
Useless Actions are Useful

Martin Wehrle and Sebastian Kupferschmid and Andreas Podelski
University of Freiburg

{mwehrle, kupfersc, podelski}@informatik.uni-freiburg.de

Abstract

Planning as heuristic search is a powerful approach to solving
domain independent planning problems. In recent years, var-
ious successful heuristics and planners like FF, LPG, FAST
DOWNWARD or SGPLAN have been proposed in this con-
text. However, as heuristics only estimate the distance to
goal states, a general problem of heuristic search is the ex-
istence of plateaus in the search space topology which can
cause the search process to degenerate. Additional techniques
like helpful actions or preferred operators that evaluate the
“usefulness” of actions are often successful strategies to sup-
port the search in such situations.
In this paper, we introduce a general method to evaluate the
usefulness of actions. We propose a technique to enhance
heuristic search by identifying “useless” actions that are not
needed to find optimal plans. In contrast to helpful actions
or preferred operators that are specific to the FF and Causal
Graph heuristic, respectively, our method can be combined
with arbitrary heuristics. We show that this technique often
yields significant performance improvements.

Introduction
Planning as heuristic search is a well-established technique
to solving domain independent planning problems and has
found its way into state-of-the-art planners such as FF (Hoff-
mann and Nebel 2001), LPG (Gerevini, Saetti, and Se-
rina 2003), FAST DOWNWARD (Helmert 2006) or SGPLAN
(Chen, Wah, and Hsu 2006). However, a general problem
of heuristic search are plateaus in the search space topology.
In such situations, it is not clear which state is best to be
expanded next, and hence, the overall search process can be
severely worsened. One possibility to tackle this problem is
to additionally evaluate actions (not just states) which pro-
vides additional information. In this context, Hoffmann and
Nebel (2001) proposed the helpful actions approach. Help-
ful actions are specified for hFF and extracted during the
computation of the heuristic values. Helmert proposed pre-
ferred operators which is an adaptation of helpful actions to
the Causal Graph heuristic (Helmert 2006). Both concepts
have shown its potential by providing additional informa-
tion to escape from plateaus during search. However, these
techniques are specialized to the corresponding heuristic.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A0 A1 An

B1B0 Bn

. . .

p0 p1 pn

Figure 1: A simple transportation problem

In this paper, we propose a general technique to evaluate
actions during heuristic search. In contrast to helpful actions
or preferred operators, we identify useless actions that are
not needed to find optimal plans starting with the current
state. Our method is not bound to a special heuristic, but can
be applied to arbitrary heuristics. We will first characterize
an exact notion of uselessness of actions, which we will then
approximate with the given heuristic.

Our experiments show a significant improvement on a
number of commonly known heuristics and benchmarks
from the International Planning Competitions. In the con-
text of the FF heuristic and a generalization of the Causal
Graph and additive heuristics (Helmert and Geffner 2008),
we are competitive with helpful actions and preferred opera-
tors. Moreover, the concepts of uselessness and helpfulness
can be successfully combined, yielding a significantly bet-
ter classification of useful and useless actions than before.
Finally, we show that our technique also improves planning
with hadd and hmax (Bonet and Geffner 2001).

We will next give an example that greatly oversimplifies
the issues at hand but gives an intuition about useless actions
and their potential usefulness.

Example. Consider the simple transportation task shown
in Fig. 1. It consists of the locations A0, . . . , An and
B0, . . . , Bn, where the task is to transport a package pi

from Ai to Bi with truck ti for all i ∈ {0, . . . , n}. A truck
ti can drive from Ai to Bi, and vice versa. Initially, all pack-
ages and trucks are in the A locations, and the goal state is
to have all packages in the B locations. For simplicity, as-
sume that all packages are already loaded on the correspond-
ing truck, and the only actions that have to be performed to
reach the goal state is to drive all trucks from Ai to Bi.



Suppose that we use the hmax heuristic to find a solution
to that problem. It turns out that, for this problem, hmax is
a rather uninformed heuristic, because it cannot distinguish
states that are nearer to the goal state from others. If there is
at least one package that has not been delivered yet, then the
heuristic value for that state is 1. We may characterize the
state space topology induced by hmax as follows. There is
one single plateau, i. e., for all of the 2n+1 reachable states
but for the goal state the heuristic value is 1. This means
that the guidance based on this heuristic is very poor here.
In fact, for every heuristic there are problems where it runs
into similar situations.

