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Abstract. Directed model checking is a well-established technique to tackle the
state explosion problem when the aim is to find error states in large systems.
In this approach, the state space traversal is guided through a function that esti-
mates the distance to nearest error states. States with lower estimates are prefer-
ably expanded during the search. Obviously, the challenge is to develop distance
functions that are efficiently computable on the one hand and as informative as
possible on the other hand. In this paper, we introduce the causal graph struc-
ture to the context of directed model checking. Based on causal graph analysis,
we first adapt a distance estimation function from AI planning to directed model
checking. Furthermore, we investigate an abstraction that is guaranteed to pre-
serve error states. The experimental evaluation shows the practical potential of
these techniques.

1 Introduction

Directed model checking is a well-established technique to efficiently detect error states
in large systems. In this approach, a distance heuristic is used to estimate the distance
of each state encountered during the state space traversal to a nearest error state. The
search then prefers states with lower estimated error distance. Obviously, the success
of this approach crucially depends on the quality of this distance function. On the one
hand, it should be as informative as possible to only explore a relatively low number
of states until an error state is found. On the other hand, it should also be efficient to
compute such that the overall performance of the model checking process is increased.

The area of directed model checking has recently found much attention, and various
distance estimation functions have been proposed in this context [4, 6, 10, 13, 14, 18].
The basic principle to construct such functions is to first abstract the system under
consideration, and then to use the length of an abstract error trace in this abstraction as
an estimation for the actual length in the concrete. There are different strategies to define
such distance functions. One way is to define abstractions that are coarse enough to find
shortest abstract error traces in polynomial time (see, e. g., [4]). A different strategy
is to choose an abstraction that is more fine-grained and does not admit polynomial
algorithms for computing shortest abstract error traces. The distance estimate is then
computed by approximating such error traces (see, e. g., [13]). Both strategies have
proved to be successful for directed model checking.

In this paper, we introduce the causal graph structure to the context of directed
model checking. For a given system Ξ , the causal graph is a dependency graph on the
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component processes of Ξ that reflects how state changes in certain processes depend
on state changes in others. Based on causal graph analysis, we first propose an adapta-
tion of a distance function that has originally been introduced in the area of AI planning
[7, 8]. We will see that this distance function follows the second strategy as outlined
above. Furthermore, we propose a simple abstraction based on causal graph properties
called safe abstraction, which is guaranteed not to introduce spurious error states (i. e.,
error traces found in this abstraction are guaranteed to correspond to error traces in the
concrete system). We demonstrate that error detection is often significantly easier in
this abstraction compared to the original system.

The structure of this paper is as follows. In Section 2, we give the basic notations and
background needed for this work. Our contributions based on the causal graph are given
in Sections 3 and 4, followed by an empirical experimental evaluation in Section 5. We
conclude the paper and give an outlook on future work in Section 6.

2 Preliminaries

In this section, we define the notation and semantics for the systems considered in this
paper, followed by an introduction to directed model checking.

2.1 Processes and systems

We model systems as parallel processes running in lockstep using global synchroniza-
tion labels. Throughout the paper, let Σ be a finite set of synchronization labels (sym-
bols). To distinguish between local states of an atomic process and the global state of
the overall system, we use the term location for the former and state for the latter.

Definition 1 (process). A process p is a labeled directed graph (L, T ), where L 6= ∅ is
the finite set of locations of p and T ⊆ L×Σ × L is the set of local transitions of p.

Whenever a given process performs a local transition from location l to l′ with as-
sociated label a ∈ Σ, then all other processes must simultaneously perform a local
transition with the same label a, or else the transition is not permitted. This gives rise to
the following definition of the parallel composition of two processes. Parallel composi-
tion is an associative and commutative operation, up to isomorphism. For example, we
can obtain p2 ‖ p1 from p1 ‖ p2 by renaming locations (l1, l2) to (l2, l1).

Definition 2 (parallel composition). Let p1 = (L1, T1) and p2 = (L2, T2) be pro-
cesses. The parallel composition of p1 ‖ p2 of p1 and p2 is the process (L, T ) with
L = L1 × L2 and T = {((l1, l2), a, (l′1, l

′
2)) | (l1, a, l′1) ∈ T1 ∧ (l2, a, l′2) ∈ T2}.

A system is simply the parallel composition of one or more processes. We choose
this particular system model for ease of presentation; our basic ideas equally apply to
other process models, such as ones involving internal transitions of processes or binary
(rather than global) synchronization. Alternatively, such synchronization behaviour can
also be modelled directly with our semantics. For example, to model asynchronous
internal transitions of a process p, we can use a dedicated synchronization label ap ∈ Σ
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such that all internal transitions of p are labeled with ap and all locations l of all other
processes have transitions looping from l to l labeled with ap. (More generally, such sets
of loops can be used to model synchronization labels irrelevant to certain processes.)

Definition 3 (system). A system is a pair Ξ = ((p1, . . . , pn), s0), where p1, . . . , pn

(n ≥ 1) are processes called the components of Ξ . The parallel composition P (Ξ) =
p1 ‖ . . . ‖ pn of the components is called the composite process of Ξ . Locations of
P (Ξ) are called states; we denote the states and transitions of P (Ξ) by S(Ξ) and
T (Ξ), respectively. The state s0 ∈ S(Ξ) is called the initial state of the system.

