
Martin Wehrle

Transition-Based
Directed Model Checking

Dissertation

zur Erlangung des Doktorgrades
der Technischen Fakultät
der Albert-Ludwigs-Universität Freiburg

Tag der Disputation:
23. Dezember 2011

Dekan:
Prof. Dr. Bernd Becker, Albert-Ludwigs-Universität Freiburg

Referenten:
Prof. Dr. Andreas Podelski, Albert-Ludwigs-Universität Freiburg
Prof. Bernd Finkbeiner, Ph.D., Universität des Saarlandes
Prof. Dr. Bernhard Nebel, Albert-Ludwigs-Universität Freiburg
Prof. Dr. Hannah Bast, Albert-Ludwigs-Universität Freiburg

Abstract

Software and hardware systems are rapidly increasing in size and complexity. How-
ever, with increasing system complexity, the system design process becomes more
error-prone. In particular, this is the case for concurrent systems, where subtle bugs
may occur because of unexpected thread interleavings. Therefore, approaches to
effectively find bugs are required. Currently, the most common approach to bug
finding is testing. Testing turned out to be often a very effective approach for this
purpose. However, subtle bugs may still remain undiscovered.

In contrast to testing, model checking is an automated approach to check a model
of the system for the absence of bugs. In this approach, an exploration of the entire
state space of the system is performed. Although originally introduced for the pur-
pose of proving correctness, model checking has also been applied to bug finding.

Directed model checking is a version of model checking that is specialized to-
wards finding paths to error states in concurrent systems. Directed model checking
attempts to avoid exploring the entire state space by directing the exploration. To
direct the exploration, every encountered state is prioritized based on the expected
distance to a nearest error state. States with higher priorities are preferably explored.

The contribution of this thesis is the concept of transition-based directed model
checking, which extends directed model checking by additionally computing pri-
orities for transitions, rather than only to compute priorities for states. Transitions
with higher priorities are preferably applied. We demonstrate that transition-based
directed model checking can significantly improve the classical directed model
checking approach. Our demonstration proceeds in four steps. First, we present
the notion of useless transitions. Based on this notion, we identify a criterion to
estimate if a given transition is needed to find an error state. Second, we present an
application of useless transitions to the area of AI planning, where the similar prob-
lem of automatically finding predefined goal states is addressed. Third, we present
an alternative to useless transitions based on interference contexts. Compared to
the Boolean property of uselessness for transitions, interference contexts provide a

VI

more fine-grained concept to compute transition priorities. Fourth, we present an
abstraction principle called safe abstraction. Based on safe abstraction, we identify
transitions that can be ignored completely during the exploration of the state space
without affecting completeness.

As part of the thesis, we have developed the directed model checking tool
MCTA. In particular, we have implemented useless transitions, interference con-
texts, and safe abstraction. We demonstrate that these three instances of transition-
based directed model checking outperform previous directed model checking tech-
niques on large practical problems. Furthermore, we have integrated the above-
mentioned application of useless transitions to the area of AI planning into the plan-
ning system FAST DOWNWARD. We demonstrate that useless transitions improve
existing planning techniques on a large number of benchmarks from the interna-
tional planning competitions.

Zusammenfassung

Soft- und Hardwaresysteme gewinnen heutzutage verstärkt an Größe und Kom-
plexität, was zur Folge hat, dass die Entwicklung solcher Systeme anfälliger für
Fehler wird. Insbesondere bei nebenläufigen Systemen können subtile Fehler auf-
treten, die durch unerwartete Interaktionen der parallel ausgeführten Programme
verursacht werden. Aufgrund dieser Tatsachen werden effektive Verfahren benötigt,
um solche Fehler zu finden. Das im Moment am weitesten verbreitete Verfahren
zur Fehlersuche ist Testen. Testen hat sich in vielen Fällen als sehr effektiv heraus-
gestellt, allerdings werden subtile Fehler auch mit Testen nicht immer gefunden.

Im Gegensatz zu Testen ist die Modellprüfung ein automatisiertes Verfahren, um
die Abwesenheit von Fehlern zu zeigen. Hierzu wird der Zustandsraum eines Mo-
dells des gegebenen Systems exploriert. Obwohl die Modellprüfung ursprünglich
eingeführt wurde, um die Korrektheit von Systemen zu zeigen, wird sie auch zur
Fehlersuche eingesetzt.

Die gerichtete Modellprüfung ist eine Variante der Modellprüfung, die darauf
spezialisiert ist, Fehlerzustände in nebenläufigen Systemen zu finden. Die gerichtete
Modellprüfung nutzt die Tatsache aus, dass es oftmals ausreicht, nur einen Teil
des Zustandsraums zu explorieren, um einen Fehlerzustand zu finden. Um dies zu
erreichen, werden die Zustände während der Exploration mit Hilfe von Heuristiken
bewertet. Zustände mit besserer Bewertung werden bevorzugt exploriert.

Der Beitrag dieser Arbeit besteht aus dem Konzept der transitionsbasierten
gerichteten Modellprüfung, das die gerichtete Modellprüfung erweitert, indem
nicht nur Zustände, sondern auch Transitionen bewertet werden. Transitionen mit
besserer Bewertung werden bevorzugt ausgeführt. Wir zeigen, dass die transitions-
basierte gerichtete Modellprüfung die klassische gerichtete Modellprüfung sig-
nifikant verbessern kann. Hierzu präsentieren wir als erstes das Konzept der nutz-
losen Transitionen, mit dem wir abschätzen können, welche Transitionen nicht
benötigt werden, um einen Fehlerzustand zu finden. Im nächsten Schritt stellen
wir eine Anpassung dieses Konzepts auf das Gebiet der Handlungsplanung der

VIII

Künstlichen Intelligenz vor. Die Handlungsplanung beschäftigt sich mit dem zur
Fehlersuche konzeptionell ähnlichen Problem, einen Zielzustand innerhalb einer
Planungsaufgabe zu erreichen. Weiterhin präsentieren wir eine Alternative zum
Konzept der nutzlosen Transitionen, das eine feinere Abstufung zur Bewertung
von Transitionen erlaubt und auf der Analyse von Interferenzkontexten basiert. Ab-
schließend stellen wir ein Konzept vor, das uns die Berechnung von Transitionen
erlaubt, die beweisbar nicht benötigt werden, um einen Fehlerzustand zu finden.
Dieses Konzept nennen wir sichere Abstraktion.

Als Teil der Arbeit haben wir den gerichteten Modellprüfer MCTA entwickelt, in
den wir auch die Konzepte der nutzlosen Transitionen, der Interferenzkontexte und
der sicheren Abstraktion implementiert haben. Wir zeigen, dass diese drei Instanzen
der transitionsbasierten gerichteten Modellprüfung frühere Verfahren in großen,
praktischen Problemen verbessert. Darüber hinaus haben wir die Anpassung der
nutzlosen Transitionen auf das Gebiet der Handlungsplanung in das Planungssys-
tem FAST DOWNWARD integriert. Wir zeigen, dass das Konzept der nutzlosen Tran-
sitionen existierende Planungstechniken in vielen Benchmarks der internationalen
Planungswettbewerbe verbessert.

Acknowledgments

First and foremost, I thank my supervisor Andreas Podelski for giving me the pos-
sibility to write my thesis at the chair of Software Engineering in an excellent re-
search environment. I want to thank Andreas not only for giving me much freedom
to develop my own research ideas, but also for valuable advice and many fruitful
discussions. Moreover, I thank Bernd Finkbeiner for serving as the second reviewer
of this thesis.

My special thanks go to Sebastian Kupferschmid for an intensive collaboration
over the years, and for carefully proofreading preliminary versions of this thesis.
I really enjoyed our endless discussions about research problems and beyond, the
joint travelings to conferences, the chats during coffee breaks, and our joint pro-
gramming sessions.

Furthermore, I want to thank my colleagues and friends for many fruitful discus-
sions and a great atmosphere over the years. In addition to Andreas and Sebastian,
I specifically want to thank Stephan Arlt, Jelena Barth, Sergiy Bogomolov, Berit
Brauer, Jürgen Christ, Daniel Dietsch, Evren Ermis, Harald Fecher, Sergio Feo-
Arenis, Slawomir Grzonka, Matthias Heizmann, Malte Helmert, Jochen Hoenicke,
Marlis Jost, Alexander Malkis, Robert Mattmüller, Stefan Maus, Martin Mehlmann,
Corina Mitrohin, Marco Muñiz, Amalinda Post, Martin Preen, Gabriele Röger,
Martin Schäf, Nassim Seghir, Bernd Westphal, and Thomas Wies.

I also thank the German Research Foundation (DFG) for providing the financial
support for our research center “Automatic Verification and Analysis of Complex
Systems” (AVACS). Furthermore, I thank the members of the AVACS subproject R3
for an excellent research environment. Specifically, I want to thank Henning Dierks,
Klaus Dräger, Bernd Finkbeiner, Michael Gerke, Sebastian Kupferschmid, Andrey
Kupriyanov, Bernhard Nebel, Hans-Jörg Peter, Andreas Podelski, and Jan-Georg
Smaus.

Finally, I want to thank my family, in particular my wife Andrea and my parents
Karin and Bernhard Wehrle, for their support over the years.

Contents

1 Introduction . 1
1.1 Model Checking . 1
1.2 Directed Model Checking . 2
1.3 AI Planning . 3
1.4 Related Work . 4

1.4.1 Directed Model Checking . 4
1.4.2 AI Planning as Heuristic Search . 6
1.4.3 Transition Prioritizing Techniques . 7

1.5 Outline . 8

2 Preliminaries . 11
2.1 Notation . 11
2.2 Directed Model Checking . 15
2.3 Abstraction Based Distance Heuristics . 16
2.4 Benchmark Set . 18

3 Useless Transitions . 21
3.1 Motivation . 21
3.2 Useless Transitions . 22

3.2.1 Useless Transitions . 23
3.2.2 Relatively Useless Transitions: The Practical Counterpart . . . 27
3.2.3 Directed Model Checking with Relatively Useless Transitions 28

3.3 Discussion: Where does it work, where not? . 29
3.4 Evaluation . 31

3.4.1 Experimental Setup . 32
3.4.2 Experimental Results and Discussion . 32
3.4.3 Useless Transitions in AI Planning . 37

3.5 Related Work . 41
3.6 Conclusions . 42

XII Contents

4 Context-Enhanced Directed Model Checking . 45
4.1 Motivation . 45
4.2 Context-Enhanced Directed Model Checking 47

4.2.1 Interference Contexts . 47
4.2.2 The Context-Enhanced Search Algorithm 49

4.3 Related Work . 51
4.4 Evaluation . 52

4.4.1 Experimental Setting . 52
4.4.2 Experimental Results . 53
4.4.3 Discussion . 58

4.5 Conclusions . 60

5 The Causal Graph Revisited for Directed Model Checking 63
5.1 Notation . 63
5.2 The Causal Graph . 68
5.3 Safe Abstraction . 71
5.4 The Causal Graph Heuristic for Directed Model Checking 73

5.4.1 Independent Processes . 74
5.4.2 Processes with Causal Predecessors . 74
5.4.3 Causal Graphs with Cycles . 76
5.4.4 Discussion: Sources of Imprecision . 77

5.5 Evaluation . 80
5.5.1 Implementation Details . 80
5.5.2 Experimental Results and Discussion . 81

5.6 Conclusions . 84

6 The Model Checker MCTA . 85
6.1 Timed Automata . 85
6.2 Description of MCTA . 87

6.2.1 Ingredients in a Nutshell . 87
6.2.2 Results . 88
6.2.3 Future Work . 89

7 Conclusions and Future Research . 91

References . 95

1

Introduction

1.1 Model Checking

In these days, modern software and hardware systems are rapidly increasing in size
and complexity, and already play important roles in many parts of our daily life.
However, with increasing system complexity, the system design process becomes
more error-prone because logical design flaws become more difficult to detect for
the engineer. This is particularly the case for concurrent systems, where subtle bugs
may occur due to unexpected thread interleavings. Therefore, approaches to ef-
fectively find such bugs are required. Currently, in software engineering, the most
common approach to bug finding is testing [59]. However, although testing is able
to detect many bugs in practice, subtle “corner case” bugs in concurrent systems
may still remain undiscovered.

In contrast to testing, model checking [16] is an automated approach for the ver-
ification of concurrent finite state systems. For a given mathematical modelM of
the system and a given property ϕ, model checking determines whether the system
satisfies the property, i. e., whether M |= ϕ. For this, model checking performs
an exploration of the entire state space of M. Although originally introduced for
the purpose of proving correctness, model checking has also been applied to bug
finding. In case of erroneous systems, the model checking algorithm is supposed to
return an error trace. The error trace is used as a diagnostic counterexample which
makes it possible to effectively debug the system. Overall, bug detection is an im-
portant aspect of model checking.

The main obstacle of model checking is the problem that the overall number of
system states grows exponentially in the size of the system. Therefore, to be able
to handle large and practical relevant systems, it is crucial to come up with effi-
cient approaches to tackle this problem. In recent years, significant progress could
be achieved in this direction. State-of-the-art model checking approaches include
approaches based on abstraction and abstraction refinement [15], bounded model

2 1 Introduction

checking [8, 9], external model checking [26, 46], as well as directed model check-
ing [27]. Directed model checking is optimized towards the detection of error states
using distance heuristics and represents the central topic of this thesis. We will in-
troduce this approach in more detail in the following sections.

1.2 Directed Model Checking

The goal of model checking is to prove a system error-free, which means that the
system satisfies a given property. If this is not the case, the objective of model
checking is to find an error trace. Directed model checking is a special version of
model checking which is tailored to the fast detection of short error traces in con-
current finite state systems. To efficiently detect short error traces, the exploration
of the state space is directed to those parts that show promise to contain reachable
error states. In order to appropriately direct the exploration, a distance heuristic is
applied. The distance heuristic assigns a heuristic value to each state that is encoun-
tered during the exploration. The heuristic value typically reflects an estimation
of the state’s distance to a nearest error state. States with low heuristic values are
preferably explored. Consequently, error traces can often be found by only explor-
ing a small fraction of the entire reachable state space. Informally speaking, directed
model checking can be considered as the application of heuristic search to model
checking.

Distance heuristics are mostly based on abstractions. The heuristic value for a
concrete state s is typically determined by the length of an abstract error trace that
starts in the corresponding abstract state of s. In other words, real error distances in
the original system are approximated with the length of abstract error distances in
the corresponding abstract system. We will give an overview of recent approaches
in Section 1.4.