For the simple transportation problem, it is trivial to see
that driving from a B location to an A location does not
make sense, i. e., it is a useless action. Without steps corre-
sponding to such actions, the search stops after n + 1 steps
and returns a shortest possible plan. Otherwise, the search
degenerates to uninformed search.

Figure 2 provides a foretaste of the usefulness of useless
actions. It shows the search space of the example problem
that is explored by a best-first search with hmax , on top with-
out taking useless actions into account and below when use-
less actions are less preferred. As argued above, avoiding
such actions has a significant impact on the size of the ex-
plored search space.

0

1 2

3 4

56

7

8

9

10 11 12

13

14

15

16

17

18 19 20

21 22

23

24

2526

2728

2930

31

3233

34 35

36

37

38 39 40 41

42 43

44

45 46 47

48

49

50

51 52 53

54

55

56 57

58 59

60

61

62

6364 65 6667

6869

7071

72

73 74

75 76

77

78

79 808182

83 84

85

86

87

88

89

90 91

92

93

94

9596 97

98

99

100 101

102

103

104

105106

107

108

109

110111

112113

114

115 116

117

118 119

120 121

122

123

124 125 126

127 128 129

130 131

132

133

134 135 136

137 138

139

140 141

142

143

144145 146

147

148

149 150 151152

153 154155

156

157

158 159160161

162 163 164 165166

167

168 169

170

171 172173

174

175

176177

178

179

180181

182183

184 185 186 187 188189190

191 192193 194 195

0

1 2 3 4 5 6 7

8

9

1011 12 13 14 15

16

17

18 19 20 21 22

23

24

25 26 2728

29

3031

32 33 34

35

36 3738

39 40

41

42 4344 45

46

47

48 4950 51 52

5354 55 5657 58 59

60 6162 63 64 65 66

Figure 2: The effect of our method when applied to the sim-
ple transportation problem with n = 8

The paper is organized as follows. In the next section, we
give the basic notation. Then we present the notion of use-
less actions and evaluate its performance. This is followed
by a discussion on related work. Finally, we conclude the
paper and give a short outlook on future work.

Notation
We consider planning in a setting where the states of the
world are represented in terms of a set P of Boolean state
variables that take the value true or false. Each state is a
valuation on P , i. e., an assignment s : P → {true, false}.
A literal is a formula of the form a or ¬a for all a ∈ P . The
set of literals is denoted by L = P ∪ {¬a | a ∈ P}. We use
operators for expressing how the state of the world can be
changed. An operator is a tuple o = 〈p, e〉 where p ⊂ L is a
set of literals, the precondition, and e ⊂ L is a set of literals,
the effect. The operator is applicable in a state s if s |= p
(where we identify a set of literals with their conjunction). In
this case, we define appo(s) = s′ as the unique state that is
obtained from s by setting the effect literals of o to true and
retaining the truth values of the state variables not occurring
in the effect. For sequences of operators σ = o1, . . . , on we
define appσ(s) as appon

(. . . appo2
(appo1

(s)) . . . ).
Let Π = 〈P, I, O, G〉 be a planning instance, consist-

ing of a set P of state variables, a state I on P (the ini-
tial state), a set O of operators on P , and a formula G
on P (the goal formula). A (sequential) plan for Π is a
sequence σ = o1, . . . , on of operators from O such that
appσ(I) |= G, i. e., applying the operators in the given or-
der starting in the initial state is defined (the precondition
of every operator is true when the operator is applied) and
produces a state that satisfies the goal formula.

The Notion of Useless Actions
In this section we will first define the theoretical concept of
useless actions and then its practical counterpart, the rela-
tively useless actions. As actions are represented as opera-
tors, we will use the terms useless action and useless opera-
tor synonymously.

Useless Actions
Let us first give the definition of useless actions which pre-
cisely captures the intuition. An action is useless if it is not
needed to reach a goal state in an optimal plan. This is for-
mally stated in the next definition.

Definition 1 (Useless Action). Let Π = 〈P, I, O, G〉 be a
planning instance, s a state, o ∈ O. The operator o is useless
in s if and only if no optimal plan from s starts with o.

Obviously, this definition is not practical since recogniz-
ing useless actions is as hard as planning itself. Hence, we
will investigate other ways to express this property. We will
arrive at a characterization that lends itself to the definition
of a practical version of useless actions, a definition that we
will give in the next section.

We use d(s) to denote the length of a shortest sequential
plan from a state s to a goal state. When we want to stress



that d also is a function on the planning instance Π, we will
write d(Π, s).

