queue in which the resulting successor state is
maintained, and (as in the classical approach) the distance heuristic determines
the ordering of the states in the queues. Formally, the priority function from the
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algorithm in Fig. 1 becomes a function with domain N×N, i. e., it does no longer
only assign a natural number to states s, but additionally a natural number for
the transition that led to s to determine in which open queue s is maintained.

5.2 Mcta’s Architecture for Multi-Queue Search Algorithms

The high-level architecture of Mcta to maintain several open queues is best
described by the following template functions. They show how an extended open
queue that internally consists of multiple open queues is accessed to get and
insert states. The algorithmic design is rather straight forward and depicted in
Fig. 3.

1 function insert(s, h):
2 k = evaluate predecessor transition t of s
3 qk.insert(s, h(s))

1 function getMinimum():
2 determine open queue qk to access
3 return qk.getMinimum()

Fig. 3. Multi-queue accessing functions

In the above algorithm, we assume that an upper bound on the number of
queues can be computed (see Sec. 5.3 and Sec. 5.4 how this is done for the
individual approaches). In contrast to the classical approach in Fig. 1, the insert
function computes a natural number k to determine the quality of the transition
that led to the state s that is inserted. This number in turn determines the index
of the queue in which s is inserted. Furthermore, getMinimum() returns the best
state of the open queue that is accessed next; note that it depends on the applied
search algorithm how this queue is actually determined.

5.3 Implementation of Iterative Context Bounding

Iterative context bounding (ICB) has been proposed for the purpose of testing
multithreaded programs [20]. Roughly speaking, ICB performs an iterative deep-
ening search with the objective to minimize the number of context switches, i. e.,
the number of execution points on a trace where the scheduler forces the active
thread to change.

Mcta implements this approach by considering threads as automata. There-
fore, a context switch occurs if two consecutive transitions on a trace belong to
two different automata. ICB can be combined with arbitrary distance heuristics
as well as uninformed search (where the latter corresponds to the original ap-
proach). Mcta applies a special search engine that maintains two open queues
q0 and q1 (i. e., k ∈ {0, 1} in Fig. 3). The insert function is implemented as
follows. For a state s and an applicable transition t in s, the successor state is
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inserted into q0 if the edge(s) of t and the edge(s) of the predecessor transition
of s belong to the same automata. The getMinimum() function is implemented
by always accessing q0 until q0 gets empty. If this is the case, then q0 and q1 are
exchanged, reflecting that the number of context switches has been increased by
one. In case q1 is empty, too, we report that no error state is reachable.

Running Mcta with Iterative Context Bounding To run Mcta with iter-
ative context bounding, use the --icb=1 flag when Mcta is called. We remark
that Mcta supports additional options to define a context, but we do not go
into detail here. A short description of these parameters is given when Mcta is
called with the --help option.

5.4 Implementation of Context-Enhanced Directed Model Checking

Context-enhanced directed model checking is a further multi-queue search ap-
proach [24]. In contrast to iterative context-bounding, contexts are essentially
defined based on interference of transitions, where transitions t and t′ interfere
if t writes a variable that is read by t′, or t′ writes a variable that is read by t, or t
and t′ write a common variable. Moreover, during the search, more than two open
queues are maintained in general. The approach is based on preferably exploring
states that are reached by transitions that interfere with previously applied tran-
sitions. More precisely, states are preferably explored if they are reached with
a transition with low interference distance to the previously applied transition,
where the interference distance of t and t′ is defined as the smallest k ∈ N, k ≥ 1,
such that there are transitions t1, . . . , tk with the property that t interferes with
t1, t1 interferes with t2, . . . , and tk interferes with t′.