Obviously, there is a trade-off between the accuracy and the computation time
for the distance heuristic. At the one extreme end of this spectrum, the constant zero
function can be used, which is very cheap to compute. However, it is obvious that
this function does not provide any further guidance information, and the directed
exploration of the state space would degenerate to blind search. At the other end
of the spectrum, the perfect distance function could be computed, which provides
the exact error distance for every system state. Having such a function, the overall
model checking problem would already be solved, and no more search would be
needed at all (an error state is reached by following strictly n states with decreasing
distance values, where n is the length of a shortest possible error trace). However,
the problem to compute such a perfect distance function is as hard as the model
checking problem itself. Overall, the challenge is to identify the sweet-spot of the
trade-off to design distance heuristics that are efficiently computable on the one
hand, and that are as accurate as possible on the other hand.

1.3 AI Planning 3

Directed model checking has proved to often perform much better than unin-
formed search methods like breadth-first or depth-first search [23, 51]. However,
for large systems, even error detection with directed model checking becomes
very challenging, and additional search techniques are required to handle the state
spaces.

In particular, techniques that also evaluate the quality of transitions, rather than
only states, are very promising [36, 42]. Such techniques have first been proposed in
the area of AI planning and have proved to often further alleviate the state explosion
problem. We provide an overview of such techniques in Section 1.4.

1.3 AI Planning

There is a strong relationship of detecting error states that violate a given property
and Artificial Intelligence (AI) Planning [60]. The overall goal of AI planning is to
develop algorithms to automatically achieve desired goal states from a given initial
state with a given set of actions (formalized as operators). From a model checking
point of view, operators resemble guarded commands, consisting of a precondition
and an effect. An operator can be applied in a state s if s satisfies the operator’s
precondition. In this case, the successor state is determined from s according to the
operator’s effect.

Planning algorithms are applicable to arbitrary planning domains that are for-
malized in a common planning domain description language. For example, a robot
might be supposed to autonomously navigate through a labyrinth and find the exit.
Although motivated differently, this is a similar problem to finding error states in
concurrent systems when considered from an abstract point of view. The easiest
planning setting is classical STRIPS planning as described, e. g., in a paper by Fox
and Long as a fragment of a richer planning language [29]. In the STRIPS for-
malism, effects of actions are deterministic and unconditional, and the world (i. e.,
the values of the state variables) is fully observable at every time point. STRIPS
planning is known to be PSPACE-complete [12]. (There are various extensions, in-
cluding non-deterministic planning and planning under partial observability; these
are not relevant for this thesis). In the following, we focus on classical STRIPS plan-
ning because it is the most similar setting to our context of detecting error states. In
the literature, various approaches to solve planning problems have been proposed,
including SAT-based approaches [48, 69, 70] as well as approaches based on heuris-
tic search [10, 13, 31, 36, 42]. Among these, planning as heuristic search has turned
out to be one of the most successful approaches in recent years (for details and
related work, see Section 1.4).

From an abstract point of view, directed model checking and planning as heuris-
tic search are very similar approaches. Both of them can be considered as the ap-
plication of heuristic search to a specific reachability problem, where the distance

4 1 Introduction

heuristics are computed fully automatically based on a declarative problem descrip-
tion. In both areas, the objective is to find short sequences of transitions (or actions
in the planning context) that lead from a given initial state to a state that satisfies
some goal condition. In directed model checking, the goal condition describes an
erroneous configuration of the system which is typically a negated invariant. In the
area of AI planning, the objective is typically to reach a state where a desired situ-
ation is fulfilled.

1.4 Related Work

In this section, we provide an overview of recent and important approaches con-
cerning directed model checking and AI planning as heuristic search. Furthermore,
we present related work concerning the (heuristic) evaluation of transitions in Sec-
tion 1.4.3.

1.4.1 Directed Model Checking

Directed model checking has been studied in different contexts and variants. In
particular, many tools are based on this approach, including the tools HSF-SPIN

[25], UPPAAL/DMC [51], and Java PATHFINDER [75].
Directed model checking has been pioneered by Yang and Dill [80] and by

Edelkamp et al. [23, 25]. Yang and Dill called this approach prioritized model
checking and proposed the hamming distance heuristic. The hamming distance
heuristic represents states as strings of bits. The length of an error trace from a
state s to an error state s′ is estimated as the number of positions in the representa-
tions of s and s′ such that the values of s and s′ differ in that position. Furthermore,
in the context of SPIN [45], Edelkamp et al. proposed two distance heuristics based
on graph distances to guide the exploration of the state space. For a parallel system
of processes, they use the local graph distance to estimate the actual error distance.
On the one hand, this is a coarse abstraction because synchronization behavior and
integer variables are ignored completely. On the other hand, the computation time is
low. The distance heuristics differ in the way the local graph distances are used for
the global distance estimation (i. e., by taking the maximum or the sum). Overall,
all these distance heuristics can be computed automatically based on a declarative
description of the system, but they are rather coarse approximations of the real error
distance.

Kupferschmid et al. [52] introduce two sophisticated distance heuristics that are
based on the monotonicity abstraction. This abstraction technique can be considered
as an adaptation of the ignoring delete lists principle that was originally introduced
in AI planning [10] (see Section 1.4.2). The idea of this abstraction is to assume that

1.4 Related Work 5

every state variable, once it obtained a value, keeps this value forever. Hence, every
state variable becomes set-valued and can have multiple values simultaneously in
general. The first proposed distance heuristic performs a fixed-point iteration based
on simultaneously applying transitions under the abstract semantics given by the
monotonicity abstraction. The iteration starts with the values of the variables given
by the current state, and ends if an abstract error state is found or a fixed-point is
reached. The heuristic value is essentially determined by the number of iterations.
Based on this fixed-point iteration and starting in the abstract error state, the second
distance heuristic additionally extracts an abstract error trace. The heuristic value is
defined as the number of abstract transitions in this abstract error trace. Both dis-
tance heuristics are more expensive to compute than those proposed by Edelkamp
et al., but they often provide more accurate distance estimates.

The distance heuristics described so far are computed on-the-fly, which means
that the heuristic values are obtained by computing abstract error traces in every
global state during model checking. In contrast, many distance heuristics based on
homomorphic abstractions are computed prior to model checking. Such distance
heuristics are essentially organized as a lookup table. To obtain heuristic values
during model checking, concrete states are mapped to corresponding abstract states
in this table. Examples for such distance heuristics are pattern database heuris-
tics [17]. A pattern database heuristic is usually computed based on the following
steps. In a first step, a subset of the state variables of the system under considera-
tion is selected. This subset is called the pattern. In a second step, the system under
consideration is abstracted by ignoring the state variables that do not occur in the
pattern. For this abstracted problem, the entire state space is computed, where the
abstract states are stored in a lookup table (the pattern database) together with the
abstract error distance. The distance value for a concrete state is defined as the ab-
stract distance of the corresponding abstract state in the pattern database. Distance
heuristics based on pattern databases differ in the selection of the pattern: Qian and
Nymeyer [65] proposed to use a kind of cone-of-influence analysis, Kupferschmid
et al. [54] proposed to use the monotonicity abstraction. Moreover, in a more gen-
eral approach, Hoffmann et al. [44] and Smaus and Hoffmann [72] applied predicate
abstraction to compute the pattern database.

Dräger et al. [21] proposed a distance heuristic that iteratively builds the product
automaton of two automata of the system under consideration. More precisely, the
abstract system is built by iteratively merging two automata and replacing them
with the resulting product automaton. To avoid the state explosion problem, the
product automaton is “shrunken” by merging states until it is smaller than a given
threshold n. This process is repeated until only one automaton is left. The distance
values are obtained by matching a concrete state to the corresponding abstract state
in the product automaton, and then using the graph distance to an abstract error
state as distance estimation. The parameters for this approach are the threshold n as

6 1 Introduction

well as strategies which automata to select next for the product building and which
states to merge.

1.4.2 AI Planning as Heuristic Search

Considering the results of the recent international planning competitions [1, 30],
planning as heuristic search turned out to be the most successful planning tech-
nique. An important discipline is called optimal planning, which describes the task
of finding shortest possible plans (i. e., plans with minimal number of actions in the
STRIPS formalism). In this context, distance heuristics that never overestimate the
real goal distance (so-called admissible distance heuristics) play an important role,
because they produce optimal plans when applied with the A∗ algorithm [64]. How-
ever, if optimality of plans is not required, inadmissible distance heuristics applied
with greedy best first search often perform better in practice. In the last decade,
various (admissible and inadmissible) distance heuristics have been proposed in the
literature. To be consistent with the terminology used in the AI planning commu-
nity, we use the term “heuristic” synonymously with the term “distance heuristic”
in this section.

An important class of planning heuristics is based on delete relaxations. This
principle has been originally introduced in the planning community and works anal-
ogously to the monotonicity abstraction (in fact, the monotonicity abstraction has
been introduced as an adaptation of the ignoring-delete-lists principle to the con-
text of timed automata). Therefore, negative effects of operators are ignored, and
variables have multiple values simultaneously in general. Heuristics based on delete
relaxations aim at approximating the optimal relaxed plan heuristic h+, which com-
putes shortest plans under this relaxation. Unfortunately, the computation of h+ is
an NP-equivalent problem [12]. Bonet and Geffner [10] pioneered heuristic search
planning and proposed the admissible approximation hmax and the inadmissible
hadd . In a suboptimal setting, Hoffmann and Nebel [42] introduced the FF plan-
ning system with the hFF heuristic in the same year which turned out to be a more
accurate approximation of h+ than hmax and hadd . This planning system pushed
the frontier in planning, in particular winning the five years best paper award 2005
of JAIR [2]. As a side remark, the distance heuristics proposed by Kupferschmid
et al. as described in the last section are adaptations of hmax and hFF to directed
model checking. Apart from approximating h+ explicitly, Helmert [35] proposed
the causal graph heuristic hCG , which is implemented in the FAST DOWNWARD

planning system [36]. Later on, Helmert and Geffner [38] showed that hCG can
also be viewed as a refined version of hadd . Based on this insight, they proposed
the context enhanced additive heuristic hcea which generalizes both hadd and hCG .
The overall performance of hcea is empirically shown to be superior to that of hadd

and hCG .

1.4 Related Work 7

Another class of planning heuristics is based on landmarks. Landmarks are pred-
icates that are true in every plan at some point. In this context, Richter et al. [67]
proposed an inadmissible landmark heuristic which estimates the goal distance in
terms of the number of landmarks that have not yet been achieved. Similarly, (dis-
junctive) action landmarks [37, 47] describe (sets of) actions with the property that
an action landmark (or at least one action in a disjunctive action landmark) has to
be applied at least once in every valid plan. Based on action landmarks, Karpas and
Domshlak [47] proposed an admissible landmark heuristic for optimal planning.
Moreover, Helmert and Domshlak [37] presented a classification of different classes
of heuristics, including delete relaxation and landmark heuristics. In particular, they
proposed a compilation scheme from hmax to an admissible landmark heuristic that
they called the landmark cut heuristic hLM-cut. They empirically showed that hLM-cut

approximates the optimal relaxed plan heuristic h+ in an almost perfect way with a
very low relative deviation.

A further class of planning heuristics is the class of abstraction heuristics. In
AI planning, the term abstraction is defined as a homomorphic abstraction function
that maps concrete states to abstract states. Planning heuristics that are based on
that kind of abstraction include pattern database heuristics [22, 33] and merge-and-
shrink abstractions [39, 40]. The latter is an adaptation of the approach proposed by
Dräger et al. [20, 21] to planning.

Overall, we have particularly observed in this section that the close relationship
between heuristic search planning and directed model checking is also reflected
in the literature, where planning techniques based on heuristic search have been
successfully applied to directed model checking, and vice versa.

1.4.3 Transition Prioritizing Techniques

Techniques to heuristically evaluate and prioritize transitions have mostly been
studied in the area of AI planning. Such techniques estimate how promising it is
to apply certain actions in a given state. In this context, Hoffmann and Nebel pro-
posed the helpful actions technique within the FF planning system [42]. An action
a is defined as helpful in a state s if a also occurs as a first action in an abstract
solution computed by hFF from s to a goal state. However, as helpful actions are
identified during the computation of hFF as a byproduct, helpful actions are also
specific to the hFF heuristic. Hoffmann and Nebel empirically showed the practical
potential of giving preference to helpful actions in a local search setting. Based on
this idea, Helmert [36] proposed preferred operators as an adaptation to the causal
graph heuristic hCG and generalized the approach to global search. Later on, pre-
ferred operators have been investigated more systematically by Richter and Helmert
[66]. Moreover, Vidal [74] extended the idea of helpful actions to sequences of ac-
tions. Instead of successively preferring states that result from applying one helpful

8 1 Introduction

action, a (generally longer) prefix of actions from the abstract solution is extracted
if these actions are sequentially applicable in the current state. This idea has been
further extended by Baier and Botea [5].

Other approaches explicitly remove actions that seem to be not needed to find
a solution. In this context, Nebel et al. [61] identified irrelevant operators and vari-
ables by solving a relaxed problem. These operators and variables are removed from
the planning problem in a preprocessing step. However, this approach is not solu-
tion preserving. Haslum and Jonsson [34] defined an operator as redundant if it can
be simulated with a sequence of other operators. Based on this idea, they proposed
an approach to compute redundant operators and reduced operator sets that is solu-
tion preserving. Bacchus and Ady [4] proposed to avoid action sequences that do
not make sense. For example, a transporter should not load and unload an object
without moving in between if the object should finally be located somewhere else.
However, such action sequences have to be provided manually.

In the area of model checking, a straightforward approach for detecting the rele-
vance of system components (i. e., automata or variables) and its transitions is cone-
of-influence analysis [16]. In this approach, the dependencies of system components
are analyzed starting from the components that occur in the specification of the
property that is subject to model checking. Components that do not transitively de-
pend on the property need not be considered. Moreover, partial order reduction can
be considered as an approach to detect the relevance of transitions [16, 24, 32, 73].
Partial order reduction exploits that, without affecting completeness, independent
transitions often need not be explored in all possible orderings. The different vari-
ants that have been proposed in the literature are based on similar ideas.

In the area of software model checking, Musuvathi and Qadeer [58] proposed an
algorithm for detecting bugs in multithreaded programs which they called iterative
context bounding. The idea is to avoid “jumping” during the state space exploration
by giving preference to transitions that belong to the same thread as much as possi-
ble. We will describe this approach in more detail and compare it to our approaches
in Chapter 4 where a similar idea is exploited.

1.5 Outline

The organization of this thesis is as follows. In Chapter 2, we provide the prelim-
inaries that are needed for this work. In particular, we present our notation and
formally introduce the distance heuristics from the directed model checking litera-
ture that will serve as a basis for our experimental evaluations. We finally introduce
the various benchmark problems that are used in the experiments throughout this
thesis.

The contribution of this thesis is the concept of transition-based directed model
checking, which extends directed model checking by additionally computing pri-

1.5 Outline 9

orities for transitions, rather than only to compute priorities for states. We demon-
strate that transition-based directed model checking can significantly improve the
classical directed model checking approach on large and complex real-world bench-
marks. The different techniques to compute priorities for transitions are presented
in the subsequent chapters.