A trace π = s0, a0, s1, a1, . . . , an−1, sn of Ξ is an alternating sequence of states
and synchronization labels starting from the initial state such that (si−1, ai−1, si) ∈
T (Ξ) for all i ∈ {1, . . . , n}. The length of a trace, |π|, is its number of transitions, i. e.,
|π| = n for the given trace.

The problem we address in this paper, as in most work on directed model checking,
is the detection of error states of a system, i. e., states reachable from the initial state
which have an undesirable property. In CTL terms, this corresponds to proving the
formula E F ϕ where ϕ is a non-temporal formula that describes undesirable states.
This is equivalent to the falsification of invariants of a system, i. e., to disproving the
CTL formula A G¬ϕ. In this paper, we consider the common situation where ϕ =
ϕ1 ∧ · · · ∧ ϕn is a conjunction of formulae where each formula ϕi describes properties
of an individual component process pi of the system. In this case, we can represent each
conjunct ϕi by the set of locations of pi that satisfy it.

Definition 4 (model checking task). A model checking task is a pair Θ = (Ξ,L∗),
where Ξ = (((L1, T1), . . . , (Ln, Tn)), s0) is a system and L∗ = (L∗

1, . . . , L
∗
n) with

L∗
i ⊆ Li for all i ∈ {1, . . . , n} denotes the target locations for each process of Ξ .

An error trace of Θ is a trace of Ξ that ends in a state s ∈ L∗
1 × · · · × L∗

n.

To conclude this background section, we briefly remark that there is a close corre-
spondence between finding error traces in our process model on the one hand and the
nonemptiness problem for intersections of regular automata on the other hand. In this
view, processes correspond to regular automata, the L∗

i sets correspond to accepting
states, and parallel composition corresponds to language intersection. While this view
is not necessarily useful for efficiently determining error traces in practical systems, it
does show that deciding existence of error traces in a system is PSPACE-complete [11].

2.2 Directed Model Checking

Directed model checking is the approach of finding error states through an explicit state-
space traversal guided by a distance estimation function d#. This function is computed
fully automatically based on the declarative description of the system. In a nutshell, d#

is a function that maps states to natural numbers, reflecting an estimate of the shortest
error distance. Typically, this estimate is the length of a corresponding abstract error
trace. Each state encountered during a forward state-space traversal starting from the
initial state is evaluated with d#, and states with lower values are preferred. Note that
abstract distance functions only influence the order in which the states are explored,
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1 function verify(Ξ , L∗, d#):
2 s0 = initial state of Ξ
3 open = empty priority queue
4 closed = ∅
5 priority = d#(s0)
6 open.insert(s0, priority)
7 while open is not empty:
8 s = open.pop-minimum()
9 if s satisfies ϕ(L∗):

10 return False
11 closed = closed ∪ {s}
12 for each transition (s, a, s′) ∈ T (Ξ):
13 if s′ /∈ closed and s′ /∈ open:
14 priority = d#(s′)
15 open.insert(s′, priority)
16 return True

Fig. 1. A basic directed model checking algorithm.

and hence completeness is not affected. On the one hand, it is desirable to have distance
functions that are as informative as possible, so that only few states need to be explored
until an error state is found. On the other hand, the computation of the distance estimate
must not be too expensive.

Figure 1 shows a basic directed model checking algorithm. Given a model checking
task (Ξ, L∗) and distance function d#, the algorithm returns False if there is a state that
satisfies the error condition represented by L∗; otherwise it returns True. The initial state
of Ξ is s0. The algorithm maintains a priority queue open which contains visited, but not
yet explored states. Through the method open.pop-minimum, the algorithm determines
one such state s with minimum priority value (i. e., minimum estimated error distance)
and removes it from the priority queue. This state s is then expanded, which is a three-
step process. First, check if it is an error state; if so, we are done. Second, mark the
state as explored by adding it to the closed set, so it will not be considered again later.
Finally, determine the successor states of s and add them to the priority queue unless
they have been encountered before. After expanding s, the process iterates with the new
minimal element of open, until an error state is encountered or there remain no further
states to check, at which point we can conclude that no error state can be reached.

This algorithm is known as greedy search (there are other algorithms like A∗ for
optimal search [17]; these are not considered in this paper). In a practical implementa-
tion of the algorithm, every state additionally stores information about how it has been
reached, i. e., its immediate predecessor state and synchronization label at the time it
was added to open. Therefore, if an error state s is finally reached, an error trace can
be generated by back-tracing from s. Clearly, the efficiency of greedy search crucially
depends on the quality of the estimates provided by d#. If these are perfect, the number
of expansion steps of the algorithm is n + 1 where n is the length of the shortest error
trace. On the other hand, if the estimates are completely uninformative, the algorithm
degenerates to an unguided search algorithm such as depth-first search.