By Definition 1, an operator o is useless in a state s if and
only if the real goal distance d does not decrease by one, i. e.
an action is useless iff d(s) ≤ d(s′), where s′ = appo(s).
To see this, recall that d(s) ≤ d(s′) + 1 for every action. If
an optimal plan starts from s with o, then d(s) = d(s′) + 1.
Otherwise we have d(s) < d(s′) + 1, and since the distance
values are all integers, this is equivalent to d(s) ≤ d(s′).

We will use the inequality d(s) ≤ d(s′) in connection
with the idea of removing operators from Π.

Definition 2 (Reduced planning instance). For a given
planning instance Π = 〈P, I, O, G〉 and o ∈ O, the re-
duced planning instance Πo is defined as 〈P, I, O\{o}, G〉.

We will characterize the notion of useless actions with the
help of reduced planning instances in the following proposi-
tion.
Proposition 1. Let Π = 〈P, I, O, G〉 be a planning in-
stance, s a state, o ∈ O applicable in s, s′ = appo(s). If
d(Πo, s) ≤ d(Π, s′), then o is useless in s.

Proof. If d(Πo, s) ≤ d(Π, s′), then d(Π, s) ≤ d(Π, s′)
because d(Π, s) ≤ d(Πo, s) for all s and o. With the argu-
mentation above (i. e., d(s) ≤ d(s′) if and only if no optimal
plan from s starts with o), it follows that o is useless in s.

This characterization can be read as saying that an action
o is useless in s if a goal state is still reachable from s with
the same optimal plan when o is removed from the planning
instance.

A0

A1 A2

A3

p

B0

B1

B2

B3

p

Figure 3: Example transportation problems

The above characterization of useless actions has its own
intricacies. Observe that, for an action o to be useless in a
state s, it is not enough to require d(Πo, s) ≤ d(Π, s). See
the left example in Fig. 3. In this transportation problem, the
task is to transport an object p from A0 to A3 via A1 or A2.
The operators drive-A0-A1 and drive-A0-A2 would
both (wrongly) be classified as useless in the initial state.

Furthermore, it does not suffice to require d(Πo, s) =
d(Π, s′). See the right example in Fig. 3. The operator
drive-B0-B1would not be classified as useless in the ini-
tial state although it is, i. e., it is not part of an optimal plan
from B0 to B3.

The Practical Counterpart
Obviously, the detection of useless actions is PSPACE-hard
and therefore too expensive in practice. Proposition 1 mo-
tivates a direct approximation, namely by simply replacing

the goal distance d(s) with a heuristic function h(s) that es-
timates the distance from a state s to a nearest goal state.
When we want to stress that h also is a function on the plan-
ning instance Π, we will write h(Π, s).

Definition 3 (Relatively Useless Action). For a planning
instance Π = 〈P, I, O, G〉, o ∈ O, a state s and a heuris-
tic function h(Π, s), the operator o is relatively useless (for
h) in s iff h(Πo, s) ≤ h(Π, s′). We denote a state as rela-
tively useless if it is reached by applying an operator that is
relatively useless.

Note that also for heuristics h, the requirement
h(Πo, s) ≤ h(Π, s′) is usually stronger than h(Π, s) ≤
h(Π, s′), e. g. for abstraction heuristics (Helmert, Haslum,
and Hoffmann 2007). This is because whenever h(Πo, s) ≤
h(Π, s′), then h(Π, s) ≤ h(Π, s′), since h(Π, s) ≤
h(Πo, s) for all states s and operators o. It is not difficult
to construct an example to see that the other direction does
not hold.

For abstraction heuristics, actions that lead to states with
lower heuristic values are never relatively useless. More pre-
cisely, for a state s, operator o and s′ = appo(s), if h(s′) <
h(s), then o is not relatively useless in s. This is simply be-
cause if o is relatively useless in s, i. e. h(Πo, s) ≤ h(Π, s′),
it follows that h(Π, s) ≤ h(Π, s′).

Obviously, the quality of this approximation strongly de-
pends on h’s precision. A very uninformed heuristic that
e. g. constantly returns zero recognizes every action as rel-
atively useless. However, the more informative the heuris-
tic function is, the more precise is the approximation. Intu-
itively, taking a relatively useless operator o does not seem to
guide the search towards a goal state as the stricter distance
estimate in Πo does not increase.

Evaluation
We have implemented our method into FAST DOWNWARD
and evaluated it on a number of commonly known heuris-
tics and benchmarks from the recent International Planning
Competitions (IPC).