In Chapter 3, we introduce the concept of useless transitions, where we heuris-
tically identify transitions that are not needed to find an error state of a system. To
compute the property of uselessness, we use the distance heuristic that is also used
for the exploration of the state space. We show that preferably applying non-useless
transitions often improves directed model checking significantly [79]. Furthermore,
we have adapted this concept to the area of AI planning. We demonstrate that use-
less transitions also improve existing planning techniques on a large number of
benchmarks from the international planning competitions [78].

In Chapter 4, we introduce an alternative concept to useless transitions based on
the notion of interference [77]. The motivation for this concept is to give preference
to transitions that “profit” from previously applied transitions. Therefore, we intro-
duce the notion of interference contexts and propose a multi-queue directed model
checking algorithm. Compared to the Boolean property of useless transitions, inter-
ference contexts provide a more fine-grained concept to compute transition prior-
ities. Moreover, the quality of the multi-queue directed model checking algorithm
based on interference contexts is independent of the quality of the applied distance
heuristic. In particular, it is successfully applicable to uninformed search.

With the concepts of useless transitions and interference contexts introduced in
Chapter 3 and Chapter 4, we identify transitions that are expected to be not needed
to find error states. However, although these concepts are very successful in prac-
tice, there is no theoretical guarantee that transitions identified with these concepts
can always be pruned. Therefore, in order to not miss any error trace, we assign
lower priorities to such transitions, but cannot prune them completely.

In Chapter 5, we present a technique for prioritizing transitions based on an ab-
straction principle that we call safe abstraction [76]. In contrast to the concepts of
useless transitions and interference contexts, transitions identified with safe abstrac-
tion can be ignored completely during the exploration of the state space without af-
fecting completeness. We prove that resulting spurious error traces can be efficiently
extended to concrete error traces. As a further result, we present an adaptation of
the causal graph heuristic [35, 36] from AI planning to directed model checking.

We finally present our model checker MCTA [56] in Chapter 6. MCTA is a di-
rected model checking tool for timed automata systems in which we implemented
the techniques presented in this thesis. We briefly introduce timed systems, describe
MCTA’s features, and provide an experimental evaluation of MCTA and UPPAAL,
which is a state-of-the-art model checker for timed automata.

10 1 Introduction

Most of the contributions of this thesis have been published. The relevant pa-
pers are presented below. They are listed in the order as they are described in the
subsequent chapters.

• Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski. Transition-
Based Directed Model Checking, In Proceedings of the 15th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2009), volume 5505 of Lecture Notes in Computer Science, pages 186–
200. Springer-Verlag, 2009.

• Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski. Useless Ac-
tions are Useful, In Proceedings of the 18th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2008), pages 388–395. AAAI Press,
2008.

• Martin Wehrle and Sebastian Kupferschmid. Context-Enhanced Directed Model
Checking, In Proceedings of the 17th International SPIN Workshop on Model
Checking Software (SPIN 2010), volume 6349 of Lecture Notes in Computer
Science, pages 88–105. Springer-Verlag, 2010.

• Martin Wehrle and Malte Helmert. The Causal Graph Revisited for Directed
Model Checking, In Proceedings of the 16th International Symposium on Static
Analysis (SAS 2009), volume 5673 of Lecture Notes in Computer Science, pages
86–101. Springer-Verlag, 2009.

• Sebastian Kupferschmid, Martin Wehrle, Bernhard Nebel, and Andreas Po-
delski. Faster than UPPAAL?, In Proceedings of the 20th International Con-
ference on Computer Aided Verification (CAV 2008), volume 5123 of Lecture
Notes in Computer Science, pages 552–555. Springer-Verlag, 2008.

• Sebastian Kupferschmid and Martin Wehrle. Abstractions and Pattern Databases:
The Quest for Succinctness and Accuracy, In Proceedings of the 17th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2011), volume 6605 of Lecture Notes in Computer Science,
pages 276–290. Springer-Verlag, 2011.

2

Preliminaries

In this chapter, we give the preliminaries that are needed for this work. We introduce
the notation, including our computational model, in Section 2.1. This is followed
by a detailed introduction to directed model checking in Section 2.2. Moreover,
we introduce distance heuristics from the literature in more detail in Section 2.3.
Finally, we describe the benchmarks that are used in our experiments in Section
2.4.

2.1 Notation

Our computational model abstracts away from a concrete piece of software or hard-
ware. In this work, we describe systems in terms of parallel processes. We focus on
a model that is as simple as possible on the one hand, and sufficiently rich to capture
the ideas of our contributions on the other hand. We define a process as a directed
labeled graph consisting of a finite set of locations (or local states) and a finite set
of edges. Edges are annotated with a synchronization label. Additionally, they can
be guarded by integer constraints and can set integer variables to new values. In the
following, let V be a finite set of bounded integer variables. The domain of v ∈ V
is denoted with dom(v). As we only consider bounded integer variables, we have
| dom(v)| <∞ for all v ∈ V , and we will shortly speak of integer variables (instead
of bounded integer variables) throughout this thesis. To formally define processes,
we first need the notion of integer guards and effects.

Definition 2.1 (Integer Guard and Integer Effect).
Let V be a finite set of integer variables. Let v ∈ V be an integer variable,

n ∈ dom(v) be an integer value. An integer constraint over V is a formula of the
form v on n, where on∈ {<,≤,=,≥, >}. An integer guard is a finite conjunction
of integer constraints. An integer assignment over V is an expression of the form
v := n. An integer effect is a finite set of integer assignments.

12 2 Preliminaries

With the notion of integer guards and integer effects, we define processes and
systems in a compact way as follows. LetΣ be a finite set of synchronization labels
containing a special (internal) void label τ ∈ Σ.

Definition 2.2 (Process).
Let V be a finite set of integer variables. A process p is a tuple (L, l, E), where

L is a finite set of locations (or local states), l ∈ L is the initial location, and
E ⊆ L×Grd ×Σ×Eff ×L is a finite set of edges, where Grd is the set of integer
guards over V , and Eff is the set of integer effects over V . The synchronization
label of an edge e is denoted with label(e).

We will write l
g,c,e−−−→ l′ as a shorthand for an edge with source location l, destina-

tion location l′, integer guard g, synchronization label c and integer effect e. When
we want to stress that an edge belongs to process p, we will write p.l

g,c,e−−−→ l′. A
system is the parallel composition of processes that communicate via interleaved or
synchronized edges and global integer variables.

Definition 2.3 (System).
Let p1, . . . , pn be processes with pi = (Li, li, Ei) for 1 ≤ i ≤ n, Li ∩ Lj = ∅

for i 6= j, n ∈ N. A systemM is a tuple (P, V), where P = p1 ‖ . . . ‖ pn is the
parallel composition of p1, . . . , pn, and V is the set of global integer variables with
initial value init(vi) ∈ dom(vi) for all vi ∈ V .

As already outlined, the syntax of processes and systems as defined above is
restricted, but sufficient to capture the ideas of the techniques from this thesis. We
will see that all presented techniques can be extended to a richer class of systems as
well (e. g., supporting linear arithmetic).

A global state of a system is formally defined as a valuation that indicates the
current values of the system components. Therefore, a global state assigns a location
to each process and value to each integer variable.

Definition 2.4 (Global State).
Let M = (P, V) be a system with P = p1 ‖ . . . ‖ pn, pi = (Li, li, Ei) for

1 ≤ i ≤ n. A global state of the system M is a valuation s that assigns each
process pi one of its locations of Li, and each integer variable v ∈ V a value of
dom(v).

The initial global state of a system is given by the valuation that maps the pro-
cesses to their initial locations, and the integer variables to their initial values. We
will shortly write 〈p1 = l1, . . . , pn = ln, v1 = n1, . . . , vm = nm〉 for a state to
indicate that process pi is in location li, and integer variable vj has the value nj .
Analogously to the semantics of the propositional logic, a state s satisfies an in-
teger constraint v on n, denoted with s |= v on n, if and only if s(v) on n for

2.1 Notation 13

on∈ {<,≤,=,≥, >} and n ∈ Z. A state s satisfies a location constraint p = l
for a process p and a location l, denoted with s |= p = l, if and only if s(p) = l.
Furthermore, s satisfies a conjunction of constraints ϕ1 ∧ · · · ∧ ϕn if and only if s
satisfies every constraint ϕi for 1 ≤ i ≤ n.

In the following, we formally define the operational semantics of systems in
terms of transition systems. To simplify notation, we first explicitly introduce the
notion of transitions.

Definition 2.5 (Transition).
Let M = (P, V) be a system with P = p1 ‖ . . . ‖ pn, pi = (Li, li, Ei) for

1 ≤ i ≤ n. A transition t ofM is a set of edges, where either

• t = {e}, where e ∈ Ei for some i ∈ {1, . . . , n}, and label(e) = τ , or
• t = {e1, e2}, where e1 ∈ Ei, e2 ∈ Ej for some i, j ∈ {1, . . . , n}, i 6= j, and

label(e1) = label(e2) 6= τ

The size |t| of a transition t is defined as the number of edges in t. Note that
|t| ≤ 2 for each transition t: |t| = 1 for all internal τ transitions, |t| = 2 for binary
synchronized transitions. The set of all transitions ofM is denoted with T (M).

Analogously to integer guards and integer effects, we define transition guards
and transition effects. Informally speaking, the guard of a transition t is the conjunc-
tion of the integer guards and the location guards of t’s edges, where the location
guard of an edge e is a location constraint indicating that e must be in its source lo-
cation. The effect of transitions is defined correspondingly as the union of all effects
of the edges in t.

Definition 2.6 (Transition Guard and Transition Effect).
Let M = (P, V) be a system with P = p1 ‖ . . . ‖ pn, pi = (Li, li, Ei)

for 1 ≤ i ≤ n. Let t be a transition, and ej = (ljs, g
j
int , c, effint

j , ljd) ∈ t for
1 ≤ j ≤ |t|. The transition guard of t is defined as

guard(t) =

|t|∧
j=1

(gjint ∧ g
j
loc),

where the location guard gjloc for ej ∈ Ei is defined as pi = ljs (indicating that
process pi must be in the source location of ej before applying t). The transition
effect of t is defined as

effect(t) =

|t|⋃
j=1

(eff j
int ∪ eff j

loc),

where the location effect eff j
loc for ej ∈ Ei is defined as {pi := ljd} (indicating that

process pi is in the destination location of ej after applying t).

14 2 Preliminaries

A transition t is applicable in a state s if the guard of t is satisfied by s. In this
case, the successor state is obtained from s by changing the values of the variables
in s according to t’s effect.

Definition 2.7 (Transition Application).
Let M = (P, V) be a system with P = p1 ‖ . . . ‖ pn, pi = (Li, li, Ei)

for 1 ≤ i ≤ n. A transition t ∈ T (M) is applicable in s iff s |= guard(t).
The successor state t[s] of s under the application of t is obtained by setting the
processes and integer variables to locations and values according to the effect of t,
and retaining the others from s.

The operational semantics of a systemM is then defined as the state space in-
duced byM consisting of the set of all global states. A global state s has a successor
state s′ if there is a transition t that is applicable in s and leads to s′.

Definition 2.8 (Operational Semantics).
Let M be a system. The operational semantics [[M]] of M is defined as the

transition system (S, T), where

• S is the set of all global states ofM, and
• T ⊆ S × S, where (s, s′) ∈ T iff there is a transition t ∈ T (M) such that t is

applicable in s, and s′ = t[s].

A trace π = s0, t0, s1, . . . , tn−1, sn is an alternating sequence of states and
transitions such that ti−1 is applicable in si−1, and ti−1[si−1] = si for 1 ≤ i ≤ n.
The length |π| of π is defined as the number of transitions in π, i. e., |π| = n for the
trace given above. A state s′ is reachable from s if there is a trace from s to s′.

As already outlined, in this thesis, we address the problem of detecting error
states in a given system. Error states are defined as states that are reachable from
the initial global state which have an undesirable property. In terms of CTL [28],
finding error states corresponds to proving the formula EFϕ, where ϕ represents
an error formula that describes an undesirable property. This is equivalent to the
falsification of invariants of a system, i. e., to disproving the CTL formula AG¬ϕ.
Traces that end in an error state are called error traces. The error distance d(s) of
a state s is defined as the length of a shortest error trace from s. In this thesis, we
consider error formulas ϕ = ϕ1 ∧ · · · ∧ ϕn that are conjunctions of constraints.
Each constraint ϕi has the form p = l for a process p = (L,E) and a location
l ∈ L (indicating that p is in l) or v = n for an integer variable v and n ∈ dom(v)
(indicating that v has the value n). Overall, a model checking task consists of a
systemM together with an error formula ϕ. Without loss of generality, we assume
that ϕ is consistent, i. e., ϕ 6|= ⊥.

2.2 Directed Model Checking 15

Definition 2.9 (Model Checking Task).
A model checking task is a tuple Θ = (M, ϕ), whereM is a system, and ϕ is

an error formula with ϕ 6|= ⊥. The task is to find an error trace in Θ, i. e., a trace
from the initial global state ofM that ends in a global state satisfying ϕ.

2.2 Directed Model Checking

In this section, we introduce directed model checking in more detail. Directed
model checking is a variant of explicit state model checking that is optimized to-
wards finding error states in concurrent systems efficiently. To efficiently find error
states, the state space exploration is guided by a distance heuristic d#. The distance
heuristic is usually computed automatically based on the declarative description of
the system. In a nutshell, d# is a function that maps global states s to natural num-
bers, which in turn provide an estimate of the error distance d(s) of s. Typically,
this estimate is the length of a corresponding abstract error trace that starts in a
corresponding abstract state s#. More precisely, for a given abstraction principle,
the distance estimates are computed by first abstracting the concrete model check-
ing task Θ = (M, ϕ) to the abstract model checking task Θ# = (M#, ϕ#). The
distance estimate d#(s) for a global state s is then defined as the length of an ab-
stract error trace in Θ# starting in s#, where s# is a corresponding abstract state
to s. For each encountered global state during directed model checking, a priority
value is computed based on d#, where global states with lower priority values are
preferably explored.

The overall behavior of directed model checking is determined by two parame-
ters. The first parameter is the abstraction that is used to compute abstract error dis-
tances. This parameter determines the precision of the distance heuristic d#. The
second parameter is the search algorithm that determines how the priority values
are computed based on d#. In other words, the search algorithm specifically deter-
mines how the distance estimates given by d# are exploited during the state space
exploration. Figure 2.1 shows a basic directed model checking algorithm which
defines the priority values simply as the values given by d#. (Other search algo-
rithms like A∗ compute the priority values differently – we omit a more detailed
description because such algorithms are not relevant for the thesis.) The algorithm
in Figure 2.1 is known as greedy search. Given a model checking task (M, ϕ) and a
distance heuristic d#, the algorithm returns False if there is a state that satisfies the
error condition represented by ϕ; otherwise it returns True. In the former case, an
error trace is generated by back-tracing from the error state (therefore, in a practical
implementation, every state additionally stores information about how it has been
reached).