The Causal Graph Revisited for Directed Model Checking 5

0

1

2

3

t1 t1

t1 t1

p1 p2

p3

t2, b, c

t2, b

t2, a, b

t2, b

0

1

2

3

t2 t2

t2 t2

t1, a, c

t1, a

t1, a, b

t1, a

0 1 2 3
a b c

t1, t2 t1, t2 t1, t2 t1, t2

000 100 200 201 211 221 222 322 022 032 002 003
t1 t1 a t2 t2 b t1 t1 t2 t2 c

Fig. 2. An example system with three processes and a corresponding error trace. A transition with
more than one label is an abbreviation for several parallel transitions, one for each label.

3 The Causal Graph

In this section, we introduce the central concepts of the causal graph heuristic, namely
the causal graph and the local subsystems it induces. To provide some intuition for our
definitions, we illustrate them with a running example (Fig. 2). The example system
consists of three processes p1, p2 and p3, each with locations {0, 1, 2, 3} and transi-
tions as shown in the figure. We assume that all processes are initially in location 0
and that we consider a state to be an error state iff process p3 is in location 3 (i. e.,
L∗

1 = L∗
2 = {0, 1, 2, 3} and L∗

3 = {3}). The shortest error traces for this example have
length 11 (one such error trace is also shown in Fig. 2), and indeed this is the distance
estimate that the causal graph heuristic will assign in this case. However, other distance
estimators considered in the directed model checking literature underestimate the true
error distance:

– The dL and dU estimators [5, 6] measure the graph-theoretic distance to the near-
est location L∗

i in each automaton pi without taking into account synchroniza-
tion labels. The dL estimator maximizes over the individual distances, whereas
dU sums these values. In this case, we obtain dL(s0) = max {0, 0, 3} = 3 and
dU(s0) = 0 + 0 + 3 = 3 because only p3 needs to move to a different location (3),
which can be reached from location 0 in three steps.

– The hL and hU estimators [13] compute abstract error traces under the monotonic-
ity abstraction. In the context of our running example, hU considers an abstracted
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problem where each process can “jump back to” a previously visited location at ev-
ery step free of cost. In this case, we obtain hU(s0) = 7 because hU fails to take into
account that processes p1 and p2 must return to location 0 from location 2 in order
to support the transition of p3 from 2 to 3 via synchronization label c. The hL esti-
mator has the same weakness as hU but additionally assumes in its abstraction that
the required transitions of p1 and p2 from 0 to 2 can be performed simultaneously,
leading to an estimate of hL(s0) = 5.

A common weakness of all these estimators, which causes the imperfect distance
estimates, is that they fail to take into account that reaching a certain location of p3 has
a side effect on p1 and p2. In particular, they assume that as soon as p3 has reached
location 2, the error location 3 can be reached immediately in a single transition. The
transition of p3 from 2 to 3 requires p1 and p2 to follow a transition with label c, and
the initial locations of p1 and p2 have outgoing transitions with this label from their
locations in s0, which is good enough for hU and hL (dL and dU do not care about
synchronization at all). The estimators do not recognize that p1 and p2 must initially
move away from location 0 (to location 2) before p3 reaches location 2 in order to
synchronize on the labels a (for p1) and b (for p2).

The causal graph heuristic overcomes this limitation by finding error traces in sim-
ple cases like this example directly, without further abstraction, while distances in
“larger” systems are computed by combining information from smaller subsystems.
To make this more precise, we must introduce the notion of causal graph. To motivate
the following definition, observe that the labels {t1, t2, a, b, c} play very different roles
for the three processes in the example system:

– Label t1 is very important for process p1 because all proper (non-looping) transi-
tions between locations of p1 must synchronize on this label. We say that a label
a ∈ Σ affects a process (L, T ) if (l, a, l′) ∈ T for some l 6= l′. In the example, t1
affects p1, t2 affects p2 and a, b and c affect p3.

– Labels a and c do not cause non-looping transitions in p1, but they are still relevant
for the process because the current location of p1 influences whether or not the
overall system can synchronize on these labels. For example, the system cannot
synchronize on a unless p1 is in location 2. We say that a label a ∈ Σ restricts a
process (L, T ) if there exists a location l ∈ L such that for all l′ ∈ L, (l, a, l′) /∈
T . In the example, a restricts p1 and p3, b restricts p2 and p3, and c restricts all
processes.

– Finally, labels t2 and b are completely irrelevant for process p1: no matter in which
location the process is, it can synchronize on these labels, and they cannot cause a
change in location. We say that a label a ∈ Σ is irrelevant for a process (L, T ) if it
does not affect or restrict the process. In the example, t1 is irrelevant for p2 and p3,
t2 is irrelevant for p1 and p3, a is irrelevant for p2, and b is irrelevant for p1.

Using these different roles for labels and processes, we define the causal graph of a
system Ξ as follows.

Definition 5 (causal graph). The causal graph CG(Ξ) of a system Ξ is the directed
graph whose vertices are the component processes p1, . . . , pn of Ξ and which contains
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Fig. 3. The causal graph for the running example system.

an arc from pi to pj iff i 6= j and there exists a label a ∈ Σ that restricts or affects pi

and affects pj .

The causal graph of the running example is shown in Fig. 3. Intuitively, the causal
graph contains an arc from process pi to pj if there may be a need to change the location
of pi in order to change the location of pj . To translate this intuition into a formal result,
we first introduce the notion of subsystems.