Integration into FAST DOWNWARD

FAST DOWNWARD is a recent state-of-the-art planner, in
particular winning the IPC 2004 in the track for classical
planning. FAST DOWNWARD uses the SAS+ representation
of planning instances where state variables are not Boolean,
but have an integer domain (Bäckström and Nebel 1995). In
a best-first search setting, FAST DOWNWARD maintains two
open queues, one for states that result from applying pre-
ferred operators, the other one for all states. During search,
states are taken alternately from these queues.

We will next describe how we integrated the technique
of useless actions into FAST DOWNWARD. We maintain
three different open queues helpfulQueue, unknownQueue
and uselessQueue, containing states as indicated by their
names (where states that are classified as helpful and rel-
atively useless are maintained in uselessQueue). More pre-
cisely, for each state s that is expanded with operator o, we
check if o is relatively useless in s for the heuristic that is



also used for the search. If this is the case, the correspond-
ing successor state s′ = appo(s) is pushed into the use-
lessQueue. The modified planning algorithm is based on
how the different open queues are selected. The straight for-
ward algorithm would be to take states from uselessQueue
only if the other two queues are empty. However, as the ap-
proximation of useless may fail (depending on the quality
of h), we also take states from uselessQueue with a small
probability ϑ = 0.1. We will come back to this point in
the discussion section. The modified algorithm for select-
ing the open queues is shown in Fig. 4. Line 11 ensures
that an empty queue is never returned if there exists a non
empty one. The function selectNonEmptyQueue() returns a
non empty last recently used queue if there exists one.

1 function selectOpenQueue():
2 choose p ∈ [0.0, 1.0] uniformly distributed
3 if p < ϑ and uselessQueue not empty:
4 return uselessQueue
5 if preferred and helpfulQueue not empty:
6 preferred = false
7 return helpfulQueue
8 elif unknownQueue not empty:
9 preferred = true

10 return unknownQueue
11 return selectNonEmptyQueue()

Figure 4: Selection of open queues

Additionally, to reduce misclassifications of relatively
useless actions, we implemented our concept in a stronger
way than described in the last section. When computing Πo,
we additionally remove all operators from Π that require a
variable to have a value that is set by o.

Experimental Results
We evaluated our method for the hFF , hcea , hadd and hmax

heuristics. The hcea heuristic is a generalization of the hadd

and Causal Graph heuristics (Helmert and Geffner 2008).
In all configurations, the open queues are selected accord-

ing to the algorithm in Fig. 4. The experimental results in
Table 1, 2, 3 and 4 were obtained on a 2.66 GHz Intel Xeon
computer with memory up to 3 GB and a Linux operating
system. For each configuration, we report the plan length,
the number of expanded states and the search time in sec-
onds. We set a time bound of 10 minutes per run and av-
eraged the data (i. e. plan length, states, time) over 10 runs.
A dash indicates that all runs failed (out of time or out of
memory). If some, but not all runs failed, we indicate the
number n of runs that failed with a superscript n. We re-
port detailed results for the domains PATHWAYS, TPP, DE-
POT, ASSEMBLY and PIPESWORLD-NOTANKAGE. These
domains are hard for FAST DOWNWARD when considering
the total number of instances that could not be solved with-
out our technique. For each domain, we give the results for
the ranges of instances up to the largest instance that could
be solved without and with our technique. If these ranges
are disjoint, they are separated by a horizontal line. Missing

instances in these ranges could not be solved by any config-
uration within our time and memory bounds.

Tables 1, 2 and 3 show the results for the hFF , hcea and
hadd heuristics. With our approach, a significant perfor-
mance gain is obtained in all settings. When hFF or hcea is
applied, we are competitive with helpful actions or preferred
operators. In most cases, we even explored significantly less
states. Moreover, the notions of helpfulness and useless-
ness can be efficiently combined, yielding a significantly
better classification of useful and useless actions than be-
fore. Exemplary, this shows up very well in the PATHWAYS
domain. Without considering useless actions, the largest in-
stance that could be solved with hFF without (with) helpful
actions is PATHWAYS 10 (18). For hcea , the largest solved
instance without (with) preferred operators is PATHWAYS 10
(16). The combination of helpful and useless actions yields
a planner that could even solve the largest instance.