For the description of the algorithm, we use the following terminology. A state
s is called visited if s has been encountered during the search, but the successor

16 2 Preliminaries

1 function verify(M, ϕ, d#):
2 s0 = initial state ofM
3 open = empty priority queue
4 closed = ∅
5 priority = d#(s0)
6 open.insert(s0, priority)
7 while open 6= ∅ do:
8 s = open.pop-minimum()
9 if s |= ϕ then:

10 return False
11 closed = closed ∪ {s}
12 for each transition t ∈ T (M) with s |= guard(t) do:
13 s′ = t[s]
14 if s′ /∈ closed then:
15 priority = d#(s′)
16 open.insert(s′, priority)
17 return True

Fig. 2.1. A basic directed model checking algorithm.

states of s have not yet been computed. Moreover, a state s is called explored if the
successor states of s have been computed. For the exploration of the state space,
the algorithm maintains a priority queue open which contains states that are visited,
but not yet explored. Through the method open.pop-minimum, a visited state s with
minimum priority value is determined and removed from open. In the following, the
algorithm first checks if s is an error state; if this is the case, an error trace is gener-
ated as described above. If s is not an error state, s is marked as explored by adding
it to the closed set; this ensures that s is not considered again for exploration later.
Finally, the successor states of s that are not already explored are added to open.
Overall, the exploration process described above repeats with a new state from open
with minimum priority value, until an error state is encountered or open becomes
empty. In the latter case, we can conclude that no error state can be reached.

2.3 Abstraction Based Distance Heuristics

In this section, we introduce distance heuristics from the literature that are used as
a basis for our experimental evaluations. These include the distance heuristics dL

and dU based on the graph distance [23, 25] as well as the distance heuristics hL

and hU based on the monotonicity abstraction [52].

Distance Heuristics Based on Graph Distances

In this section, we describe the distance heuristics dL and dU that have been concep-
tually proposed by Edelkamp et al. [23, 25]. For a model checking taskΘ = (M, ϕ)

2.3 Abstraction Based Distance Heuristics 17

with systemM = (P, V) and P = p1 ‖ . . . ‖ pn, both dL and dU are based on the
local graph distances to error locations in each process. More precisely, we define a
location l of pi to be an error location if the error formula ϕ contains the constraint
pi = l as a conjunct. For a global state s, let dist i(s) denote the graph distance
from pi’s current location to pi’s error location in s. For processes pi that do not
contain error locations, the graph distance is defined as zero, i. e., dist i(s) = 0. The
maximum graph distance heuristic dL is defined as

dL(s) = max
i=1, ..., n

dist i(s).

The distance heuristic dU sums these values, therefore

dU (s) =
n∑
i=1

dist i(s).

These distance heuristics are cheap to compute on the one hand, but are rather
coarse approximations of the real error distance on the other hand. Synchronization
behavior and integer variables ofM are ignored completely.

Distance Heuristics Based on the Monotonicity Abstraction

In this section, we describe the distance heuristics hL and hU that have been pro-
posed by Kupferschmid et al. [52]. As already outlined in Section 1.4, they are based
on the monotonicity abstraction that abstracts the semantics of the system by assum-
ing that no negative transition effects occur. Therefore, variables become set-valued,
and once a variable obtained a value, it keeps this value forever. Roughly speaking,
hL and hU compute abstract error traces under this abstraction. The distance esti-
mate is obtained by the length of such abstract error traces. For the following con-
siderations, let Θ = (M, ϕ) be a model checking task with systemM = (P, V)
and error formula ϕ. Let P = p1 ‖ . . . ‖ pn and V = {v1, . . . , vm}.

The semantics of the monotonicity abstraction is defined as follows. An abstract
state s# is a valuation of the processes and variables that assigns each process
pi = (Li, li, Ei) of P a subset L′i ⊆ Li of its location set, and each integer variable
vj ∈ V a subset V ′j ⊆ dom(vj) of its domain. A transition t ∈ T (M) is applicable
in the abstract state s# = 〈p1 = L′1, . . . , pn = L′n, v1 = V ′1 , . . . , vm = V ′m〉 if
there are values l′1 ∈ L′1, . . . , l

′
n ∈ L′n and n′1 ∈ V ′1 , . . . , n

′
m ∈ V ′m such that t

is applicable in the state s = 〈p1 = l′1, . . . , pn = l′n, v1 = n′1, . . . , vm = n′m〉,
i. e., if s |= guard(t). The successor state t[s#] is defined as the abstract state
obtained from s# where the effects of t are unified with s# accordingly: for location
assignments pi := l, we have L′i ∪ {l} in t[s#]. For integer assignments vj := n,
we have vj ∪ {n} in t[s#].

18 2 Preliminaries

Using this semantics, the hL distance heuristic is computed as follows. Let
s = 〈p1 = l1, . . . , pn = ln, v1 = n1, . . . , vm = nm〉 be a global state of M.
To compute hL(s), s is first mapped to the corresponding initial abstract state
s#0 = 〈p1 = {l1}, . . . , pn = {ln}, v1 = {n1}, . . . , vn = {nm}〉 where the vari-
ables are set-valued and initially contain the values determined by s. The distance
estimate hL(s) is defined as the minimum number of parallel transition applica-
tions until an abstract state is reached such that the error formula ϕ is satisfied, or
a fixed-point is reached where ϕ is not satisfied. More precisely, in every iteration
i, transitions that are applicable in the current abstract state s#i are first identified.
The abstract successor state s#i+1 is then obtained by applying all of these transitions
in s#i (note that the order does not matter as transition application corresponds to
unions of sets). The algorithm terminates either if an abstract state has been reached
that satisfies the error formula, or if a fixed-point is reached. In the former case,
the number i of iterations is returned as distance estimation. In the latter case, no
abstract error state is reachable. As the monotonicity abstraction yields an over-
approximation of the original semantics of the system, no concrete error state is
reachable from s either, and therefore, infinity is returned. We finally remark that
the algorithm is guaranteed to terminate as we are dealing with finite systems.

The hU distance heuristic is also based on the monotonicity abstraction and per-
forms the same fixed-point computation as hL. In addition, it extracts an abstract
error trace from the sequence of abstract states s#0 , . . . , s

#
n obtained during the com-

putation of hL. Essentially, for each abstract state s#i , a subset T ′ of the applicable
transitions is computed such that applying the transitions from T ′ still yields an
abstract error trace π#. The distance estimate hU (s) for a concrete state s is de-
fined as the length of π#. For a more detailed description, we refer the reader to the
literature [53]. We remark that hU is not admissible, i. e., the abstract error traces
that are found by hU may be longer than the shortest ones. Therefore, we are not
guaranteed to find shortest possible error traces with hU and A∗. However, although
not admissible, we also remark that the additional computation compared to hL of-
ten yields a more precise distance estimation than hL. In a greedy search setting
where admissibility is not required, this often leads to a better overall performance
of directed model checking in terms of scalability and runtime.

2.4 Benchmark Set

In this section, we briefly introduce the benchmarks that are used in this thesis.
Most of them stem from the AVACS1 benchmark suite. The descriptions of the
1 Automatic Verification and Analysis of Complex Systems (AVACS) is a transregional collaborative

research center funded by the German Research Foundation (DFG), see the website http://
www.avacs.org for more information.

2.4 Benchmark Set 19

benchmark problems mostly refer to the papers where they have been originally
described [20, 52] or to the website of AVACS. In addition to the computational
model as introduced in Section 2.1, some of them feature clock variables and rep-
resent timed automata [3]. Edges can be additionally guarded by clock constraints
and reset clock variables as effects. Although the techniques introduced in this the-
sis are basically developed for untimed systems, they can be adapted to systems of
timed automata as well. We will describe these adaptations in the corresponding
chapters where our contributions are presented.

Single-Tracked-Line-Segment case study

The Single-Tracked-Line-Segment benchmarks come from a case study from an
industrial project partner of the UniForM-project [49]. It models a distributed real-
time controller for a segment of tracks where trams share a piece of track. The
overall system is modeled as PLC automata [19, 49] and translated to timed au-
tomata with the tool Moby/RT [62]. The problem instances of this case study are
translated abstractions of the overall system of increasing size and complexity. For
the evaluation of the techniques presented in this thesis, we chose the property that
never both directions are given permission to enter the shared segment simultane-
ously. However, a subtle error has been inserted by manipulating a delay so that the
asynchronous communication between these automata is faulty.

Mutual-Exclusion case study

This case study models a real-time protocol that is supposed to ensure mutual exclu-
sion in a parallel system of timed automata. The processes of the system communi-
cate in an asynchronous way. The protocol is described in full detail by Dierks [19].
As in the case study on the Single-Tracked-Line-Segment, a subtle timing error has
been inserted.

Arbiter-Tree case study

The arbiters case study [71] establishes mutual exclusion between several client
processes. The benchmarks contain arbiter trees of increasing height, with an expo-
nentially growing number of processes. Client processes are situated at the leaves
of the tree. An error has been inserted that allows several client processes to access
a resource simultaneously.

Towers-Of-Hanoi case study

These benchmarks model the Towers of Hanoi problem for a varying number of
disks. The index of the examples gives the number of involved disks. Initially, all
n disks are on the first peg. The goal is to move all disks to the second peg, where
only one disk can be moved at a time point. Furthermore, we have the constraint
that never a larger disk is on top of a smaller one.

20 2 Preliminaries

Fischer Protocol

As a further set of benchmarks, we use Fischer protocol examples which again is
a mutual exclusion protocol [57]. The error condition is that at least two of the
processes of the system are simultaneously in a location that represents the criti-
cal section. An error has been inserted by weakening one of the conditions in the
processes.

Planning benchmarks

We finally remark that one of the techniques presented in this thesis has also been
successfully introduced in the area of AI planning, where we have evaluated it on
planning problems from the international planning competitions. Such problems are
often motivated by real world examples. As they are needed only once in this thesis,
we will come back to these benchmarks in the corresponding chapter.

3

Useless Transitions

In this chapter, we present a concept for prioritizing transitions that we call “useless
transitions”. The chapter is based on joint work with Kupferschmid and Podelski
[78, 79]. It is organized as follows. In the next section, we motivate the general prob-
lem in more detail and show the potential of prioritizing transitions. Afterwards, we
formally introduce our concept and present an extended directed model checking
algorithm in Section 3.2. After a discussion about strengths and weaknesses in Sec-
tion 3.3, we empirically evaluate our concept in Section 3.4. We finally discuss
related work in Section 3.5 and conclude the chapter in Section 3.6.

3.1 Motivation

As outlined in the introduction of this thesis, directed model checking has proved to
be able to substantially outperform uninformed search methods such as depth-first
search when the aim is to find global error states in concurrent systems. However,
as we have also already discussed in the last chapter, the quality of directed model
checking crucially depends on the applied distance heuristic. If the distance esti-
mates are not informed enough, the overall search process may degenerate even to
uninformed search. In the following, we provide a motivating example to show that
additionally prioritizing transitions, rather than only prioritizing states, can signifi-
cantly improve classical directed model checking.

Example 3.1. The example model checking task depicted in Figure 3.1 consists of
a systemM with n+1 parallel processes p0, . . . , pn. The initial global state of the
system is given by the state 〈p0 = l0, . . . , pn = l0〉 where every process is in its
initial location. The global error state is given by the state 〈p0 = l1, . . . , pn = l1〉
where every process is in its error location (indicated with a double circle). The
transitions of M are interleaving transitions with no binary synchronization, i. e.,
label(t) = τ for all t ∈ T (M). For the sake of readability, we omit these labels in
Figure 3.1.

22 3 Useless Transitions

Suppose that we apply directed model checking to check if this error state is
reachable inM. Further suppose that we therefore use the maximum graph distance
heuristic as proposed by Edelkamp et al. [23, 25]. Recall that this function is based
on the local distance of each single process pi. For the global state s, let dist i(s) de-
note the graph distance from pi’s current location to pi’s error location in s. Then the
maximum graph distance heuristic is defined as dL(s) = maxi=0, ..., n+1 dist i(s).

l0 l0 l0

l1l1l1

. . .

Fig. 3.1. An example system with n+ 1 processes

For this problem, it turns out that the maximum graph distance is a rather un-
informed distance heuristic. In most cases, it cannot distinguish global states that
are nearer to the global error state from others. If at least one process is not yet in
its error location l1 in a global state s, then the estimated distance value of s is 1.
We may characterize the state space topology induced by this distance heuristic as
follows. There is one single plateau, because for all of the 2n+1 reachable global
states but for the error state the abstract distance is 1. This effectively means that
directed model checking with the maximum graph distance heuristic dL completely
degenerates to uninformed search in this case. Generally, as distance heuristics only
estimate the distance to error states, there are systems where similar situations arise
for every distance heuristic.

In this example, it is trivial to see that each transition where error locations are
left should be avoided as much as possible during the exploration of the state space.
Intuitively, in every global state, applying such transitions is useless to find the error
state. Without steps corresponding to such transitions, the exploration of the state
space stops after n + 1 steps and returns a shortest possible error trace. Although
it is easy to see here which transitions should be less preferred in a given system
state, it should also be obvious that this is no longer trivial to see when problems
become larger and more complex. In this chapter, we address the question how to
automatically identify such transitions in general.

3.2 Useless Transitions

In this section, we present the central concept of this chapter. We start by defining
the notion of useless transitions in Section 3.2.1. This definition precisely captures

3.2 Useless Transitions 23

the intuition, but is computationally hard. Therefore, we present the notion of rela-
tively useless transitions as an approximation in Section 3.2.2. Finally, we propose
an extended directed model checking algorithm based on relatively useless transi-
tions in Section 3.2.3.

3.2.1 Useless Transitions

Intuitively, a transition is useless if it is not needed to reach a nearest error state on
a shortest trace. This is formally stated in the next definition.

Definition 3.2 (Useless Transition).
Let (M, ϕ) be a model checking task with systemM and transition set T (M).

A transition t ∈ T (M) is useless in a global state s iff no shortest trace from s to
a nearest error state starts with t.

We use d(s) to denote the distance of a state s to a nearest error state. More
precisely, d(s) = n if there is a trace π from s to an error state with |π| = n and
there is no trace π′ from s to an error state with |π′| < n. When we want to stress
that d is a function also on the systemM, we will write d(M, s).