Definition 6 (subsystem). Let Ξ = ((p1, . . . , pn), s0) be a system, let Θ = (Ξ, (L∗
1,

. . . , L∗
n)) be a model checking task for Ξ , and let P = {pi1 , . . . , pik

}, 1 ≤ i1 < · · · <
ik ≤ n be a subset of the component processes of Ξ .

The system Ξ[P ] := ((pi1 , . . . , pik
), (s0i1 , . . . , s0ik

)) is called the subsystem of Ξ
induced by P , and the model checking task Θ[P ] := (Ξ[P ], (L∗

i1
, . . . , L∗

ik
)) is called

the subtask of Θ induced by P .

It is easy to see that for any choice of P , Ξ[P ] is an over-approximation of Ξ: every
trace π of Ξ induces a corresponding trace of Ξ[P ], which can be obtained from π by
projecting all states to the components in P . Moreover, every error trace for Θ is an
error trace for Θ[P ]. Of course, the converse is not true in general, and the existence of
error traces for Θ[P ] does not imply that there are error traces for Θ. However, there is
a simple sufficient criterion under which all error traces of Θ[P ] do correspond to error
traces of Θ with the same synchronization sequence: namely, if P includes all processes
with a non-trivial target location set (i. e., processes pi for which not all locations are in
the set L∗

i ), as well as all causal graph ancestors of such processes. This is essentially
the idea of cone-of-influence reduction [2].

In fact, cone-of-influence reduction is still error-preserving if we consider an alter-
native definition of causal graphs where we only introduce an arc from pi to pj if some
label restricts pi and affects pj . The reason why we also include arcs from pi to pj if
some common label affects both of them is that this gives an additional decomposition
result, which we will discuss in Section 4.1.

As a side remark, under our definition, if the causal graph consists of more than one
weakly connected component, then there exists an error trace iff each subtask induced
by a weakly connected component has an error trace. (The overall error trace is then
essentially the concatenation of these “subtraces”.) The intuitive reason for this prop-
erty is that if two sets of processes P and P ′ are causally disconnected, then all state
transitions that affect the locations of processes in P are not restricted by or affect the
locations of processes in P ′ (and vice versa), and hence the corresponding subtasks can
be addressed independently. A similar decomposition result does not hold under the
alternative definition of causal graphs, where traces that affect the processes P are not
restricted by the processes P ′, but can still change the locations of P ′ as a side effect.
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4 The Causal Graph Heuristic

The causal graph heuristic estimates the cost of reaching an error state by computing
distance estimates for a number of subtasks which are derived by looking at small “win-
dows” of the causal graph. In this section, we describe this procedure conceptually as a
bottom-up computation along a topological sorting of the causal graph. (In a practical
implementation, a top-down implementation is more efficient, but both approaches lead
to the same distance estimates.) Since we require a topological sorting of the causal
graph, the procedure only works for acyclic causal graphs; we will later explain how to
deal with the cyclic case. For now, let us just remark that deciding the existence of error
traces is already PSPACE-complete for systems with acyclic causal graphs, even under
the further restriction that all processes have only two locations [1].

Throughout this section, we assume that we are given a model checking task Θ =
(Ξ, (L∗

1, . . . , L
∗
n)) for a system Ξ = ((p1, . . . , pn), s0), and that our objective is to

compute a distance estimate for a given state s of Ξ , which we denote as hCG(s).
For each process pi = (Li, Ti) and each pair of locations li, l

′
i ∈ Li, the causal

graph heuristic computes a distance estimate costpi(li, l
′
i) for the cost of changing

the location of pi from li to l′i. The overall distance estimate of s is then defined
as the sum of the costs of reaching the nearest error location in each process, i. e.,
hCG(s) =

∑n
i=1 minl∗i ∈L∗

i
costpi(li, l

∗
i ) for s = (l1, . . . , ln). Note that the dU estimate,

due to Edelkamp et al. [5, 6], is defined by the same equation, but using a different es-
timate for costpi

(li, l∗i ), which is simply the graph-theoretic distance from li to l∗i . In
contrast, the cost estimates for hCG take synchronization labels into account and usually
provide larger (and, as we shall see in the experimental evaluation in Section 5, more
accurate) estimates than the graph-theoretic distance.

4.1 Independent Processes

In this section and the following, we describe how the costp(l, l′) estimates are com-
puted. We begin with the case where process p has no predecessors in the causal graph.
We call such a process independent because (by the definition of causal graphs) it can
change location independently of and without affecting the locations of other processes.

Let p = (L, T ) be an independent process. In this case, like in the case of the dU

heuristic, we define costp(l, l′) as the graph-theoretic distance from l to l′ in p. For
independent processes, this is an appropriate definition because local transitions are
not restricted by any other processes. Hence, in any state of the system, a sequence of
synchronization labels leading from l to l′ does correspond to an executable trace that
changes the location of p from l to l′, without affecting the locations of other processes.

In our running example, Fig. 3 shows that processes p1 and p2 do not have predeces-
sors in the causal graph, and indeed, Fig. 2 shows that these are independent processes,
as the only labels affecting them – t1 for p1, t2 for p2 – are irrelevant for the other
processes. Therefore, the cost estimates for these processes equal the graph distances
(e. g., costp1(0, 2) = 2 and costp2(2, 3) = 1).