Moreover, we did experiments for the hmax heuristic. Al-
though the improvements are less significant than with hadd ,
we still got considerable performance gains. We can sum-
marize the results as follows: for instances that could be
solved by hmax , the number of expanded states decreases
in 32 cases when our concept is applied, whereas in 9 in-
stances more states are expanded. Furthermore, we could
solve more instances than before.

To get a more detailed overview of the performance of
each configuration, we report the total number of unsolved
instances in Table 4, where an instance is counted as un-
solved if all runs failed. For each heuristic h, we compare
normal heuristic search, (i. e. h with no search enhance-
ments), h and helpful actions (or preferred operators), h and
useless actions and h when both, useless and helpful actions
(or preferred operators), are applied.

Discussion
Overall, the concept of useless actions has shown its poten-
tial in an impressive way. In particular, it is interesting that
the combination with helpful actions or preferred operators
often yields such significant performance gains. Although
the ideas of useful (helpful or preferred) and useless actions
are similar, the experiments suggest that different aspects are
covered by these notions. Therefore, we are able to identify
“useful” actions, i. e. actions that are classified as useful by
the heuristic, that are actually not useful in practice.

In our experiments, we give preference to operators that
are not relatively useless. However, with small probability ϑ,
we also expand relatively useless states. This is because the
heuristic may be not informative enough which can lead to
wrong classifications. On the one hand, with the alternative
strategy of taking relatively useless states only if the other
queues are empty (ϑ = 0), we often expand slightly less
states in the reported instances. This is rational and shows
that our approximation of useless actions usually is good.
On the other hand, however, wrong classifications as rela-
tively useless may be serious because important states may
wrongly be deferred. Hence, in some instances the number
of explored states increases significantly. Therefore, it is ad-
equate to expand also states with a small probability that are
classified as useless.



hFF hFF + helpful hFF + useless hFF + helpful + useless
inst. length states time length states time length states time length states time
PATHWAYS

13 – – – 107 35810 2.4 98 6518 0.9 99 3002 0.4
14 – – – 113 31525 3.5 113 11127 1.7 110 11853 2.1
15 – – – 105 130300 262.9 102 5620 1.0 102 3459 0.6
16 – – – 147 105314 12.6 150 8008 1.7 145 9763 2.1
17 – – – 164 46275 5.4 165 30165 7.0 156 86351 19.8
18 – – – 167 108323 9.3 179 37274 5.7 176 12103 1.8
26 – – – – – – 233 49300 14.5 2271 896231 28.01

27 – – – – – – 272 106127 69.2 259 272868 334.1
28 – – – – – – 204 21747 7.2 217 29402 9.7
29 – – – – – – 266 72542 26.2 263 28408 7.4
30 – – – – – – 299 43242 12.0 279 54163 14.8

TPP
17 – – – 131 271323 84.8 111 3353 2.3 110 2699 1.8
18 108 1294309 528.2 108 10027 4.8 106 2004 2.3 103 2002 2.4
19 – – – 177 388578 221.0 151 3612 4.6 141 2769 3.5
20 – – – – – – 188 8587 12.6 162 2991 5.1
21 – – – 210 128360 358.2 179 6404 40.3 171 4275 28.0
22 – – – 144 87707 356.6 136 5744 49.2 115 1265 12.2
26 – – – – – – 2034 103644 499.84 186 4623 263.7
27 – – – – – – 230 8130 500.2 222 4034 251.0
28 – – – – – – – – – 217 5784 389.6
29 – – – – – – – – – 2622 65882 564.32

30 – – – – – – – – – 2522 49932 518.22

DEPOT

13 26 131 0.1 28 85 0.1 26 132 0.1 27 113 0.1
14 – – – 48 1130989 459.5 43 1526 1.3 42 2530 1.9
15 – – – 124 211715 259.1 115 53804 119.0 109 7932 17.7
16 28 643 0.2 28 67344 16.6 28 373 0.3 28 557 0.3
17 23 239 0.3 25 157 0.3 25 844 1.1 24 620 0.9
18 – – – – – – 623 276693 124.23 56 623 4.3
19 – – – 49 24005 10.7 49 5844 5.0 50 5281 4.5
20 – – – – – – – – – 119 31084 223.0
21 33 381 3.0 33 112 1.5 34 760 11.0 35 387 6.8
22 – – – – – – – – – 111 4351 482.3