By Definition 3.2, a transition t is useless in a global state s if and only if the real
error distance d does not decrease, i. e., a transition from s to s′ is useless iff d(s) ≤
d(s′). To see this, observe that d(s) ≤ d(s′) + 1 for every state s, every transition
t that is applicable in s and successor state s′ = t[s]. If a shortest error trace starts
from swith t, then d(s) = d(s′)+1. Otherwise, the error distance does not decrease
and therefore d(s) < d(s′) + 1. Since the distance values are all integers, this is
equivalent to d(s) ≤ d(s′). In the following, we will use the inequality d(s) ≤ d(s′)
in connection with the idea of removing transitions to derive a sufficient criterion for
uselessness of transitions. Therefore, we will define the notion of reduced systems.
Intuitively, the reduced system with respect to a transition t is defined as the system
that is obtained by removing the edges contained in t (recall that a transition of
a system either consists of one interleaving edge of a process, or of two binary
synchronized edges of two different processes).

Definition 3.3 (Reduced System).
Let M = (P, V) be a system with P = p1 ‖ . . . ‖ pn, pi = (Li, li, Ei) for

1 ≤ i ≤ n. Let t ∈ T (M) be a transition ofM. The reduced system ofM with
respect to t is defined as the system

Mt = (p′1 ‖ . . . ‖ p′n, V),

where p′i = (Li, li, Ei \ t).

24 3 Useless Transitions

Note that, according to the definition of t, at most two processes are affected to
obtain a reduced system with respect to t. However, in the operational semantics
[[M]] = (S, T) of M, t generally corresponds to several t1, . . . , tn ∈ T . This is
illustrated in the following example.

Example 3.4. Consider the system M in Figure 3.2 that consists of the two pro-
cesses p1 and p2 and the corresponding induced transition system [[M]] = (S, T)
that defines the semantics of M. The dashed transition t = {p1.l0

τ−→ l∗0} corre-
sponds to t1, t2 ∈ T , where t1 = (〈l0, l1〉, 〈l∗0, l1〉) and t2 = (〈l0, l∗1〉, 〈l∗0, l∗1〉). The
reduced system Mt is defined as the system where the edge l0

τ−→ l∗0 is removed
from p1, which obviously corresponds to removing t1 and t2 from T .

l0

l∗0

l1

l∗1

ττ a a

p1 p2 [[M]]

l0, l1

l∗0 , l1

l0, l
∗
1

l∗0 , l
∗
1

Fig. 3.2. Example system and corresponding operational semantics

Moreover, the (binary synchronized) transition t′ = {p1.l∗0
a−→ l0, p2.l

∗
1

a−→ l1}
corresponds to t3 = (〈l∗0, l∗1〉, 〈l0, l1〉) in T . The reduced system Mt′ is obtained
by removing the edges l0

a−→ l∗0 from p1 and l1
a−→ l∗1 from p2, which obviously

corresponds to removing t3 from T .

Based on the definition of reduced systems, we will provide a sufficient criterion
to check transitions for uselessness. The criterion is based on the following idea.
Assume there is a shortest error trace π from a state s such that a transition t does
not occur in π. If π is not longer than the error traces from the successor state t[s]
obtained by applying t in s, then no shortest error trace from s starts with t. This is
stated in the following proposition.

Proposition 3.5. Let (M, ϕ) be a model checking task, s be a global state inM,
and t ∈ T (M) be a transition that is applicable in s. If d(Mt, s) ≤ d(M, t[s]),
then t is useless in s.

Proof. If d(Mt, s) ≤ d(M, t[s]), then d(M, s) ≤ d(M, t[s]) because d(M, s) ≤
d(Mt, s) (the error distance cannot decrease in reduced systems because removing
transitions induces underapproximations). As d(M, s) ≤ d(M, t[s]) iff t is useless
in s, the claim follows directly. �

3.2 Useless Transitions 25

The criterion given by Proposition 3.5 can be interpreted as follows. A transition
t is useless in a state s if the error state is still reachable from s on the same shortest
trace in the underapproximation that is obtained by removing t from the system.
Note that the back direction of Proposition 3.5 does not hold. To see this, consider
the example model checking task (M, ϕ) withM = (P, V), P = p, V = {a} and
error formula ϕ that is defined as p = lE . The model checking task is depicted in
Figure 3.3. The transitions ofM are interleaving transitions, i. e., label(t) = τ for
all t ∈ T (M). For the sake of readability, these labels are omitted in Figure 3.3.

l0

l1

l2

lE

l3

l6

l4

l5

a := 1 a > 0

Fig. 3.3. Example system where the back direction of Proposition 3.5 does not hold

The model checking task consists of a systemM with one process p with error
location lE and an integer variable a. The initial global state s0 of M is defined
as 〈p = l0, a = 0〉. There are several traces that end in the error location lE . The
shortest error trace is obtained by first setting a to 1 by applying the transition that
leads to l1, then going back to l0 and taking the “shortcut” from l2 to lE (note that
this is possible because the guard a > 0 is satisfied in this case). The resulting er-
ror trace has length 4. A longer error trace leads from l0 over locations l2, . . . , l6.
In particular, we observe that the transition t = {l0 −→ l2} is useless in the ini-
tial state because no shortest error trace in s0 starts with t. Nevertheless, we have
d(Mt, s0) > d(M, t[s0]). The error distance d(Mt, s0) of the initial state of the
reduced system with respect to t is infinity because t is still needed in the future.
Moreover, the error distance of the successor state is finite, as it is still possible to
reach the error location.

We remark that the condition for a transition to be useless in a state s given by
Proposition 3.5 has some intricacies. To illustrate this, consider the two example
model checking tasks in Figure 3.4. Both example tasks consist of a system M
with one process p, the initial state s0 = 〈p = l0〉, and the error condition ϕ which
is defined as p = l3 (i. e., error states are those states where p is in its double
circled location l3). The transitions of these systems are interleaving transitions,
i. e., label(t) = τ for all t ∈ T (M). For the sake of readability, these labels are
omitted in Figure 3.4. We observe that, for a transition t to be useless in a state s,
it is not enough to require that d(Mt, s) ≤ d(M, s) holds instead of d(Mt, s) ≤
d(M, t[s]). To see this, consider the left example system in Figure 3.4. In this

26 3 Useless Transitions

process, the task is to reach the error location l3 from l0 via l1 or l2. The transitions
{l0 −→ l1} and {l0 −→ l2} would both be wrongly classified as useless in the initial
state if we required d(Mt, s0) ≤ d(M, s0) for a transition t to be useless in s0.

l0

l1 l2

l3

l0

l1

l2

l3

Fig. 3.4. Example model checking tasks

Furthermore, it does not suffice to only require that d(Mt, s) = d(M, t[s])
holds instead of d(Mt, s) ≤ d(M, t[s]). To illustrate this, consider the right ex-
ample system in Figure 3.4. In this systemM, the transition t = {l0 −→ l1} would
not be classified as useless in the initial state s0 = 〈p = l0〉 because d(Mt, s0) = 1,
but d(M, t[s0]) = 2. However, t is useless in s0 because it is not part of a shortest
error trace from l0 to l3.

Finally, let us have a look at the complexity of the computation if a given tran-
sition t is useless in a global state s. We observe that deciding if t is useless in s is
computationally hard.

Proposition 3.6. LetM be a system with the property that an error trace with poly-
nomially bounded length in the size ofM exists. Let s be a global state inM and
t ∈ T (M) be a transition inM that is applicable in s. If P 6= NP , then deciding
if t is useless in s cannot be done in polynomial time in the size ofM.

Proof. Assume the opposite, i. e., assume that deciding if t is useless in s can be
done in polynomial time. The error trace existence problem in systems with polyno-
mially bounded error trace length is NP-complete: NP hardness is shown by reduc-
tion from the satisfiability problem of classical propositional logic to the error trace
existence problem; for the membership in NP, observe that the validity of polyno-
mially bounded error traces can be checked in polynomial time (for more details,
see, e. g., [68]). However, if we could decide in polynomial time if a transition is
useless in a state, this would lead to a directed model checking algorithm that finds
a shortest error trace inM in polynomial time: in every global state, decide in poly-
nomial time which transition is not useless, and follow these transitions. This would
contradict the assumption that P 6= NP . �

3.2 Useless Transitions 27

3.2.2 Relatively Useless Transitions: The Practical Counterpart

We have observed that the definition of useless transitions is computationally too
hard to be efficiently applied in practice. A direct way to approximate the test for
uselessness motivated by Proposition 3.5 is to use a given distance heuristic d#

instead of d. This is rational because d# is designed for exactly the reason of ap-
proximating d. When we want to stress that d# is a function also on the systemM,
we will write d#(M, s).

Definition 3.7 (Relatively Useless Transition).
Let (M, ϕ) be a model checking task, s be a global state inM, and t ∈ T (M)

be an applicable transition in s. Let d# be a distance heuristic. Then t is relatively
useless for d# in s if d#(Mt, s) ≤ d#(M, t[s]).

Note that this is exactly the criterion from Proposition 3.5 where the real error
distance d has been replaced by the estimated error distance d#. Obviously, the
quality of this approximation strongly depends on d#’s precision. On the one hand,
the very uninformed distance heuristic that constantly returns zero recognizes ev-
ery transition as relatively useless in every global state, and no further information
gain is obtained. On the other hand, the more sophisticated the distance estimations
provided by d#, the more precise will be the approximation with relatively useless
transitions. We will come back to this point in the discussion and experimental eval-
uation section. Intuitively, taking a relatively useless transition t does not seem to
guide the exploration of the state space towards an error state as the stricter distance
estimate inMt does not increase.

One would expect that transitions should not be relatively useless if they lead
to global states that are estimated to be nearer to an error state. Indeed, under the
assumption that a distance heuristic d# never decreases its distance estimate in
reduced systems, i. e., d#(M, s) ≤ d#(Mt, s) for all systemsM, transitions t ∈
T (M) and global states s in M, transitions leading to global states with better
distance estimates are never relatively useless in any systemM. This is stated more
formally in the following proposition.

Proposition 3.8. Let (M, ϕ) be a model checking task with systemM and transi-
tion set T (M). Let d# be a distance heuristic such that d#(M, s) ≤ d#(Mt, s)
for all global states s and all transitions t ∈ T (M). Let s be a global state ofM
and t ∈ T (M) be a transition that is applicable in s. If d#(t[s]) < d#(s), then t
is not relatively useless for d# in s.

Proof. Assume that t is relatively useless for d# in s, i. e., assume that d#(Mt, s) ≤
d#(M, t[s]). By assumption, the distance estimate with d# does not decrease
in the reduced system Mt, i. e., d#(M, s) ≤ d#(Mt, s). Therefore, we have

28 3 Useless Transitions

d#(M, s) ≤ d#(M, t[s]), showing that the distance estimate does not decrease
when the relatively useless transition t is applied in s. �

This result is rational and shows that our definition of relatively useless tran-
sitions makes sense. Roughly speaking, it shows that under the assumptions of
Proposition 3.8, we do not need the notion of relatively useless transitions in a state
s if there is a better successor state s′ according to d#. However, if this is not the
case, e. g., in situations during the search where every successor state has the same
estimated distance value than the current state, the notion of relatively useless tran-
sitions can serve as an additional source of information and therefore improve the
search behavior. We will show in the next section how to exploit this information
during the exploration of the state space.

3.2.3 Directed Model Checking with Relatively Useless Transitions

In this section, we put the pieces together. So far, we have presented the notion of
relatively useless transitions to identify transitions that should be less preferred dur-
ing the exploration of the state space. A direct way to integrate this information to
directed model checking is to additionally “penalize” states that result from apply-
ing such a transition. This is rational because avoiding transitions that are not likely
to appear in shortest error traces is likely to improve the detection of short error
traces. States that are reached by applying a relatively useless transition should be
less preferred when exploring the state space.

As argued in the beginning of this thesis, there are two choices to be made when
the directed model checking approach is applied, namely choosing the underlying
abstraction for the distance heuristics, and choosing the algorithm for the explo-
ration of the state space. Here, we assume that a distance heuristic d# is already
given, and d# is additionally used to determine relatively useless transitions. For
the second point, we propose an extension of the basic directed model checking
algorithm as given in Chapter 2 in Figure 2.1 on page 16.

Taking into account the considerations above, we extend the basic algorithm
as follows. In addition to the standard open queue, we use a second open queue
deferred which is used to maintain states that are reached by a relatively useless
transition. In this sense, the deferred queue maintains relatively “useless states” that
seem to be not needed according to our definition of relatively useless transitions.
This deferred queue is only accessed if the standard priority queue is empty. By
doing so, completeness of the algorithm is preserved, but there is a strong preference
to explore states that are reached by a non-useless transition. The algorithm is given
in Figure 3.5.

The most important extension compared to the basic directed model checking
algorithm is shown in line 20, where every applied transition t is checked if it is

3.3 Discussion: Where does it work, where not? 29

1 function UT-search(M, ϕ, d#):
2 s0 = initial state ofM
3 open = empty priority queue
4 deferred = empty priority queue
5 closed = ∅
6 priority = d#(s0)
7 open.insert(s0, priority)
8 while open ∪ deferred 6= ∅ do:
9 if open 6= ∅ then:

10 s = open.pop-minimum()
11 else:
12 s = deferred.pop-minimum()
13 if s |= ϕ then:
14 return False
15 closed = closed ∪ {s}
16 for each transition t ∈ T (M) with s |= guard(t) do:
17 s′ = t[s]
18 if s′ 6∈ closed then:
19 priority = d#(s′)
20 if t is relatively useless for d# in s then:
21 deferred.insert(s′, priority)
22 else:
23 open.insert(s′, priority)
24 return True

Fig. 3.5. The extended directed model checking algorithm based on useless transitions

relatively useless in the current state s for the distance heuristic that is also used
for the search. If this is the case, the corresponding successor state s′ is pushed into
the deferred queue, which is only accessed if open is empty. If t is not relatively
useless in s, then s′ is pushed into the open queue as before. As already outlined
above, this leads to a strong preference to explore states that have been reached by
promising, i. e., non-useless transitions. Obviously, the number of explored deferred
states indicates the precision of our approach: the higher the number of explored
deferred states, the higher the number of misclassifications, i. e., the number of
wrongly deferred states. We will come back to this point in the experimental section.
Finally, we remark that if d# can be computed automatically (which is the case
for most of the recently proposed distance heuristics), our algorithm is also fully
automatic, and no further user input is required.

3.3 Discussion: Where does it work, where not?

So far, we have motivated and introduced the notion of uselessness for transitions,
and proposed a criterion to approximate this notion with a distance heuristic d#.
However, the quality of the approximation is dependent on the accuracy of d#. In

30 3 Useless Transitions

this section, we discuss strengths and weaknesses of relatively useless transitions.
In particular, an important question that arises in the context of relatively useless
transitions is the question of the practical usability. To identify a class of distance
heuristics for which our technique is suited best, recall that distance heuristics as
considered in the literature are either computed on-the-fly (i. e., an abstracted model
checking task is solved in every global state) or in a preprocessing step prior to di-
rected model checking. Distance heuristics that belong to the latter class are mainly
organized as a lookup table with the property that heuristic values are obtained with
a simple table lookup. However, the computation of this table often needs consid-
erable time.