Safe Abstraction For some independent processes, there is actually no need to com-
pute any cost estimates at all. Consider the case where p is independent and all cost
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estimates for p are finite (or, equivalently, p is strongly connected). Without loss of
generality, we assume that

– the target location set for p is not empty (otherwise, trivially there exist no error
states, since the error states are formed as the Cartesian product of the target loca-
tion sets of the processes), and

– each label a that occurs in a transition of any process also occurs in a transition of p
(otherwise transitions with label a can never be synchronized, and we can remove
all such transitions in a preprocessing step).

In this case, it is possible to separate the local transitions for p from the rest of the
model checking task completely. Let Ξ[P ′] be the subsystem induced by all processes
of Ξ except p, i. e., P ′ = {p1, . . . , pn} \ {p}. Given a state s of Ξ and an error trace π′

for Ξ[P ′] that starts in the projection of s to P ′, we can compute an error trace for Ξ
starting from s with a simple polynomial algorithm:

– If |π′| = 0 (i. e., π′ is the empty trace), then s′ is already an error state for Ξ[P ′],
and hence all processes except possibly p are in a target location in state s. Because
p is strongly connected and has at least one target location, we can find a sequence
of local transitions of p that lead from its location in s to a target location of p.
Because p is independent, these transitions are not restricted by the other processes
and do not affect their locations. By following these local transitions, we can go
from state s to a global error state.

– If |π′| = n ≥ 1, then the trace starts with some global transition (s′, a, t′) of Ξ[P ′].
Because p is strongly connected and has at least one location with an outgoing tran-
sition labeled a, we can find a sequence of local transitions of p that lead from its
location in s to a location in which p can synchronize on a. Because p is indepen-
dent, these transitions are not restricted by the other processes and do not affect
their locations. By following these local transitions, we can go from state s to a
state s̃ whose projection to P ′ is s′ and in which all processes can synchronize on
a, and from there to a state t whose projection to P ′ is t′. Since t′ starts an error
trace of length n− 1 in Ξ[P ′], we can reach an error state of Ξ from t (and hence,
from s) by an inductive argument.

The analysis shows that if the independent process p is strongly connected, there
exists a safe abstraction of Ξ to P ′: any error trace of Ξ[P ′] induces an error trace
of Ξ , and of course the converse is also true because subsystems are always over-
approximations.

Under these circumstances, we can run the directed model checking algorithm di-
rectly on Ξ[P ′] instead of Ξ , and then apply the above procedure to convert the error
trace for the abstracted problem into a concrete one. Of course, the abstraction may
cascade, as Ξ[P ′] may admit further safe abstractions, even for processes that were not
originally independent in P . In our experimental analysis (Section 5), we will present
results for the causal graph heuristic both with and without safe abstraction.

We briefly remark that in our running example, we could safely abstract away p1 and
p2 since these processes are independent and strongly connected. However, as we will
now turn to the question of computing cost estimates for non-independent processes,
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1 function compute-costs(Ξ , s, p, l):
2 Let pred(p) be the set of immediate predecessors of p in CG(Ξ).
3 (L, T ) := p
4 costp(l, l) := 0
5 costp(l, l′) := ∞ for all l′ ∈ L \ {l}
6 context(l, pi) := location of pi in s, for all pi ∈ pred(p)
7 unreached := L
8 while unreached contains a location l′ ∈ L with costp(l, l′) < ∞:
9 Choose such a location l′ ∈ unreached minimizing costp(l, l′).

10 unreached := unreached \ {l′}
11 for each transition (l′, a, l′′) ∈ T from l′ to some l′′ ∈ unreached:
12 target-cost := costp(l, l′) + 1
13 target-context := ∅
14 for each process pi = (Li, Ti) ∈ pred(p):
15 m := context(l′, pi)
16 Choose (m′, m′′) ∈ Li × Li such that (m′, a, m′′) ∈ Ti

and costpi(m, m′) is minimized.
17 target-cost := target-cost + costpi(m, m′)
18 target-context(pi) := m′′

19 if target-cost < costp(l, l′′):
20 costp(l, l′′) := target-cost
21 context(l′′, pi) := target-context(pi) for all pi ∈ pred(p)
22 return costp(l, l′) for all l′ ∈ L

Fig. 4. Modified Dijkstra algorithm for computing costp(l, l′).

we will assume for the rest of this section that safe abstraction is not performed on the
running example.

4.2 Processes with Causal Predecessors

For processes p which do have predecessors in the causal graph, cost estimates are also
computed by searching for paths in the labeled directed graph defined by the process.
However, here we improve on the dU approach by taking into account the synchro-
nization labels on the local transitions: in addition to counting the number of local
transitions of p required to reach a given location, we also consider the costs for mov-
ing the other processes of the system into locations which can synchronize with these
transitions. Note that by the definition of causal graphs, the only processes which can
potentially restrict the non-looping local transitions of p are its causal predecessors,
which we denote as pred(p). Because we compute costs in a bottom-up order along a
topological sorting of the causal graph, we have already computed all cost estimates for
these processes. Hence, the computation of costp(l, l′) is based on finding traces from
l to l′ in the subsystem of Ξ induced by {p} ∪ pred(p), taking into account the known
cost estimates for the processes pred(p).

