Setting

- Classical planning
- Problem reformulation

Classical Planning: Popular Solving Approaches

- Exploit independence of operators and variables
- Examples: factored planning, partial order reduction

Problem Formalization

- Usual focus: develop techniques for given problem formalization
- Little research on (automated) reformulation techniques
- Ideally: reformulation with fewer operator and variable dependencies

This Work

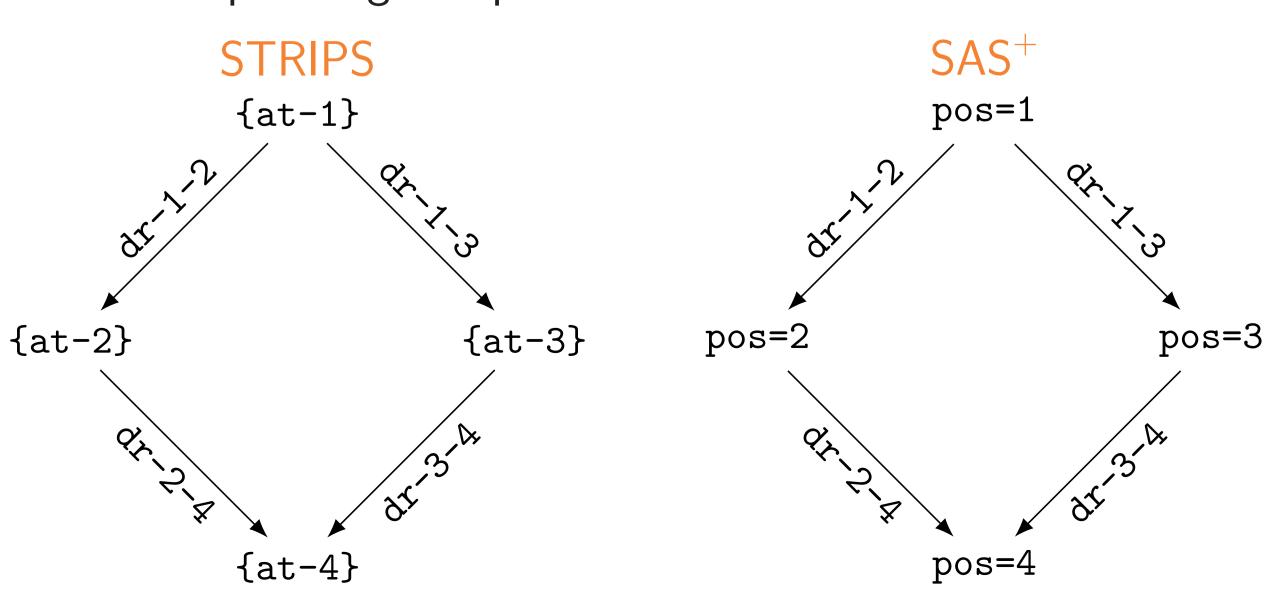
- Novel direction for reformulation ("problem factorization")
- Based on well-established theory on graph factorization

Cartesian Graph Factorization

- Well-studied problem in discrete mathematics since the 1960's Problem: given graph G without self-loops, find graphs
- G_1, \ldots, G_n such that the Cartesian product of G_1, \ldots, G_n yields G
- G_1, \ldots, G_n are the (unique) prime graphs of G
- Computation in polynomial time

Motivating Example, Part I

- ► Objective: drive truck from location 1 to 4 (over 2 or 3)
- Typical formulations in STRIPS and SAS⁺ tightly coupled (mutually interfering operators)
- Factored planning and partial order reduction do not fire

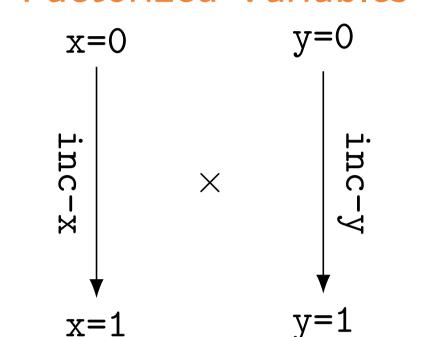


Graph-Based Factorization of Classical Planning Problems

Martin Wehrle Silvan Sievers Malte Helmert University of Basel, Switzerland

Motivating Example, Part II

Factorization of variable pos into binary variables x and y Factorized Variables



- Cartesian product (extended with edge labels) of factorized graphs structurally isomorphic to the graph corresponding to the original variable pos
- ► Factorized operators x and y are independent
- ► Factorization: decoupled but equivalent semantics

Factorization of Planning Problems

Self-Loops in Transition Systems

- Self-loop in v's transition system if there is operator o with
- \triangleright o reads v, but does not write to v, or
- \triangleright o does not read v, but writes to v, or
- \triangleright o does not mention v at all.