ASSEMBLY

21 75 624 0.1 75 132 0.0 75 686 0.1 78 655 0.1
22 78 625 0.1 78 160 0.0 78 692 0.1 80 257 0.0
23 – – – 107 332 0.1 107 1266 0.2 103 1446 0.3
24 – – – 103 390 0.1 101 1375 0.2 107 352 0.1
25 – – – 108 1469 0.2 112 1893 0.3 102 1157 0.2
26 98 507589 60.7 112 778 0.1 98 2285 0.4 99 1124 0.2
27 – – – – – – 143 15199 2.8 123 3837 0.7
28 – – – 102 731 0.1 96 1223 0.2 96 1174 0.2
29 96 749 0.1 96 194 0.0 97 864 0.2 96 940 0.2
30 112 6422 0.7 123 879 0.1 112 5703 1.0 111 1275 0.2

PIPESWORLD-NOTANKAGE

35 – – – 28 3162 1.7 29 22622 17.8 29 326 0.6
36 – – – 84 105270 53.2 – – – 83 20456 20.5
37 – – – 38 35865 23.7 49 131850 152.8 60 156041 188.1
38 – – – 53 58454 38.0 60 4562 5.1 38 1543 2.3
39 – – – 33 104 0.6 38 2688 6.6 31 264 1.3
40 – – – 53 196310 270.0 63 3254 8.8 49 4904 13.9
41 14 21338 33.1 12 141 0.8 12 150 1.3 12 50 0.9
45 – – – – – – – – – 979 37639 64.99

49 – – – 46 569 8.5 50 2111 54.3 53 1907 39.7
50 – – – 63 7730 110.4 70 3832 110.6 623 48793 152.93

Table 1: Results for the FF heuristic



hcea hcea + preferred hcea + useless hcea + preferred + useless
inst. length states time length states time length states time length states time
PATHWAYS

11 – – – 84 311891 20.7 82 4817 0.7 822 21432 0.32

12 – – – 106 173239 16.0 – – – 1166 36376 0.66

13 – – – 105 27731 2.4 – – – 106 1685 0.3
14 – – – – – – 116 6625 1.2 1191 47931 1.01

15 – – – – – – 112 4291 0.8 112 9917 6.0
16 – – – 148 154849 27.5 – – – – – –
26 – – – – – – – – – 2317 446757 18.37

27 – – – – – – 257 137407 79.7 253 78272 76.2
28 – – – – – – 228 25468 9.8 2232 269042 12.22

29 – – – – – – 281 327166 321.0 2884 1120944 48.64

30 – – – – – – – – – 2932 566742 26.12

TPP
12 72 3126 0.4 84 916 0.2 74 4306 1.1 74 3738 1.0
13 60 12992 2.6 61 1155 0.3 68 646 0.3 66 2650 1.1
14 97 15416 3.1 100 4654 1.1 92 11860 4.9 89 8560 3.6
15 110 10676 2.2 120 4705 1.1 104 10197 4.7 107 10131 4.5
16 126 37546 12.4 135 66008 31.7 121 6855 7.3 140 28210 30.6
18 99 140394 360.4 96 3854 7.1 98 33962 122.1 98 26065 90.5
21 – – – 192 87043 567.1 1731 411601 331.81 1856 474936 360.06

22 – – – 136 21697 224.1 122 9175 149.5 128 7417 109.6
23 – – – – – – 1689 482709 545.19 1897 246107 341.87

24 – – – – – – 156 14438 259.8 152 22794 379.3
DEPOT

11 87 56860 99.2 77 24531 44.1 77 1187 4.8 68 1888 7.6
12 – – – – – – – – – 111 9441 169.9
13 25 135 0.2 25 76 0.1 25 147 0.3 26 83 0.3
14 – – – – – – 42 1297 5.9 44 1132 5.4
15 – – – – – – 94 4379 93.2 116 3011 67.5
16 31 999 0.9 30 175 0.2 31 370 0.8 26 67 0.2
17 – – – 26 25455 67.5 23 1287 7.4 29 169 1.5
18 – – – – – – – – – 571 5141 22.21

19 – – – – – – 53 3862 17.3 48 978 5.4
20 – – – – – – 89 4326 175.9 1027 57637 246.17

21 34 526 11.2 34 179 4.5 34 582 29.6 34 286 16.8
ASSEMBLY

21 – – – 93 404 0.1 79 361818 251.7 88 703 0.2
22 – – – 122 61853 15.2 – – – 78 9958 3.8
23 – – – – – – 115 45765 20.1 105 1430 0.5
24 – – – – – – – – – 105 1442 0.6
25 – – – – – – – – – 106 969 0.5
26 – – – – – – – – – 105 1274 0.4
27 – – – – – – – – – 119 2098 1.1
28 – – – – – – – – – 113 1313 0.5
29 – – – – – – – – – 114 1346 0.6
30 – – – 176 64206 21.6 138 407651 272.7 112 1636 0.7

