
Graph-Based Factorization of Classical Planning Problems
Martin Wehrle Silvan Sievers Malte Helmert

University of Basel, Switzerland

Setting

I Classical planning
I Problem reformulation

Classical Planning: Popular Solving Approaches

I Exploit independence of operators and variables
I Examples: factored planning, partial order reduction

Problem Formalization

I Usual focus: develop techniques for given problem formalization
I Little research on (automated) reformulation techniques
I Ideally: reformulation with fewer operator and variable
dependencies

This Work

I Novel direction for reformulation (“problem factorization”)
I Based on well-established theory on graph factorization

Cartesian Graph Factorization

I Well-studied problem in discrete mathematics since the 1960’s
I Problem: given graph G without self-loops, find graphs

G1, . . . , Gn such that the Cartesian product of G1, . . . , Gn yields G
I G1, . . . , Gn are the (unique) prime graphs of G
I Computation in polynomial time

Motivating Example, Part I

I Objective: drive truck from location 1 to 4 (over 2 or 3)
I Typical formulations in STRIPS and SAS+ tightly coupled
(mutually interfering operators)

I Factored planning and partial order reduction do not fire
STRIPS

{at-4}

{at-2} {at-3}

{at-1}

dr
-1

-2
dr-1-3

dr-2-4 dr
-3

-4

SAS+

pos=4

pos=2 pos=3

pos=1

dr
-1

-2
dr-1-3

dr-2-4 dr
-3

-4

Motivating Example, Part II

I Factorization of variable pos into binary variables x and y

Factorized Variables

x=1

x=0

y=1

y=0

×

inc-x

inc-y

Factorized Product

x=1,y=1

x=1,y=0 x=0,y=1

x=0,y=0

in
c-

x inc-y

inc-y in
c-

x

I Cartesian product (extended with edge labels) of factorized
graphs structurally isomorphic to the graph corresponding to the
original variable pos

I Factorized operators x and y are independent
I Factorization: decoupled but equivalent semantics

Factorization of Planning Problems

Self-Loops in Transition Systems
Self-loop in v ’s transition system if there is operator o with

I o reads v , but does not write to v , or
I o does not read v , but writes to v , or
I o does not mention v at all.

Variable Factorization
I Factorization of v into v1, . . . , vn determined by factorization
of v ’s transition system (self-loops removed) into G1, . . . , Gn.

I Bijective mapping from v ’s values to value tuples of v1, . . . , vn

Operator Factorization
Factorization of operator o (given factorization of v into v1, . . . , vn):

I o reads v and writes to v : o changes exactly one factor vi
determined through factorization. Replace o’s precondition
and effect on v with vi .

(Remaining cases cover self-loops)
I o reads v , but does not write to v : replace o’s precondition
on v with corresponding bijective precondition on v1, . . . , vn

I o does not read v , but writes to v : analogous
I o does not mention v : leave o unchanged

Theoretical Results

Π: a planning problem, and Πf : its factorization
Theorem
The state space graphs of Π and Πf isomorphic (modulo operator
naming). Πf preserves plan existence and optimal plan cost.

Theorem
The runtime bound for factored planning in Πf can be exponentially
lower than in Π.

Theorem
The size of the reachable state space with strong stubborn sets in
Πf can be exponentially smaller than in Π.
The number of generated nodes with iterative deepening search
and sleep sets in Πf can be exponentially smaller than in Π.

Evaluation on IPC Benchmarks

I Available graph factorization algorithms not directly applicable
I “Try-and-check” algorithm: factorize graph structure (ignoring
labels), check if still valid when taking lables into account

I Graph structures in Floortile, Grid, Sokoban, Tetris and VisitAll
factorizable, but fail the label check

I Case study:
modified VisitAll
domain

I no pruning vs. sleep
sets pruning with
IDA∗; dashes: >
1800 seconds

original formulation factorized formulation
#nodes runtime #nodes runtime

size nop prune nop prune nop prune nop prune
blind

6 3853 3853 0.0 0.0 3853 987 0.0 0.0
9 2.5e+6 2.5e+6 12.2 14.4 2.5e+6 93613 12.2 0.6
12 — — — — — 1.1e+7 — 86.0

iPDB
12 81042 81042 0.7 0.8 72721 19102 4.5 4.2
16 1.9e+7 1.9e+7 112.6 125.5 1.3e+7 1.5e+6 107.7 22.9
20 — — — — — 1.6e+8 — 1710.8

Future Work

I Turn theory into practice
I More specialized factorization algorithms for atomic abstractions
I Weaker factorization: only reachable part of product relevant

pos=2

pos=1 pos=4

pos=3

pos=5
dr-1-2

dr-1-3

dr-2-4

dr-3-4
dr-4-5


