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Abstract

This technical report provides additional proofs and examples
for “The Relative Pruning Power of Strong Stubborn Sets and
Expansion Core” (Wehrle et al. 2013).

Proposition 1. There is a family of planning tasks of size
Θ(n) where Θ(4n) states are reachable from the initial
state when pruning based on EC , but only Θ(2n) states are
reachable when pruning based on OBEC .
Proof: For n > 0, let Πn = 〈V,O, s0, s?〉 be a planning
task with the following components:

• V = {a, b1, . . . , bn, c1, . . . , cn} with Dv = {0, 1, 2} for
all v ∈ V

• O = B ∪ C with B = {o, o1, . . . , on, o1, . . . , on} and
C = {o′, o′1, . . . , o′n, o′1, . . . , o′n}

• pre(o) = {a 7→ 0}, eff (o) = {b1 7→ 1, . . . , bn 7→ 1}
• pre(oi) = {bi 7→ 1}, eff (oi) = {bi 7→ 2} for 1 ≤ i ≤ n

• pre(oi) = {bi 7→ 2}, eff (oi) = {bi 7→ 1} for 1 ≤ i ≤ n

• pre(o′) = {a 7→ 0}, eff (o′) = {c1 7→ 1, . . . , cn 7→ 1}
• pre(o′i) = {ci 7→ 1}, eff (o′i) = {ci 7→ 2} for 1 ≤ i ≤ n

• pre(o′i) = {ci 7→ 2}, eff (o′i) = {ci 7→ 1} for 1 ≤ i ≤ n

• s0 = {a 7→ 0, b1 7→ 0, . . . , bn 7→ 0, c1 7→ 0, . . . , cn 7→
0}

• s? = {b1 7→ 2, . . . , bn 7→ 2}
We observe that variable a is trivial (i.e., has no active op-

erators modifying it) in all reachable states. Consequently,
s[a] = 0 in all reachable states s.

In a reachable state, the variables bi either all hold the
value 0 (if o has never been applied) or can take on an ar-
bitrary combination of 1s and 2s (after applying o and then
some subset of oi operators). This yields 2n + 1 possible as-
signments to the bi variables. Similarly, noting the symme-
try between operators modifying bi and operators modifying
ci, there are 2n + 1 possible assignments to the ci variables.
It is easy to see that Πn has (2n + 1)2 = 4n + 2n+1 + 1
reachable states in total. In the following, we compare EC
and OBEC on this planning task.
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1. Expansion core performs no pruning, leading to a total
number of reachable states equal to 4n + 2n+1 + 1. To
see this, we first observe that all operators are active in
all reachable states. (This follows because the precondi-
tion of each action and the goal are reachable from every
reachable state, which is easy to verify.)
Let s be an arbitrary reachable state. Then a is a poten-
tial precondition of b1, . . . , bn in s because of o and of
c1, . . . , cn because of o′. Furthermore, the same operators
show that b1, . . . , bn, c1, . . . , cn are potential dependents
of a in s. Therefore, the potential dependency graph in
s is strongly connected: every variable is connected to a
in both directions. It follows that dc(s) must contain all
variables and hence all applicable operators are included
in EC (s): there is no pruning by the EC method.

2. Now consider the OBEC algorithm. Let s be an arbi-
trary reachable non-goal state. All goals are of the form
bi 7→ 2, so that the first operator added to OBEC (s) must
be some operator oi. Then OBEC (s) must include the
corresponding operator oi and o because they share an ef-
fect variable with oi (rule OBEC4). After adding o, all
other operators of the form oj and oj must be added be-
cause of OBEC4. At this point, no further operator can
be added to OBEC (s), so a fixed point has been reached.
We see that OBEC never considers operators that modify
ci variables, while including all operators that modify bi
variables. Hence, exactly 2n+1 states are reachable when
pruning with OBEC (those where s[c1] = · · · = s[cn] =
0).

Proposition 2. There exist planning tasks Π =
〈V,O, s0, s?〉 for which neither OBEC (s0) nor any
subset of it is a strong stubborn set, no matter how the
choices of disjunctive action landmarks and necessary
enabling sets are resolved.
Proof: We show that the statement is already true when con-
sidering EC (s0) instead of OBEC (s0), which is a stronger
statement because OBEC (s0) ⊆ EC (s0) as shown in the
paper.

Let Π = 〈V,O, s0, s?〉 be a planning task with the fol-
lowing components:
• V = {v, w, x} with Dv = Dw = {0, 1, 2} and Dx =
{0, 1}



• O = {o1, o2, o3, o4}
• pre(o1) = ∅, eff (o1) = {v 7→ 1, x 7→ 1}
• pre(o2) = {v 7→ 1}, eff (o2) = {v 7→ 2}
• pre(o3) = {w 7→ 0}, eff (o3) = {w 7→ 1}
• pre(o4) = {v 7→ 2, w 7→ 1}, eff (o4) = {w 7→ 2}
• s0 = {v 7→ 0, w 7→ 0, x 7→ 0}
• s? = {v 7→ 2, w 7→ 2, x 7→ 1}

All operators are active in s0 because 〈o1, o2, o3, o4〉 is a
plan in s0. Assume that x is the initialization variable that is
chosen for rule EC1, so x ∈ dc(s). By rule EC4, this leads
to v ∈ dc(s) because of o1. At this point, no rule appli-
cation could extend dc(s) further: in particular, the missing
variable w will not be added. (The only critical case here is
EC2 with v′ = w and o = o4; however, the rule is not ap-
plicable because o4 is not v-applicable in s0.) We conclude
that dc(s0) = {v, x} and hence EC (s0) = OBEC (s0) =
{o1, o2}.

In contrast, every strong stubborn set Ts0 must necessarily
contain o3 or o4 and hence cannot be a subset of EC (s0). To
see this, note that Ts0 must contain at least one applicable
operator (by the completeness of the stubborn set method),
and hence it contains o1 or o3. If o3 ∈ Ts0 , we are done.
Otherwise we have o1 ∈ Ts0 and therefore also o4 ∈ Ts0
because o1 disables o4.
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