PIPESWORLD-NOTANKAGE

34 61 6082 94.8 61 11219 75.9 78 3714 142.9 73 1201 48.8
35 – – – – – – 32 436 24.6 48 1965 57.3
36 – – – – – – – – – 62 12346 451.4
37 – – – 40 15640 533.9 50 2372 156.0 469 60089 569.89

38 – – – 36 1880 88.3 – – – 522 23132 190.22

39 – – – 49 10260 489.6 – – – 34 224 21.3
40 – – – – – – 46 2297 320.4 43 5877 382.9
41 14 11489 189.2 12 40 1.6 12 116 7.8 12 102 7.5
49 – – – 38 1004 228.9 – – – 56 661 308.7
50 – – – 53 834 180.5 – – – – – –

Table 2: Results for the hcea heuristic



hadd hadd + useless
inst. length states time length states time
PATHWAYS

3 11 13 0.0 11 13 0.0
4 14 16 0.0 14 16 0.0
5 30 777 0.0 31 231 0.0
7 – – – 82 1361 0.1

10 82 790913 116.0 82 2230 0.2
15 – – – 112 3938 0.8
17 – – – 1631 98351 2.91

23 – – – 189 6713 2.0
27 – – – 2476 374306 28.36

28 – – – 226 20204 12.4
TPP
10 98 9199 0.7 90 574 0.1
11 121 9931 1.1 115 1222 0.2
12 129 20566 2.4 110 1104 0.2
13 68 34679 6.0 67 483 0.2
14 104 56733 11.8 99 1413 0.6
15 124 37706 6.9 117 1803 0.7
21 – – – 214 5538 72.8
22 – – – 152 3170 62.5
23 – – – 212 9829 203.5
24 – – – 204 5532 127.8
25 – – – 244 9848 346.3
DEPOT

11 100 90113 62.0 78 1803 1.9
12 – – – 1211 917871 353.61

13 26 139 0.1 26 163 0.2
14 – – – 44 1504 2.4
15 – – – 100 4710 24.8
16 – – – 28 4703 3.6
17 – – – 23 1465 2.7
19 – – – 54 5432 9.1
20 – – – 109 9257 151.6
21 33 530 10.0 33 642 17.7
ASSEMBLY

9 55 105514 12.0 55 44395 6.1
10 60 922059 221.2 60 124743 17.3
11 59 146251 22.0 59 30178 4.7
12 71 333499 45.3 71 5441 0.8
13 71 227975 27.3 71 23754 3.2
18 – – – 94 138411 57.2
19 – – – 90 530361 135.9
21 – – – 79 435846 209.2
23 – – – 115 50696 14.6
30 – – – 138 639642 293.6
PIPESWORLD-NOTANKAGE

31 – – – 37 773 0.8
32 – – – 47 5355 4.7
33 – – – 64 3313 3.1
34 – – – 666 455066 39.46

35 – – – 46 5593 9.8
37 – – – 46 3082 9.3
38 – – – 65 8818 28.0
39 – – – 38 3152 18.8
40 – – – 47 11003 58.4
41 14 21349 117.0 12 132 2.0
50 – – – 831 85411 365.51

Table 3: Results for the additive heuristic

normal + helpful + useless + both
hFF

PATHWAYS (30) 23 14 1 0
TPP (30) 13 9 3 0
DEPOT (22) 8 5 3 0
ASSEMBLY (30) 15 1 0 0
PIPESWORLD (50) 22 9 10 7
hcea

PATHWAYS (30) 24 18 15 5
TPP (30) 13 11 9 9
DEPOT (22) 11 9 4 1
ASSEMBLY (30) 20 12 8 0
PIPESWORLD (50) 25 16 13 8
hadd

PATHWAYS (30) 24 n/a 16 n/a
TPP (30) 15 n/a 5 n/a
DEPOT (22) 11 n/a 3 n/a
ASSEMBLY (30) 20 n/a 8 n/a
PIPESWORLD (50) 29 n/a 13 n/a
hmax

PATHWAYS (30) 25 n/a 24 n/a
TPP (30) 21 n/a 17 n/a
DEPOT (22) 17 n/a 12 n/a
ASSEMBLY (30) 20 n/a 8 n/a
PIPESWORLD (50) 33 n/a 26 n/a

Table 4: Number of unsolved instances by domain. First
column shows total number of instances in parentheses.