In Mcta, context-enhanced directed model checking is implemented as fol-
lows. First, for every transition t in the system, the interference distance of t is
computed to every other transition in the system. This is a all pairs-shortest-
path problem for which we apply the Floyd Warshall algorithm [10]. The re-
sulting interference distances are stored in a 2-dimensional vector. The maximal
interference distance N for two transitions defines the number of open queues
(obviously, N is defined because systems have a finite number of transitions).
More precisely, we maintain a global open queue Q that consists of a vector of
open queues q0, . . . , qN . The insert function in Fig. 3 is defined as follows. For a
state s′ that is supposed to be inserted into Q, Mcta determines the interference
distance k of the predecessor transition t′ of s′ and the predecessor transition
of the predecessor state of s′, where s′ is inserted into queue qk. In the special
case that the effect of t′ satisfies a constraint of the property that is subject to
model checking, s′ is inserted in q0. The getMinimum() function determines the
smallest non-empty queue in Q to get the next state.

Running Mcta with Iterative Context Bounding To run Mcta with the
context-enhanced directed model checking approach, use the --ce flag when
Mcta is called. We remark that Mcta supports additional options for this
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setting, but we do not go into detail here. A short description of these parameters
is given when Mcta is called with the --help option.

6 Mcta’s Performance

In this section, we present an experimental evaluation of Mcta-2012 on large and
challenging real-time benchmarks. Specifically, some of these benchmarks stem
from industrial real-time case studies. To evaluate the performance of Mcta-
2012, a bug has been inserted in all of them.

The case study “Single-Tracked Line Segment” [15] (the problem instances
C1, . . . , C9 and D1, . . . , D9) models a distributed real-time controller for a seg-
ments of tracks where trams share a piece of track. The distributed controller is
supposed to ensure that never two trams that drive in opposite directions are si-
multaneously given permission to enter the shared piece of track. The controller
was modeled in terms of PLC automata [6], which is an automata-like notation
for real-time programs. With the tool Moby/RT [21], the PLC automata sys-
tem has been transformed into abstractions of its semantics in terms of timed
automata. For the evaluation of Mcta-2012, we chose the property that never
both directions are given permission to enter the shared segment simultaneously.

As a further set of benchmarks, we used a case study called “Mutual Ex-
clusion” (problem instances M1, . . . ,M4 and N1, . . . , N4). As suggested by the
name, in this case study, mutual exclusion has to be established for real-time
systems. It is based on a protocol that is described by Dierks [5]. We refer the
reader to the website of Mcta for a more detailed description. All of these
benchmarks can also be obtained from the Mcta website.

The experiments have been performed on an AMD Opteron Processor 6174
with 2.2 GHz system and 4 GByte of memory. We compare Mcta-2012 in an
optimal search setting with the best technique described in the last tool paper
[19] (corresponding to Mcta-0.1). We also provide results for the tools Uppaal-
4.0.13 and Uppaal/Dmc [16]. Uppaal provides an efficient implementation of
breadth-first search, whereas the other tools apply the directed model checking
approach. Note that in this paper, we do not compare to Uppaal’s randomized
depth first search (rdfs) because rdfs is not guaranteed to find shortest possible
error traces (see the earlier tool paper of Mcta [19] for a comparison of subop-
timal search techniques including Uppaal’s rdfs). We used the options that lead
to the best experimental results for each tool. In particular, for Mcta-2012, we
used extended downward pattern refinement as described in Sec. 4.2. The results
are given in Table 2. For Mcta-12 and Uppaal/Dmc, the best search options
to find shortest error traces are PDB approaches; therefore, for these tools, the
pure search time in the concrete state space is reported additionally.

The results clearly indicate that Mcta-2012 mostly outperforms the other
directed model checking tools on these problems. Moreover, we observe that
these problems are large and complex because even Uppaal, which provides a
very efficient implementation of breadth-first search, cannot solve all of them.
Furthermore, we observe that the preprocessing of Mcta-2012 often takes most
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Table 2. Results with the A∗ search algorithm. Abbreviations: “Mcta-12”: Mcta-
2012, “Mcta-08”: Mcta-0.1, “U/dmc”: Uppaal/Dmc, “runtime”: overall runtime in-
cluding any preprocessing in seconds, “explored states”: number of explored concrete
states, dashes indicate out of memory (> 4 GByte). For Mcta-12 and U/dmc that
rely on PDBs, the pure search time in the concrete (i. e., time without preprocessing)
is reported in parenthesis.