Relatively useless transitions seem to be best suited for distance heuristics that
are computed on-the-fly because the time overhead to compute this information is
comparatively low. Contrarily, distance heuristics from the second class are less
suited because for every reduced system, an additional lookup table has to be com-
puted (recall that for the computation of the useless-values, the system is modified
and the distance value is recomputed on this modified system). Although relatively
useless transitions could be computed for distance heuristics belonging to that class
as well, it is not obvious how to do this efficiently. This will be an interesting and
important topic for future research. As we will see in our empirical evaluation, for
distance heuristics that are computed on-the-fly, the overall model checking perfor-
mance can often be significantly improved when relatively useless transitions are
identified.

Moreover, the performance of our approach strongly depends on the quality of
the distance heuristic d# that is used to guide the search and to determine relatively
useless transitions. The higher the precision of d#, the more transitions are evalu-
ated correctly, and hence, the better the overall performance as many unnecessary
states need not be considered. In small examples, rather coarse distance heuristics
like the graph distance could already lead to improvements. Pointing back to our
motivating example in Figure 3.1, we recognize that all transitions corresponding
to edges from down to up are relatively useless for the maximum graph distance
heuristic, whereas all other transitions are not. To see this, consider a small instance
of the system with four parallel processes p0, . . . , p3. Suppose the current global
state under consideration is s = 〈p0 = l1, p1 = l1, p2 = l0, p3 = l0〉. Then the
transition t = {p0.l1 −→ l0} that returns to the initial location in p0 is relatively use-
less for dL in s, because dL(Mt, s) = 1, and also dL(M, t[s]) = 1, and therefore
dL(Mt, s) ≤ dL(M, t[s]). This prevents our algorithm to apply such “up-going”
transitions, and the global state t[s] is not explored. Moreover, all other (“down-
going”) transitions t are not relatively useless in all global states s where they are
applicable, as dL(Mt, s) = ∞ in this case (the local graph distance is infinity as
no trace to the error location exists anymore when t is removed from the system).
Overall, in this example, applying our extended algorithm leads to a shortest pos-

3.4 Evaluation 31

sible error trace with a dramatically smaller number of explored states than with
plain greedy search. To get an impression of the state space reduction, Figure 3.6
shows the explored state spaces with the basic directed model checking algorithm
compared to our extended algorithm based on relatively useless transitions for the
example system with n = 8.

0

1 2

3 4

56

7

8

9

10 11 12

13

14

15

16

17

18 19 20

21 22

23

24

2526

2728

2930

31

3233

34 35

36

37

38 39 40 41

42 43

44

45 46 47

48

49

50

51 52 53

54

55

56 57

58 59

60

61

62

6364 65 6667

6869

7071

72

73 74

75 76

77

78

79 808182

83 84

85

86

87

88

89

90 91

92

93

94

9596 97

98

99

100 101

102

103

104

105106

107

108

109

110111

112113

114

115 116

117

118 119

120 121

122

123

124 125 126

127 128 129

130 131

132

133

134 135 136

137 138

139

140 141

142

143

144145 146

147

148

149 150 151152

153 154155

156

157

158 159160161

162 163 164 165166

167

168 169

170

171 172173

174

175

176177

178

179

180181

182183

184 185 186 187 188189190

191 192193 194 195

0

1 2 3 4 5 6 7

8

9

1011 12 13 14 15

16

17

18 19 20 21 22

23

24

25 26 2728

29

3031

32 33 34

35

36 3738

39 40

41

42 4344 45

46

47

48 4950 51 52

5354 55 5657 58 59

60 6162 63 64 65 66

Fig. 3.6. State space reduction in the motivating example for n = 8

Overall, we observe that even a rather coarse distance heuristic based on the
maximum graph distance can benefit significantly from our technique. In this sim-
ple example, useless transitions are perfectly identified with relatively useless tran-
sitions and the dL distance heuristic. Hence, the overall search process turns from
unguided search (recall that for every global state s except for the error state,
dL(s) = 1) to perfect search, and a shortest possible error trace is found. We will
see that for larger and more complex systems, more sophisticated distance heuris-
tics are needed to benefit from our technique. We will come back to this point in the
next section.

3.4 Evaluation

In this section, we empirically evaluate our technique based on relatively useless
transitions. First, we describe the experimental setup in Section 3.4.1. In Section
3.4.2, we evaluate our extended directed model checking algorithm on benchmarks

32 3 Useless Transitions

as described in Section 2.4. These include the industrial case studies “Single-tracked
line segment” (S1, . . . , S9) and “Mutual Exclusion” (M1, . . . ,M4 andN1, . . . , N4),
the Fischer protocols (F5, F10, F15) as well as the arbiters case study (A2, . . . , A6).
Finally, our technique has also been investigated in the area of AI planning. We
describe the adaptation of useless transitions to that area and present experimental
results on domains of international planning competitions in Section 3.4.3.

3.4.1 Experimental Setup

We have implemented our extended directed model checking algorithm in our
model checker MCTA [56] and evaluated it on a machine with AMD Opteron
2.3 GHz system with 4 GByte of memory. We set a timeout to 30 minutes. To get
a conservative approximation of useless transitions, we have implemented our con-
cept in a stronger way than described in the last section. When a reduced system
with respect to some transition t is computed, we additionally remove edges that
read an integer variable that is set by t, and edges that have the same destination
location as some edge in t. In addition to the computational model as considered in
this thesis, some of our benchmarks also feature clock variables and actually rep-
resent timed automata [3]. We adapted our concept to that class of systems in an
straight forward way by treating the clock variables in the same way as we did with
integer variables.

3.4.2 Experimental Results and Discussion

We have already discussed that the precision of relatively useless transitions de-
pends on the precision of the underlying distance heuristic. For the evaluation, we
apply our technique to the hL distance heuristic [52] which is quite accurate. Fur-
thermore, we apply relatively useless transitions to the more informed hU distance
heuristic [52], and also to the rather coarse dU distance heuristic based on the plain
graph distance [23, 25]. Recall that a more detailed description of these distance
heuristics is given in Section 2.3 on page 16. We start by giving the results for the
hL distance heuristic in Table 3.1.

We report the number of explored states, the runtime in seconds, and the length
of the found error traces. Table 3.1 additionally contains information about the
benchmark models. The results are impressive. We observe that in almost all prob-
lem instances, the number of explored states could be decreased significantly, often
by several orders of magnitude. This also impressively pays off in overall runtime
in the S, F and A case studies, where the runtime could sometimes be decreased
from hundreds of seconds to a fraction of a second. In particular, our extended
directed model checking algorithm could also solve the large problems where clas-
sical directed model checking without search enhancements failed. Considering the

3.4 Evaluation 33

Table 3.1. Experimental results for hL with greedy search (hL) and for the new algorithm UT-search
(hL-UT). Abbreviations: #a: number of parallel automata, #v: number of variables, #d: number of
explored deferred states over total number of explored states, dashes indicate out of memory (>
4 GByte) or out of time (> 30 min). Best results are shown in bold fonts.

explored states runtime in s trace length #d
Instance #a #v hL hL-UT hL hL-UT hL hL-UT

S1 5 15 1704 1537 0.0 0.1 84 76 0.000
S2 6 17 3526 1229 0.1 0.1 172 76 0.000
S3 6 18 4182 1061 0.1 0.1 162 76 0.000
S4 7 20 29167 879 0.7 0.2 378 77 0.000
S5 8 22 215525 1116 5.2 0.3 1424 78 0.000
S6 9 24 1.7e+6 1116 37.4 0.4 5041 78 0.000
S7 10 26 1.6e+7 1114 332.5 0.6 15085 78 0.000
S8 10 27 7.1e+6 595 129.3 0.3 5435 76 0.000
S9 10 28 9.6e+6 2771 201.1 1.3 5187 94 0.000
M1 3 15 4581 4256 0.1 0.2 457 97 0.000
M2 4 17 15832 7497 0.3 0.5 1124 104 0.000
M3 4 17 7655 10733 0.1 0.7 748 91 0.000
M4 5 19 71033 16287 1.6 1.7 3381 98 0.000
N1 3 18 50869 5689 39.0 0.3 26053 108 0.000
N2 4 20 30476 22763 1.2 1.5 1679 259 0.000
N3 4 20 11576 35468 0.4 2.7 799 204 0.000
N4 5 22 100336 142946 5.3 14.9 2455 792 0.000
F5 5 6 179 7 0.0 0.0 12 6 0.000
F10 10 11 86378 7 3.3 0.0 22 6 0.000
F15 15 16 – 7 – 0.0 – 6 0.000
A2 8 0 36 15 0.0 0.0 21 12 0.000
A3 16 0 206 48 0.0 0.0 24 17 0.000
A4 32 0 76811 149 8.4 0.2 42 23 0.000
A5 64 0 263346 34 60.0 0.2 112 27 0.000
A6 128 0 – 39 – 1.2 – 32 0.000

length of the encountered error traces, we observe that much shorter traces are found
when relatively useless transitions are taken into account. Finally, we observe that
the number of explored deferred states is zero in all the problems. This effectively
means that useless transitions are approximated very precisely with hL. Overall,
we conclude that our concept is very powerful for an informed distance heuristic
like hL, often leading to better performance and shorter error traces compared to
plain directed model checking.

Considering the results for the hU distance heuristic with classical directed
model checking in Table 3.2, we first observe that hU is a more informed distance
heuristic than hL. In most of the problem instances, less states are explored than
with hL, and shorter error traces are found. In addition, one more problem could be
solved. This is also reflected when our extended directed model checking algorithm
is applied with hU . Compared to our results for relatively useless transitions for

34 3 Useless Transitions

hL, the number of explored states could mostly further be decreased, which also
pays off in better overall runtime in almost all the problems. Still, no deferred states
are explored at all, which shows that useless transitions are approximated very pre-
cisely with hU . Overall, compared to classical directed model checking with hU ,
this results in a strong improvement of the search guidance and very short error
traces.

Table 3.2. Experimental results for hU with greedy search (hU) and with greedy search plus use-
less transitions (hU -UT). Abbreviations: #a: number of parallel automata, #v: number of variables,
#d: number of explored deferred states over total number of explored states, dashes indicate out of
memory (> 4 GByte) or out of time (> 30 min). Best results are shown in bold fonts.

explored states runtime in s trace length #d
Instance #a #v hU hU -UT hU hU -UT hU hU -UT

S1 5 15 429 243 0.0 0.0 67 54 0.000
S2 6 17 828 212 0.0 0.0 83 54 0.000
S3 6 18 1033 198 0.0 0.0 79 54 0.000
S4 7 20 12938 174 0.5 0.1 112 55 0.000
S5 8 22 65506 147 2.5 0.1 176 61 0.000
S6 9 24 453763 147 15.9 0.1 432 61 0.000
S7 10 26 4.2e+6 143 131.6 0.1 924 61 0.000
S8 10 27 3.4e+6 1466 105.7 1.0 2221 56 0.000
S9 10 28 2.2e+7 1575 675.5 1.1 1952 69 0.000
M1 3 15 7668 4366 0.2 0.2 71 73 0.000
M2 4 17 18847 2018 0.5 0.2 119 81 0.000
M3 4 17 19597 17315 0.5 1.9 124 163 0.000
M4 5 19 46170 15349 1.3 2.7 160 91 0.000
N1 3 18 9117 5191 0.3 0.3 99 80 0.000
N2 4 20 23462 3260 1.1 0.4 154 136 0.000
N3 4 20 43767 19271 2.1 1.8 147 149 0.000
N4 5 22 152163 15102 13.9 2.3 314 377 0.000
F5 5 6 7 7 0.0 0.0 6 6 0.000
F10 10 11 7 7 0.0 0.0 6 6 0.000
F15 15 16 7 7 0.0 0.0 6 6 0.000
A2 8 0 25 20 0.0 0.0 21 18 0.000
A3 16 0 82 27 0.0 0.0 18 17 0.000
A4 32 0 39 34 0.0 0.1 28 22 0.000
A5 64 0 4027 42 1.3 0.4 47 27 0.000
A6 128 0 – 50 – 2.4 – 32 0.000

Finally, we investigate the performance of relatively useless transitions for the
dU distance heuristic which is based on the plain graph distance. In comparison to
hL and hU , we observe that dU is less informed because the graph distance is rather
coarse compared to the monotonicity abstraction used by hL and hU . The results
for dU are given in Table 3.3.

3.4 Evaluation 35

Table 3.3. Experimental results for dU with greedy search (dU) and with greedy search plus use-
less transitions (dU -UT). Abbreviations: #a: number of parallel automata, #v: number of variables,
#d: number of explored deferred states over total number of explored states, dashes indicate out of
memory (> 4 GByte) or out of time (> 30 min). Best results are shown in bold fonts.

explored states runtime in s trace length #d
Instance #a #v dU dU -UT dU dU -UT dU dU -UT

S1 5 15 11449 9796 0.0 0.1 823 842 0.713
S2 6 17 33859 31807 0.1 0.5 1229 1105 0.873
S3 6 18 51526 52107 0.2 0.8 1032 1144 0.882
S4 7 20 465542 504749 2.0 7.5 3132 5364 0.970
S5 8 22 4.6e+6 4.6e+6 22.6 70.6 14034 14000 0.992
S6 9 24 – – – – – – –
M1 3 15 185416 7557 156.4 0.1 106224 923 0.566
M2 4 17 56240 294877 1.1 67.1 13952 51541 0.755
M3 4 17 869159 26308 1729.5 0.5 337857 1280 0.769
M4 5 19 726691 100073 428.0 1.8 290937 4436 0.882
N1 3 18 10215 19698 0.3 0.7 2669 1855 0.567
N2 4 20 – 96307 – 5.1 – 8986 0.747
N3 4 20 – 29254 – 1.2 – 784 0.771
N4 5 22 330753 239877 23.0 17.8 51642 1969 0.895
F5 5 6 9 9 0.0 0.0 6 6 0.000
F10 10 11 9 9 0.0 0.0 6 6 0.000
F15 15 16 9 9 0.0 0.0 6 6 0.000
A2 8 0 23 24 0.0 0.0 13 13 0.708
A3 16 0 296 297 0.0 0.0 39 39 0.939
A4 32 0 19034 19035 0.2 0.4 129 129 0.973
A5 64 0 – – – – – – –

First, we observe that the results for dU with relatively useless transitions are
less significant than for hL and hU . Looking more closely at the distance estimates
provided by dU , we find out that often only a few different values occur. This is
due to the relative coarse abstraction based on the graph distance, which ignores
integer variables and synchronization behavior completely. As a consequence, many
transitions are wrongly classified as useless with the dU distance heuristic, and
thus the number of explored deferred states is very high. This effectively means
that no improvements may be obtained at all compared to classical directed model
checking with dU . This is the case in the S and A examples, where almost all states
are deferred (more than eighty percent in most cases). However, we may still get
benefits if the number of deferred states is not as high; this shows up for the M and
N examples.