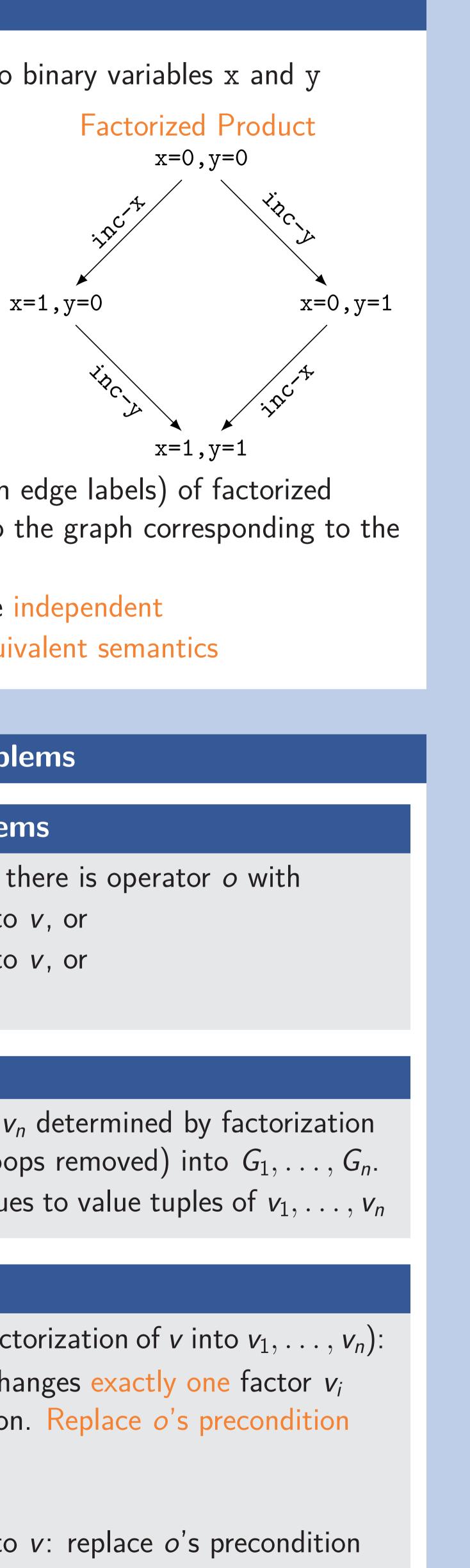
Variable Factorization

- Factorization of v into v_1, \ldots, v_n determined by factorization of v's transition system (self-loops removed) into G_1, \ldots, G_n .
- ▶ Bijective mapping from v's values to value tuples of v_1, \ldots, v_n

Operator Factorization

Factorization of operator o (given factorization of v into v_1, \ldots, v_n):

- \triangleright o reads v and writes to v: o changes exactly one factor v_i determined through factorization. Replace o's precondition and effect on v with v_i .
- (Remaining cases cover self-loops)
 - \triangleright o reads v, but does not write to v: replace o's precondition on v with corresponding bijective precondition on v_1, \ldots, v_n
 - ► *o* does not read *v*, but writes to *v*: analogous
- ▶ *o* does not mention *v*: leave *o* unchanged



Theoretical Results

 Π : a planning problem, and Π^{f} : its factorization Theorem

The state space graphs of Π and Π^f isomorphic (modulo operator) naming). Π^{f} preserves plan existence and optimal plan cost.

Theorem

The runtime bound for factored planning in Π^{f} can be exponentially lower than in Π .

Theorem

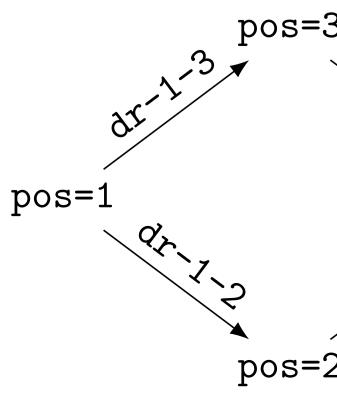
The size of the reachable state space with strong stubborn sets in Π^{f} can be exponentially smaller than in Π . The number of generated nodes with iterative deepening search and sleep sets in Π^f can be exponentially smaller than in Π .

Evaluation on IPC Benchmarks

- factorizable, but fail the label check
- ► Case study: modified VisitAll domain
- no pruning vs. sleep sets pruning with IDA^* ; dashes: > 1800 seconds

Future Work

- Turn theory into practice



Available graph factorization algorithms not directly applicable "Try-and-check" algorithm: factorize graph structure (ignoring) labels), check if still valid when taking lables into account ► Graph structures in Floortile, Grid, Sokoban, Tetris and VisitAll

	original formulation				factorized formulation			
	#nodes		runtime		#nodes		runtime	
size	nop	prune	nop	prune	nop	prune	nop	prune
	blind							
6	3853	3853	0.0	0.0	3853	987	0.0	0.0
9	2.5e+6	2.5e+6	12.2	14.4	2.5e+6	93613	12.2	0.6
12						1.1e+7		86.0
	iPDB							
12	81042	81042	0.7	0.8	72721	19102	4.5	4.2
16	1.9e+7	1.9e+7	112.6	125.5	1.3e+7	1.5e+6	107.7	22.9
20						1.6e+8		1710.8

More specialized factorization algorithms for atomic abstractions Weaker factorization: only reachable part of product relevant