runtime in seconds explored states trace

Inst. Mcta-12 Mcta-08 U/dmc Uppaal Mcta-12 Mcta-08 U/dmc Uppaal length

M1 2.2 (0.3) 0.6 3.0 (0.2) 0.5 29029 41455 190 14290 47

M2 2.9 (0.9) 2.6 3.2 (0.2) 2.1 99528 164856 4417 51485 50

M3 3.7 (1.7) 3.0 3.4 (0.4) 2.2 165336 189820 11006 52987 50

M4 8.2 (6.2) 13.5 4.0 (1.0) 8.8 549999 724030 41359 186435 53

N1 2.6 (0.1) 2.7 18.0 (0.4) 3.8 3606 93951 345 28196 49

N2 3.1 (0.6) 14.7 12.1 (0.5) 17.1 26791 438394 3811 100078 52

N3 4.2 (1.7) 19.1 14.7 (4.5) 17.5 70439 547174 59062 102124 52

N4 13.0 (10.4) 95.3 34.3 (27.8) 76.4 388076 2317206 341928 370459 55

C1 1.3 (0.1) 0.2 0.8 (0.1) 0.2 98 12458 130 21008 54

C2 1.4 (0.1) 0.7 1.1 (0.7) 0.5 98 32751 89813 55544 54

C3 1.4 (0.1) 0.8 0.8 (0.0) 0.6 98 37126 197 74791 54

C4 1.4 (0.1) 7.5 0.9 (0.1) 6.0 312 301818 1140 553265 55

C5 1.5 (0.1) 60.9 1.0 (0.1) 53.1 1178 2174789 7530 3977279 56

C6 1.5 (0.1) 605.6 1.1 (0.3) 514.3 2619 20551913 39436 33526538 56

C7 1.6 (0.1) – 1.7 (0.8) – 4247 – 149993 – 56

C8 1.6 (0.2) – 1.7 (0.9) – 5416 – 158361 – 56

C9 1.7 (0.2) – 1.7 (0.8) – 13675 – 127895 – 57

D1 10.2 (0.3) 81.2 84.7 (65.0) 90.5 2789 1443874 4610240 4048866 78

D2 12.2 (0.4) 433.4 255.3 (5.4) 539.0 5086 6931937 4223 21478364 79

D3 12.3 (0.4) 487.0 255.6 (5.4) 548.4 5161 7900038 2993 21553760 79

D4 13.9 (0.3) 288.0 256.7 (5.4) 476.4 1023 4660652 2031 18487819 79

D5 60.1 (6.4) – – – 122204 – – – 102

D6 66.4 (10.5) – – – 426571 – – – 103

D7 67.1 (7.9) – – – 180132 – – – 104

D8 68.3 (6.2) – – – 28285 – – – 104

D9 71.4 (6.3) – – – 12186 – – – 105

of the overall model checking time. However, the preprocessing time mostly pays
off, specifically compared to the uninformed search provided by Uppaal, but also
compared to the other directed model checking tools. For the M instances, the
pure search time of Mcta-2012 is still comparable to the search time of most of
the other tools. Moreover, in these instances, we observe that the overall number
of explored states as well as the number of explored states per second is lower
for Uppaal than for Mcta-2012. Although we do not know the exact reason, we
suppose that this is the case because Uppaal uses a more efficient representation
of the zone graph. We finally remark that we have also successfully verified
correct systems with Mcta-2012. This is possible because admissible heuristics
h can be used as a pruning method: If h(s) = ∞ for a state s, then the real
error distance of s is infinity as well, and hence, s can safely be pruned (recall
that admissible heuristics never overestimate the real error distance). For more
details, including experimental results, we refer the reader to the literature [18].
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7 Conclusion

In this paper, we have reviewed Mcta and its new developments from an im-
plementation point of view. The new developments include heuristics and search
techniques for both optimal and suboptimal search. We have observed that
Mcta-2012 is very useful in efficiently finding shortest possible error traces in
faulty systems. For the future, we specifically aim at developing new admissible
distance heuristics. A main issue for research will be to effectively find the sweet
spot of the trade-off to be as accurate as possible on the one hand, and as cheap
to compute as possible on the other hand.
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