Let us have a closer look at the class of heuristics for
which our method is best suited. Although it can be com-
bined with arbitrary heuristics, useless actions work best
with heuristics that are computed on-the-fly because of the
low time overhead. Contrarily, heuristics based on pattern
databases (Culberson and Schaeffer 1998) compute a lookup
table for the heuristic values in a preprocessing step. It is
not obvious how useless actions can be combined efficiently
with such heuristics, because for every reduced planning
instance, a separate pattern database had to be computed,
which usually causes a too large time overhead. However,
we have shown that for heuristics that are computed on-the-
fly, the time overhead is not an issue, and the overall per-
formance is often improved. How to combine our method
efficiently for heuristics based on pattern databases is an in-
teresting topic for future work.

Related Work
Planning as heuristic search was pioneered by Bonet and
Geffner (2001). They proposed the hadd and the hmax

heuristic as well as the first popular planner based on heuris-
tic search HSP. Meanwhile, the evaluation of actions (not
just states) has also been studied. Related work in this area
can roughly be divided into two categories: methods that
evaluate actions during the search and methods that do it
prior to the search.

Hoffmann and Nebel (2001) proposed helpful actions.
They are used to select a set of promising successors to a
search state. An action is considered as helpful if it is appli-
cable and adds at least one goal at the first time step during
the computation of the FF heuristic. Vidal (2004) extended



the idea of helpful actions. Instead of preferring states that
result from applying helpful actions, he proposed to extract
a prefix of actions from the relaxed solution that are appli-
cable in sequence to the current search state. Helmert’s pre-
ferred operators (2006) are similar to helpful actions in the
context of the Causal Graph heuristic. All these approaches
identify useful actions during the computation of the heuris-
tic. Contrarily, we identify useless actions based on reduced
planning instances. Therefore, our method can be combined
with arbitrary heuristics.

Nebel et al. (1997) removed irrelevant facts and opera-
tors from a planning task in a preprocessing step. They re-
moved operators and variables that are probably not needed
in order to find a solution. They are identified by solving a
relaxed problem. If certain variables and operators are not
needed they are removed from the original planning task.
However, in contrast to our approach, this method is not
solution-preserving. In our work, relatively useless opera-
tors are identified on-the-fly, where it depends on the current
state if an operator is relatively useless.

In the area of domain-specific planning, Bacchus and Ady
(2001) proposed to avoid certain action sequences that do
not make sense. For example, a transporter that has to de-
liver an object to some place should not load and unload it
without moving. However, such obviously unnecessary ac-
tion sequences are identified manually.

Conclusion
We have introduced a general technique to enhance heuristic
search by identifying relatively useless actions. In contrast
to earlier work like helpful actions or preferred operators,
our method can be combined with arbitrary heuristics. We
have shown that it often yields significant performance im-
provements on a number of commonly known heuristics and
planning benchmarks from the International Planning Com-
petitions.

In the future, we plan to extend the concept of useless and
relatively useless actions to paths. Where we considered sin-
gle actions for uselessness in this work, we will investigate
how sequences of actions can be classified as useless. An-
other extension of our concept is to consider more than two
degrees of uselessness. We expect that algorithms exploiting
that knowledge further improve planning as heuristic search.

Acknowledgments
Many thanks to Malte Helmert for his assistance with FAST
DOWNWARD, for providing us an early implementation of
the hcea heuristic and for fruitful discussions about useless
actions.

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis
of Complex Systems”. See http://www.avacs.org/
for more information.

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In Nebel,

B., ed., Proceedings of the 17th International Joint Con-
ference on Artificial Intelligence (IJCAI 2001), volume 1,
417–424. Morgan Kaufmann.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal
planning using subgoal partitioning and resolution in SG-
Plan. Journal of Artificial Intelligence Research 26:323–
369.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. Journal of Artificial Intelligence Research 20:239–
290.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel,
B.; Beck, C.; and Hansen, E., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS 2008). AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings of
the 17th International Conference on Automated Planning
and Scheduling (ICAPS 2007), 176–183. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignor-
ing irrelevant facts and operators in plan generation. In
Steel, S., and Alami, R., eds., Proceedings of the 4th Eu-
ropean Conference on Planning (ECP 1997), volume 1348
of LNCS, 338–350. Springer-Verlag.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S.,
eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS 2004), 150–
159. AAAI Press.