The algorithm for computing the cost values costp(l, l′) is shown in Fig. 4. It is
a modification of Dijkstra’s algorithm for finding shortest paths in weighted directed
graphs, applied to the process p = (L, T ). Like Dijkstra’s algorithm, it is a one-to-all
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procedure, i. e., for a given start location l, it computes costp(l, l′) for all l′ ∈ L. The
only difference to Dijkstra’s algorithm is that we do not define the cost of a transition
(l′, a, l′′) ∈ T before applying the algorithm. Instead, the transition cost is computed as
soon as location l′ is expanded by the algorithm, and it depends on the current locations
of pred(p) in the situation where l′ is reached.

In detail, the cost of reaching l′′ ∈ L through transition (l′, a, l′′) ∈ T is computed
as the cost of reaching l′ plus the setup cost required to take pred(p) into locations that
allow synchronization on the label a, plus 1 for taking the actual transition with label a
that takes p from l′ to l′′ (lines 12–18). To estimate the setup cost for each predecessor
pi ∈ pred(p), we associate each location l′ ∈ L with locations context(l′, pi) for each
pi ∈ pred(p), with the interpretation that when l′ ∈ L is first reached, we assume
that process pi is in location m = context(l′, pi). The setup cost for a given process is
then the cheapest cost, according to the previously computed costpi values, for taking
process pi from m to a location m′ where it can synchronize on the label a (lines 15–
17).

If it turns out that (l′, a, l′′) ∈ T reaches l′′ more cheaply than the previously con-
sidered transitions (line 19), then the cost of l′′ is updated accordingly (line 20, as in
Dijkstra’s algorithm). At the same time, the context of l′′ is set so that it reflects the way
in which we have reached the location: by performing appropriate setup transitions for
pred(p) and then synchronizing on label a (lines 16, 18, 21).

We remark that the algorithm is not guaranteed to find a globally shortest trace in
the subsystem induced by {p} ∪ pred(p). Indeed, it may fail to find any path to a given
location l′ ∈ L even though it is reachable. The reason for this is that the setup for each
transition (l′, a, l′′) is performed greedily, without backtracking on the choice of how to
modify the current context in order to allow synchronization on label a: we always pick
a locally cheapest setup sequence. While it would of course be preferable to guarantee
the success of the compute-costs algorithm, unfortunately this is not possible to do
in polynomial time if P 6= NP: if we could, this would decide the existence of error
traces in the model checking task induced by {p} ∪ pred(p). However, it is known that
error detection for the subtask induced by a single process and its direct causal graph
predecessors is NP-complete [7].

Returning to our running example, the algorithm computes the following cost esti-
mates costp3(0, l′) for the state (0, 0, 0):

– cost(p3)(0, 0) = 0: This is due to the initialization step (line 4).
– cost(p3)(0, 1) = 0 + 1 + 2 = 3: the three terms correspond to the cost of location

0, the constant term 1, and the setup cost to reach locations of p1 and p2 in which
we can synchronize on label a. In this case, we need to change p1 from location 0
to 2, for a setup cost of 2.

– cost(p3)(0, 2) = 3 + 1 + 2 = 6: cost of location 1, constant term 1, setup cost to
reach locations of p1 and p2 in which we can synchronize on label b. In this case,
we need to change p2 from location 0 to 2, for a setup cost of 2.

– cost(p3)(0, 3) = 6 + 1 + 4 = 11: cost of location 2, constant term 1, setup cost to
reach locations of p1 and p2 in which we can synchronize on label c. In this case,
we need to change both processes from location 2 to 0, for a setup cost of 2 + 2.
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4.3 Causal Graphs with Cycles
Up to this point, we have given a complete description of how to compute hCG(s) for
systems with acyclic causal graphs. Unfortunately, many practical systems tend to have
causal graphs with cycles. In this work, we use a rather simple idea to extend the defi-
nition of the heuristic to the general case (for an alternative approach, see Section 6).

If CG(Ξ) is not acyclic, we impose a total order p′1 ≺ · · · ≺ p′n on the processes of
Ξ . The computation of cost values then proceeds as previously described, except that
for process p′i, the compute-costs function does not consider all causal predecessors
pred(p′i) of p′i, but only those which are ordered before p′i in the ordering. Semantically,
this means that we do not consider the synchronization costs for all processes, but only a
subset of them. Of course, different total orders lead to different synchronization aspects
being respected by this abstraction, so in practice one would prefer an order which is
“close” to a topological sorting in some sense (e. g., loses as few arcs of the causal
graph as possible). In our experiments, we use some simple greedy criteria to compute
a reasonable ordering (see Section 5.1).

5 Evaluation

We implemented the causal graph heuristic and the safe abstraction technique from
Section 4 in the model checker MCTA [15] and evaluated it on a number of academic
and industrial benchmarks. The experimental results were obtained on a system with a
3 GHz Intel Pentium 4 CPU, using a memory bound of 1 GB. We compare hCG with
the other distance functions dL, dU [5, 6], hL and hU [13] as implemented in MCTA.