The overall conclusion of our experimental evaluation is that the concept of
relatively useless transitions can significantly improve scalability and error trace
quality of classical directed model checking. Furthermore, the experiments confirm
that the precision of our technique strongly depends on the precision of the dis-

36 3 Useless Transitions

tance heuristic d# that is applied. If d# is informed, then useless transitions are
captured very precisely with relatively useless transitions for d#, and impressive
performance improvements can be achieved as we have seen for hL and hU . For
less informed distance heuristics, our technique is less precise as well, as we have
seen for dU .

Precision of Relatively Useless Transitions Continued

In this section, we will analyze the precision of relatively useless transitions de-
pending on the applied distance heuristic in more detail. Therefore, we investigate
how precisely useless transitions are approximated by the hL, hU and dU distance
heuristics on a small model checking task exactly. During directed model checking,
we compute for every encountered state s if s has been reached by a useless tran-
sition (i. e., we compare the real error distance of s to the real error distance of its
successor). This result is then compared with the relatively-useless-classification of
the applied distance heuristic. In Table 3.4, we exemplary report the relative num-
ber of true (and false) positives (and negatives) for the largest problem of the arbiter
case study that could be handled in this way (A3).

Table 3.4. Fraction of correct and incorrect classifications on the A3 problem. Abbreviations: TP/FP:
relative number of true/false positives, TN/FN: relative number of true/false negatives.

visited transitions
TP TN FP FN

hU 0.669 0.217 0.078 0.036
hL 0.587 0.233 0.102 0.078
dU 0.235 0.037 0.728 0.000

We report the relative number of visited transitions encountered with our ex-
tended algorithm. A transition t is counted as visited if the corresponding successor
state s has been created but not yet necessarily explored, i. e., s is not yet neces-
sarily in the closed list. A transition is counted as a true positive if it is a useless
transition, i. e., a transition that did not start a shortest error trace, that has also been
classified as relatively useless by the corresponding distance heuristic. The other
cases are handled accordingly.

Again, we observe that useless transitions are classified best with hU and hL.
For these distance heuristics, the relative number of correctly classified transitions
is high. In particular, it is important to note that the relative number of false posi-
tives (i. e., the number of transitions that have wrongly been classified as useless), is
low. Obviously, such a wrongly classified transition can severely worsen the over-
all search process, as the resulting successor state is only explored if the regular
open queue is empty. Considering the results for dU , we observe that the number

3.4 Evaluation 37

of wrongly classified transitions is significantly higher, and there is a significant
number of false positives in particular. This causes the lower performance when
applying our framework with dU .

3.4.3 Useless Transitions in AI Planning

In the introduction of this thesis, we have pointed out that there is a strong rela-
tionship between directed model checking and AI planning as heuristic search. In
both settings, the task is to find a sequence of transitions such that a global state
is reached which satisfies a given property. In the context of directed model check-
ing, the property describes an undesired error condition, whereas in the context of
AI planning, it describes some desired goal condition. In AI planning, transitions
correspond to “actions”, which have a guard and an effect. An action is applicable
in a state s if s satisfies its guard, and the corresponding successor state is deter-
mined from s by setting the variables according to its effect. An error trace in model
checking corresponds to a plan in AI planning. In our setting, a plan consists of a
finite number of actions that are successively applicable from the initial state and
lead to a state that satisfies the goal condition.

Because of the close relationship of these areas when considered from an ab-
stract point of view, we have also investigated a variant of relatively useless transi-
tions in the context of planning as heuristic search [78]. In that area, various bench-
marks from the international planning competitions exist which are often motivated
by real world problems. Therefore, the consideration of our technique in this con-
text allows us to get a deeper insight of how relatively useless transitions perform
in practice. For the evaluation, we have implemented our concept into the FAST

DOWNWARD planning system [36].

Integration into the FAST DOWNWARD Planning System

FAST DOWNWARD is a recent state-of-the-art planning system based on heuristic
search, in particular winning the planning competition 2004 in the track for classical
planning. It supports various distance heuristics and additional search enhancement
techniques such as helpful actions [42] and preferred operators [36]. In a nutshell,
both of these search enhancements are based on the following idea. First, during the
computation of a distance estimate for a state s in AI planning, an abstract plan is
produced from the corresponding abstract state s#. Roughly speaking, an action a
is defined as helpful (or preferred) in s if a corresponding abstract action a# is con-
tained as a possible first abstract action in such an abstract plan. In this way, helpful
actions are identified during the computation of hFF [42], preferred operators are
identified for hCG [36] and hcea [38]. However, as we have just outlined, these ac-
tions are identified as a byproduct during the computation of the heuristic values,

38 3 Useless Transitions

and hence, these techniques are bound to the corresponding distance heuristics. If
helpful actions or preferred operators are available, FAST DOWNWARD maintains
two open queues helpfulQueue and unknownQueue during the search. As indicated
by the name, states that are reached by helpful actions (or preferred operators, re-
spectively) are maintained in helpfulQueue. Furthermore, the second queue contains
all the states that have been encountered so far. The search engine selects states from
helpfulQueue and unknownQueue in an alternating way.

As we have just discussed, in the planning context, an action exactly corre-
sponds to a transition t ∈ T (M) for a given system M. Therefore, we define
useless actions and relatively useless actions as a straight forward adaptation of use-
less transitions and relatively useless transitions to the planning context. We have
integrated relatively useless actions into FAST DOWNWARD by extending FAST

DOWNWARD’s queue selection scheme as follows. We additionally maintain a third
open queue uselessQueue, which contains states that are reached by applying a rel-
atively useless action. More precisely, for each global state s to which the action
a is applied, we check if a is relatively useless in s for the distance heuristic that
is also used for the search. If this is the case, the corresponding successor state is
pushed into the uselessQueue. Actions that are classified as both helpful and rela-
tively useless are maintained in the uselessQueue. This queue is only accessed if
both other queues are empty. A conceptual description of the queue selection algo-
rithm is shown in Figure 3.7.

1 function selectOpenQueue():
2 if unknownQueue = ∅ and helpfulQueue = ∅:
3 return uselessQueue
4 elif helpfulQueue 6= ∅ and p(helpfulQueue) ≤ p(unknownQueue)
5 p(helpfulQueue) += 1
6 return helpfulQueue
7 elif unknownQueue 6= ∅ and p(unknownQueue) ≤ p(helpfulQueue)
8 p(unknownQueue) += 1
9 return unknownQueue

10 return selectNonEmptyQueue()

Fig. 3.7. Conceptual description of the queue selection algorithm in FAST DOWNWARD

The queue containing states that are reached via a relatively useless action is
only returned if both other queues are empty (lines 2 – 3). We maintain a priority
function p for each open queue, which is increased by one if it was selected. To
alternate between the helpfulQueue and the unknownQueue, the queue with low-
est priority value is selected. The function selectNonEmptyQueue() returns a non
empty last recently used queue if there exists one (line 10).

3.4 Evaluation 39

Experimental Setup and the Planning Benchmarks

We evaluated relatively useless actions for the hFF [42], hcea [38], hmax and
hadd [10] distance heuristics as implemented in the FAST DOWNWARD planning
system. We compare our technique against plain heuristic greedy best first search
as well as helpful actions (for hFF), preferred operators (for hcea), and the combi-
nation thereof. The experimental evaluation has been performed on a machine with
Intel Pentium 4 CPU with 3 GHz. We set a time bound of 10 minutes and a memory
bound of 1 GByte for each run. As benchmark problems, we used domains from
the recent international planning competitions. They are mostly motivated by real
world problems and often very challenging for domain independent planners. A do-
main consists of several (usually 20 – 50) problem instances of different size and
difficulty (see, e. g., [30]). For the evaluation, we have chosen domains from this
suite that are hard for FAST DOWNWARD in terms of number of unsolved instances
without search enhancements.

Results

As the overall number of planning benchmarks is high, we concisely present the
results in terms of number of unsolved instances for different configurations. Ta-
ble 3.5 and 3.6 provide an overview of the number of unsolved planning instances
per domain. Table 3.5 shows the results for the hFF and hcea distance heuristics,
for which helpful actions and preferred operators are available. Table 3.6 gives the
results for the hadd and the hmax distance heuristics. We report the number of un-
solved instances by domain for plain greedy best first search, as well as for greedy
best first search with relatively useless actions, with helpful actions (or preferred
operators, respectively), and for both, i. e., for the combination of relatively useless
and helpful actions.

The results clearly indicate the potential of our technique in the context of AI
planning. First, we observe that applying relatively useless actions to plain greedy
best first search significantly reduces the number of unsolved instances (from 388
to 290 for hFF and hcea , from 467 to 374 for hadd and hmax). For example, the
hFF distance heuristic with relatively useless actions could not solve 2 out of 30
instances in the PATHWAYS domain, compared to 21 unsolved instances with plain
greedy best first search. Moreover, the useless actions technique performs compa-
rably to helpful actions and preferred operators. To see this, we observe in Table 3.5
that taking relatively useless actions into account leaves 290 problem instances un-
solved, compared to 301 unsolved instances with helpful actions or preferred oper-
ators. Finally, it is very interesting that the combination of relatively useless actions
with helpful actions or preferred operators often yields further significant perfor-
mance gains. The number of unsolved instances could be further reduced from 301

40 3 Useless Transitions

Table 3.5. Number of unsolved instances by domain for the hFF and hcea distance heuristics where
helpful actions (or preferred operators, respectively) are available. The best configuration is shown in
bold fonts. The first column shows the problem domain and the total number of problem instances
in parentheses. Abbreviations: greedy: plain heuristic (greedy best first) search, + useless: heuristic
search with useless actions, + helpful: heuristic search with helpful actions or preferred operators, +
both: heuristic search with the combination of useless and helpful actions.

greedy + useless + helpful + both
hFF

PATHWAYS (30) 21 2 11 1
TPP (30) 13 1 7 0
DEPOT (22) 8 4 4 0
ASSEMBLY (30) 15 0 0 0
PIPESWORLD-NT (50) 23 12 9 8
PIPESWORLD-T (50) 32 29 25 20
TRUCKS (30) 16 13 14 14
AIRPORT (50) 17 14 17 14
OPTICAL-TELEGRAPHS (48) 46 45 46 44
hcea

PATHWAYS (30) 23 18 16 4
TPP (30) 10 18 9 18
DEPOT (22) 11 3 8 1
ASSEMBLY (30) 20 8 12 0
PIPESWORLD-NT (50) 25 14 18 12
PIPESWORLD-T (50) 35 35 31 24
TRUCKS (30) 17 18 17 17
AIRPORT (50) 11 11 11 11
OPTICAL-TELEGRAPHS (48) 45 45 46 44∑

388 290 301 232

to 232. Although the ideas of useful (helpful or preferred) and useless actions are
conceptually similar, the experimental evaluation suggests that different aspects are
covered by these notions. Therefore, we are able to identify “useful” actions, i. e.,
actions that are classified as useful by the corresponding distance heuristic, that
are actually not useful in practice. Exemplary, this shows up well in the PATH-
WAYS domain for the hcea distance heuristic. The number of unsolved instances
with preferred operators (16) and relatively useless actions (18) is similar, but with
the combination of preferred operators and relatively useless actions, only 4 in-
stances remain unsolved.

As already discussed, the quality of our technique generally depends on the qual-
ity of the applied distance heuristic. This observation also shows up in the planning
setting. The results are best for the hFF heuristic, and less significant for the less
informed hmax heuristic. Overall, relatively useless transitions have shown their po-
tential also in the context of AI planning, where the number of unsolved problem
instances could be significantly reduced compared to plain heuristic search as well

3.5 Related Work 41

Table 3.6. Number of unsolved instances by domain for the hadd and hmaxdistance heuristics. The
best configuration is shown in bold fonts. The first column shows the problem domain and the total
number of problem instances in parentheses.

greedy + useless
hadd

PATHWAYS (30) 23 18
TPP (30) 15 5
DEPOT (22) 12 2
ASSEMBLY (30) 20 8
PIPESWORLD-NT (50) 29 11
PIPESWORLD-T (50) 34 29
TRUCKS (30) 17 18
AIRPORT (50) 17 17
OPTICAL-TELEGRAPHS (48) 47 47
hmax

PATHWAYS (30) 26 24
TPP (30) 22 18
DEPOT (22) 17 13
ASSEMBLY (30) 20 8
PIPESWORLD-NT (50) 33 26
PIPESWORLD-T (50) 41 38
TRUCKS (30) 20 18
AIRPORT (50) 28 28
OPTICAL-TELEGRAPHS (48) 46 46∑

467 374

as compared to other well-established search enhancements like helpful actions and
preferred operators.

3.5 Related Work

Approaches to evaluate transitions during heuristic search have mostly been stud-
ied in the area of AI planning so far. Among these approaches, we have already
discussed the notion of helpful actions and preferred operators that are used to se-
lect a set of promising actions in a state. Helpful actions have been proposed by
Hoffmann and Nebel [42]. An action is considered as helpful if it is applicable and
adds at least one goal at the first time step during the computation of hFF . Vidal
[74] extended the idea of helpful actions. Instead of preferring states that result
from applying helpful actions, he proposed to extract a prefix of actions from the
relaxed solution that are sequentially applicable in the current state. Helmert’s pre-
ferred operators [36] are similar to helpful actions in the context of the causal graph
heuristic. All these approaches identify useful actions during the computation of
the distance heuristic. Contrarily, we identify useless transitions and useless actions

42 3 Useless Transitions

based on reduced planning instances. Therefore, relatively useless transitions can
be combined with arbitrary distance heuristics.

Nebel et al. [61] removed irrelevant facts and operators from a planning task
in a preprocessing step. They removed operators and variables that are possibly
not needed in order to find a solution. Such operators and variables are identified
by solving a relaxed problem. However, in contrast to the technique of relatively
useless transitions, this method is not solution-preserving. In our work, relatively
useless transitions and relatively useless actions are identified on-the-fly, where it
depends on the current state if an operator is relatively useless.

Haslum and Jonsson [34] defined an operator as redundant if it can be simulated
with a sequence of other operators. Based on this idea, they proposed an approach
to compute redundant operators and reduced operator sets that is solution preserv-
ing. Therefore, contrarily to useless transitions, redundant operators can be pruned
completely, and there is no need to maintain several open queues.

Bacchus and Ady [4] proposed to avoid certain sequences of actions that do not
make sense. For example, a transporter that has to deliver an object to some place
should not load and unload the object without moving in between. However, such
action sequences are identified manually.