5.1 Implementation Details
Our benchmark models consist of parallel automata with interleaving and binary syn-
chronization semantics. This easily fits into the process model used throughout this pa-
per. In addition, some benchmarks feature bounded integer variables and (unbounded)
clock variables. Edges in the automata can be guarded by integer or clock constraints,
and edges can also reset clock variables and set integers to new values as effects.

The hCG heuristic as implemented in MCTA directly reflects integer and location
variables, whereas clocks are ignored for the distance computation. (In fact, abstracting
clocks away is the easiest way to deal with them for the computation of distance func-
tions and has already successfully been done in other approaches [4, 13].) Essentially,
each automaton and each bounded integer variable is identified with a process p in the
sense of Definition 1. Both kinds of processes can be subject to safe abstraction as de-
scribed in Section 4.1; however, as clocks are ignored by the distance computation, to
ensure safety we additionally check that these processes do not affect clock variables.

For systems with cyclic causal graphs, we greedily impose an ordering on the pro-
cesses such that as much as possible of the important synchronization behaviour is re-
spected. Essentially, arcs in the causal graph are preferably ignored if they are induced
by as few system transitions as possible. Furthermore, as processes that correspond to
automata play a dedicated role in the system, we order them after processes that cor-
respond to integer variables. In more detail, we require for all processes p, p′ that if p
corresponds to an automaton and p ≺ p′, then p′ also corresponds to an automaton.
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Table 1. Experimental results in terms of number of explored states and search time for the
heuristics dL, dU, hL, hU in comparison to hCG and hCG with safe abstraction (denoted with
hCG

safe ). Dashes indicate exhaustion of memory (> 1 GB).

explored states search time in seconds
Inst. dL dU hL hU hCG hCG

safe dL dU hL hU hCG hCG
safe

C1 18796 16817 1928 715 5129 5129 0.1 0.1 0.1 0.0 0.5 0.5
C2 66389 61229 4566 1612 6268 2721 0.4 0.4 0.1 0.1 0.6 0.4
C3 94536 85332 6002 734 6943 3241 0.6 0.6 0.2 0.1 0.6 0.4
C4 1.11e+6 1.04e+6 81131 9120 57493 6201 6.8 6.3 1.7 0.3 1.1 0.3
C5 1.27e+7 1.21e+7 430494 83911 494778 13675 76.3 74.7 9.2 2.1 9.3 0.5
C6 – – 4.56e+6 718015 5.54e+6 24125 – – 83.1 12.4 68.4 0.9
C7 – – – 2.55e+6 – 57595 – – – 41.4 – 2.3
C8 – – – – – 122880 – – – – – 6.5
C9 – – – – – 379981 – – – – – 24.2
M1 12277 185416 4581 7668 6245 6245 0.3 6.1 0.1 0.1 0.1 0.1
M2 43784 56240 15832 18847 18988 8472 0.6 0.8 0.2 0.2 0.2 0.2
M3 54742 869159 7655 19597 27365 10632 0.8 398.0 0.1 0.2 0.4 0.2
M4 202924 726691 71033 46170 96418 18574 3.4 110.5 0.8 0.5 1.4 0.4
N1 15732 10215 50869 9117 8171 8171 0.4 0.2 2.7 0.1 0.2 0.2
N2 102909 642660 30476 23462 30540 30540 3.0 239.6 0.6 0.5 0.8 0.8
N3 131202 1.16e+6 11576 43767 40786 40786 4.1 2342.2 0.2 0.9 1.1 1.1
N4 551091 330753 100336 152163 252558 252558 24.0 11.7 2.1 3.7 9.5 9.5
F A

5 271 271 9 9 11 11 0.0 0.0 0.0 0.0 0.0 0.0
F A

10 271 271 9 9 11 11 0.0 0.0 0.0 0.0 0.0 0.0
F A

15 271 271 9 9 11 11 0.0 0.0 0.0 0.0 0.0 0.0
F B

5 496 9 179 7 9 9 0.0 0.0 0.0 0.0 0.0 0.0
F B

10 – 9 86378 7 9 9 – 0.0 2.1 0.0 0.0 0.0
F B

15 – 9 – 7 9 9 – 0.0 – 0.0 0.0 0.0
A2 27 23 36 25 13 13 0.0 0.0 0.0 0.0 0.0 0.0
A3 344 296 206 82 199 199 0.0 0.0 0.0 0.0 0.0 0.0
A4 38209 19034 76811 39 179 179 0.5 0.3 12.9 0.1 0.1 0.1
A5 – – 263346 4027 188499 188499 – – 90.8 3.1 90.8 90.7
A6 – – – – – – – – – – – –

5.2 Benchmarks

Our benchmarks stem from the AVACS1 benchmark suite. The M and N examples
(“Mutual Exclusion”) are industrial benchmarks which come from a case study that
models a real-time protocol to ensure mutual exclusion of a state in a distributed sys-
tem via asynchronous communication. The protocol is described in full detail by Dierks
[3]. The C examples (“Single-tracked Line Segment”) stem from a case study from an
industrial project partner of the UniForM project [12] where the problem is to design
a distributed real-time controller for a segment of tracks where trams share a piece of
track. For the evaluation of our approach we chose the property that both directions are
never given simultaneous permission to enter the shared segment. In both case stud-

1 http://www.avacs.org/
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Table 2. Experimental results in terms of error trace length for the heuristics dL, dU, hL, hU in
comparison to hCG and hCG with safe abstraction (denoted with hCG

safe ). Dashes indicate exhaustion
of memory (> 1 GB). Abbreviations: #a: number of parallel automata, #vars: number of integer
and clock variables, #safe: number of variables removed by safe abstraction. For hCG

safe , trace
lengths reported as x + y denote trace length x for the abstract error trace and x + y for the
concrete error trace.

error trace length
Instance #a #vars #safe dL dU hL hU hCG hCG

safe

C1 5 15 0 1167 1058 100 73 118 118
C2 6 17 1 1847 1674 132 99 169 118 + 0
C3 6 18 1 2153 1214 128 86 167 118 + 0
C4 7 20 2 6805 2949 344 139 354 125 + 5
C5 8 22 3 35067 11696 1057 300 1034 125 + 9
C6 9 24 4 – – 3217 864 4167 132 + 14
C7 10 26 5 – – – 2412 – 139 + 19
C8 10 27 5 – – – – – 132 + 16
C9 10 28 5 – – – – – 192 + 30
M1 3 15 0 2779 106224 457 71 231 231
M2 4 17 1 11739 13952 1124 119 395 240 + 3
M3 4 17 1 12701 337857 748 124 361 205 + 4
M4 5 19 2 51402 290937 3381 160 642 219 + 7
N1 3 18 0 3565 2669 26053 99 243 243
N2 4 20 0 18180 415585 1679 154 376 376
N3 4 20 0 20021 262642 799 147 232 232
N4 5 22 0 90467 51642 2455 314 478 478
F A

5 6 6 0 218 218 8 8 8 8
F A

10 11 11 0 218 218 8 8 8 8
F A

15 16 16 0 218 218 8 8 8 8
F B

5 5 6 0 79 6 12 6 6 6
F B

10 10 11 0 – 6 22 6 6 6
F B

15 15 16 0 – 6 – 6 6 6
A2 8 0 0 22 13 21 21 12 12
A3 16 0 0 169 39 24 18 24 24
A4 32 0 0 867 129 42 28 36 36
A5 64 0 0 – – 112 47 56 56
A6 128 0 0 – – – – – –

ies, a subtle error has been inserted by manipulating a delay so that the asynchronous
communication between these automata is faulty.

The FA and FB examples are flawed versions of the Fischer protocol for mutual
exclusion (cf. [16]). The difference between FA and FB is in the way they encode the
error condition.

As a final set of benchmarks, we use the arbiter trees case study, which models a
mutual exclusion protocol based on a tree of binary arbiters [19]. Client processes are
situated at the leaves of the tree. The benchmarks A2–A6 contain arbiter trees of height
2–6, with an exponentially growing number of processes.
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5.3 Results
We compare the hCG heuristic and the safe abstraction technique based on causal graph
analysis with the heuristics dL, dU [5, 6], hL and hU [13] as implemented in MCTA.
We compare the number of explored states, the search time in seconds (Table 1) and
the length of the found error traces (Table 2). Table 2 also gives additional information
about the benchmark models, such as the number of parallel processes and the number
of processes removed by safe abstraction.

The results show that our distance function is competitive with the previous ap-
proaches. In addition, safe abstraction leads to significantly better performance when
applicable. We observe that the hCG heuristic is much more accurate than the dL and dU

heuristics. Due to better guidance, significantly fewer states are explored until an error
state is found, leading to much better overall performance in most cases. Moreover, the
error traces found by hCG are significantly shorter than those obtained by dL and dU.
This significant improvement is particularly interesting because of the connection be-
tween hCG and dU (recall that for independent processes, the cost estimates of hCG and
dU are equal). The experimental results further show that hCG is competitive with hL,
although somewhat less informed than hU.

Considering the results for safe abstraction, we observe that in models that contain
independent variables, the model reduction obtained by safe abstraction leads to a sig-
nificant performance gain with hCG. Moreover, the computational overhead to find such
variables is low (a fraction of a second).

6 Conclusions

We have introduced the causal graph structure to directed model checking and demon-
strated it to be a useful concept for error detection. We have adapted a distance estima-
tion function from AI planning based on causal graph analysis, which is competitive
with other distance heuristics in MCTA. Further, we presented an abstraction with the
property that reachable abstract error states are guaranteed to correspond to reachable
error states in the original system. We have shown that such safe abstractions can signif-
icantly improve the overall performance of a directed model checking algorithm when
applicable, while requiring very little preprocessing overhead when not applicable.

In the future, it will be interesting to consider further extensions of the causal graph
concept, in particular the question of how to deal with cycles in the causal graph more
directly (see also [9]). In contrast to the approach presented in this paper, where cycles
are resolved through a statically imposed ordering of processes, this could also be done
dynamically during search. Furthermore, there seems to be potential to consider “larger”
local subproblems than we have done, in order to improve the precision of the hCG

estimator. We expect that these approaches will allow further advances in the practical
performance of directed model checking approaches.
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