3.6 Conclusions

We have introduced the concept of useless and relatively useless transitions for di-
rected model checking and for AI planning as heuristic search. We have given an
intuitive, but computationally hard definition of uselessness, which we have then
approximated appropriately with the given distance heuristic. Afterwards, we have
presented an extended directed model checking algorithm based on this concept. We
have observed that relatively useless transitions significantly improved the scalabil-
ity of directed model checking and AI planning as heuristic search. Although these
two areas are motivated differently and therefore also provide differently structured
benchmark problems, useless transitions have shown to be a general concept that
can be successfully applied in both areas. The general lesson to be learned is that
additionally evaluating transitions, rather than only states, can serve as a strong
criterion to improve the guidance of the search.

For the future, it will be interesting to further extend and refine the concept.
First, as already outlined in Section 3.3, the adaptation of relatively useless transi-
tions for pattern database heuristics will be an interesting and important topic for
future research. Although a straight forward adaptation is technically possible, this
would yield an approach that is probably not very efficient because a separate pat-
tern database has to be computed for every reduced system. The question remains
if there is a way to do this more efficiently. Ultimately, as for every heuristic tech-
nique, one would like to have a precise theoretical analysis where the technique

3.6 Conclusions 43

works best and where it does not work at all. We have done a first step in this direc-
tion with our discussion in Section 3.3, where we observed that relatively useless
transitions work probably best for distance heuristics d# that are computed on-
the-fly, and that the precision of our technique strongly depends on the precision
of d#. For the future, it will be interesting to analyze if more precise statements can
be achieved in this direction. For example, are there classes of systems where the
concept does not work? Are there classes of systems for which it works provably
well? Such insights would allow us to further refine and improve the overall con-
cept, e. g., by automatically enabling or disabling the check for relatively useless
transitions depending on the specific problem structure.

4

Context-Enhanced Directed Model Checking

In this chapter, we introduce a technique to prioritize transitions based on interfer-
ence contexts. It is based on joint work with Kupferschmid [77]. The motivation
is to overcome the limitation of relatively useless transitions to be dependent on a
distance heuristic. Roughly speaking, our technique is based on the following idea:
if there is a transition t that is part of a shortest error trace π, then there often is a
subsequent transition in π that profits from the effect of t. Therefore, we propose
to preferably explore states that have been reached by a transition that profits from
the effect of the previously applied transition. As a consequence, the search process
avoids “jumping” while exploring the state space. We use the notion of interference
context to determine how much a transition profits from the execution of another
transition, and propose context-enhanced directed model checking based on this
technique. We have implemented our algorithm and applied it to uninformed search
as well as to directed model checking with several distance heuristics from the
literature. In particular, we compare our algorithm to useless transitions and to iter-
ative context bounding proposed by Musuvathi and Qadeer [58]. The experiments
reveal that context-enhanced directed model checking scales better than previous
approaches in many challenging problems.

The remainder of this chapter is organized as follows. After a short motivation
in Section 4.1, we formally introduce interference contexts and context-enhanced
directed model checking in Section 4.2. Afterwards, we discuss related work in Sec-
tion 4.3 and empirically evaluate our technique in Section 4.4. Finally, we conclude
the chapter and discuss future work in Section 4.5.

4.1 Motivation

In the previous chapter, we have introduced the useless transition technique to
heuristically prioritize transitions during directed model checking. In particular, we

46 4 Context-Enhanced Directed Model Checking

have observed that the precision of this technique was dependent on the precision
of the applied distance heuristic.

The limitations of useless transitions motivate to investigate a technique to pri-
oritize transitions which is independent of the quality of the distance heuristic. The
technique that we present in this chapter is based on the notion of transition interfer-
ence. As we will see, it is purely syntactic and assigns higher priorities to transitions
that “profit” from the effect of previously applied transitions. In the following, we
give an example for a model checking task where useless transitions fail, but an
interference based technique as sketched above succeeds.

Example 4.1. Consider the example model checking task of Figure 4.1 that consists
of a system M with processes p1, . . . , pn. The transitions of M are interleaving
transitions, i. e., label(t) = τ for all t ∈ T (M). For the sake of readability, these
labels are omitted in Figure 4.1.

l0 l1

l2 l3

l0 l1

l2 l3

p1 pn. . .

Fig. 4.1. Example system with n components

The initial global state of the system is s0 = 〈p1 = l0, . . . , pn = l0〉
where every process is in its initial location. The global error state is given as
〈p1 = l3, . . . , pn = l3〉 where every process is in its error location. Suppose we
apply directed model checking using the distance heuristic based on the maximal
graph distance dL as in Example 3.1. Recall that dL(s) = maxi=1, ..., n dist i(s),
where dist i(s) denotes the local error distance for process i in global state s. Doing
so, we first observe that dL is a rather uninformed distance heuristic for this prob-
lem because the domain of dL is rather small (dL(s) ∈ {0, . . . , 3} for all global
states s), and global states can hardly be distinguished by dL. Second, we observe
that relatively useless transitions for dL also fail in many cases. For example, ev-
ery applicable transition in the initial state s0 is relatively useless for dL. To see
this, consider transition t = {p1.l0 → l1}. We have dL(Mt, s0) = 2, and also
dL(M, t[s0]) = 2 because the local error distances in the other processes are still
2. Therefore, we have dL(Mt, s0) ≤ dL(M, t[s0]), and hence, t is relatively use-
less for dL in s0. Moreover, we observe that transition t′ = {p1.l1 → l3} is not
useless in the successor state t[s0], but relatively useless for dL. Hence, t′ cannot
be distinguished from transitions that are actually useless, e. g., going back to l0
from l1.

4.2 Context-Enhanced Directed Model Checking 47

However, apart from showing the limitations of directed model checking and rel-
atively useless transitions with dL, this simple example also motivates a technique
to overcome these problems. The overall idea is to prefer transitions that interfere
with a previously applied transition on a syntactic level. For example, t′ would be
such a preferred transition after applying t because the source location of t′ is equal
to the destination location of t. In the following sections, we make this idea precise.
In particular, we present a multi-queue algorithm for directed model checking that
is able to respect different levels of relevance.

4.2 Context-Enhanced Directed Model Checking

In this section, we introduce context-enhanced directed model checking based on
interference contexts. To compactly describe the main ideas, we need the notion of
innocence. Let Θ = (M, ϕ) be a model checking task. A transition t is innocent in
Θ if for each state s where t is applicable, there is no constraint of the error formula
ϕ that is satisfied by effect(t). This means, if there is a conjunct c of ϕ so that
t[s] |= c, then c was already satisfied by s. Note that, if the initial state of a system
is not an error state, then only applying innocent transitions will never lead to error
states.

The main idea of context-enhanced directed model checking is the following.
Let s be a state and let t be an innocent transition that is enabled at s. If t is the
first transition of a shortest error trace starting from s, then there must be applicable
transitions at s′ = t[s] that profit from the effect of t. Otherwise t cannot be part
of a shortest error trace. In this chapter, we use interference contexts to determine
whether a transition profits from a preceding transition.

4.2.1 Interference Contexts

Our notion of interference contexts is based on the well-known concept of interfer-
ence. Similar to other work (for example, in the area of partial order reduction [32]),
we use a definition that can be statically checked. Roughly speaking, two transitions
interfere if they work on a common set of system variables. For a transition t, we
will use the notation var(guard(t)) and var(effect(t)) to denote the set of variables
occurring in the guard and the effect of t, respectively. These include both integer
variables as well as the process variables stating in which processes the transition
occurs.

Example 4.2. Consider the systemM in Figure 4.2 consisting of two processes and
two global transitions. The set of transitions of M is T (M) = {t1, t2} with the
interleaving transition t1 = {p1.l1

τ−−−−−→
i<1;i:=1

l2} and the synchronized transition

t2 = {p1.l1
a−−→
j<1

l2, p2.l0
a−−−→

k:=1
l1}.

48 4 Context-Enhanced Directed Model Checking

l0 l1 l2 l0 l1p1 p2
i < 1; i := 1

τ

j < 1

a

k := 1

a

Fig. 4.2. Example system and transitions

For transition t1, var(guard(t1)) = {i, p1} contains the integer guard variable i
and the process variable p1, indicating that t1’s source and destination location be-
long to p1. Analogously, the effect variables var(effect(t1)) = {i, p1} of t1 contain
the integer effect variable i and process variable p1. For the synchronized transition
t2, we have var(guard(t2)) = {j, p1, p2}, and var(effect(t2)) = {k, p1, p2}. We
remark that the synchronization label a is not a variable.

Having this notion of guard and effect variables, we define the notion of inter-
ference. Informally speaking, two transitions interfere if they work on a common
set of variables.

Definition 4.3 (Interference). Two transitions t1 and t2 interfere iff at least one of
the following conditions holds:

1. var(effect(t1)) ∩ var(guard(t2)) 6= ∅,
2. var(effect(t2)) ∩ var(guard(t1)) 6= ∅,
3. var(effect(t1)) ∩ var(effect(t2)) 6= ∅.

Informally, this means that two transitions interfere if one writes a variable that
the other is reading, or both transitions write a common variable. We next give a
pruning criterion based on interference. To formulate this, we first define the notion
of interference contexts. Roughly speaking, for a transition t and n ∈ N0, the in-
terference context Cn(t) contains all transitions for which there is a sequence of at
most n transitions where successive transitions interfere.

Definition 4.4 (Interference Context). LetM be a system, t ∈ T (M) be a tran-
sition and n ∈ N0. The interference context Cn(t) is inductively defined as follows:

C0(t) = {t}
Cn(t) = Cn−1(t) ∪ {t′ ∈ T (M) | ∃t′′ ∈ Cn−1(t) : t′′interferes with t′}

As we are dealing with finite systems, there exists a smallest N ≤ |T (M)|, so
that CN (t) = CN+1(t) for all transitions t ∈ T (M). We will denote this context
with C(t). Note that this context induces an equivalence relation on the set of sys-
tem transitions T (M). It partitions T (M) into subsets of transitions which operate
on pairwise disjoint variables. Based on this notion, we now give a pruning criterion
which is guaranteed to preserve completeness. Informally speaking, if a state is part
of a shortest error trace and has been reached via an innocent transition t, then it
suffices to only apply transitions from C(t) at s.

4.2 Context-Enhanced Directed Model Checking 49

Proposition 4.5. Let Θ = (M, ϕ) be a model checking task for a system M =
(P, V) and an error formula ϕ =

∧
(vi on ci), where on ∈ {<,≤,=,≥, >}, vi ∈ V

and ci ∈ Z. Let s be a state inM that is part of a shortest error trace from s0 and
has been reached by a transition sequence with last transition t. Further assume
that t is innocent in Θ. Then there is a shortest error trace from s that starts with a
transition from C(t).

Proof. As s is part of a shortest error trace from the initial state, and t is innocent,
there is a shortest error trace π that starts in s which contains a transition t′π that
needs the effects of t, i. e., var(effect(t))∩var(guard(t′π)) 6= ∅. Otherwise, twould
not have been needed and swould not be part of a shortest error trace. We transform
π into a shortest error trace π′ so that the first transition in π′ is contained in C(t).
Let t1, . . . , tn be the prefix of π so that tn is the first transition in π that interferes
with t, i. e., t1, . . . , tn−1 do not interfere with t. Then π′ is constructed by an induc-
tive argument. For n = 1, i. e., if t1 interferes with t, then π′ = π as t1 ∈ C(t).
For the induction step, let tn+1 be the first interfering transition with t. If tn+1 and
tn do not interfere, then they can be exchanged in π′ as non-interfering transitions
can be applied in any order, leading to the same state. If they do interfere, then by
definition tn ∈ C(t), which proves the claim.

From Proposition 4.5, we can derive the following pruning criterion: in a global
state s that has been reached with transition t, it is sufficient to apply the transitions
from C(t) because at least one of these transitions starts a shortest error trace in s.
As a consequence, transitions that are not contained in C(t) can be pruned without
losing completeness. We remark that the condition from Proposition 4.5 for a state
s to be on a shortest error trace can be assumed without loss of generality: if s is
not part of a shortest error trace, every successor can be pruned.

In practice, this pruning criterion does not seem to fire very often: Benefits are
only obtained if the system’s transitions can be partitioned into at least two sets
of transitions that operate on disjoint variables. In such cases, also compositional
model checking is applicable. These concepts are known and by no means new. In
fact, the pruning criterion can be seen as a version of compositional model check-
ing, where completely independent parts of the system are handled individually.
However, the formulation of Proposition 4.5 lends itself to a way of how to ap-
proximate the pruning criterion. This leads to the heuristic approach to prioritize
transitions that we are introducing next.

4.2.2 The Context-Enhanced Search Algorithm

In this section, we describe how we approximate the pruning criterion. The basic
idea is actually quite simple: instead of considering the exact closure C(t) of a tran-
sition t, we substitute it with the interference context Cn(t) for some bound n < N ,

50 4 Context-Enhanced Directed Model Checking

where N is the smallest number such that CN (t) = C(t) for all transitions t ∈ T .
Suppose for a moment that we know how to choose a good value for n. Obviously,
Proposition 4.5 does not hold anymore if we replace C(t) with Cn(t). As a conse-
quence thereof, states that are reached via transitions that are not contained inCn(t)
cannot be pruned without loosing completeness. The approximation therefore be-
comes a heuristic criterion for the relevance of transitions. Instead of pruning these
states, we suggest to defer their expansion. This can be done by extending the ba-
sic directed model checking algorithm introduced on page 16 in Figure 2.1 with a
second open queue. States whose expansions we want to defer are inserted in this
queue. All other states are inserted in the standard open queue. States from the sec-
ond queue are only expanded if the standard open queue is empty. The question
remains which value we should use for the parameter n. From Definition 4.4, we
know that Ci(t) ⊆ Cj(t) for all transitions t if and only if i ≤ j. On the one hand,
the higher the parameter, the better C(t) is approximated. However, as we already
argued and also describe in the experimental section, the exact pruning criterion
does not fire very often in practice. On the other hand, the lower the parameter the
more misclassifications may occur, which hampers the overall performance of the
model checking process.

Instead of choosing a constant parameter, we propose to use a multi-queue di-
rected model checking algorithm that maintainsN+1 different open queues, where
N ∈ N is defined as above. Overall, we obtain a family of open queues q0, . . . , qN ,
where qi is accessed (according to the given distance heuristic) iff q0, . . . , qi−1 are
empty, and qi is not. The basic directed model checking algorithm from Figure 2.1
can be converted into our multi-queue search method by replacing the standard
open queue with a multi-queue and the corresponding accessing functions as given
in Figure 4.3. In these queues, states are maintained as follows.

1 function insert(s′, priority):
2 if t is innocent then:
3 if t′ /∈ C(t) then:
4 prune s′

5 else:
6 determine smallest n ∈ N such that t′ ∈ Cn(t)
7 qn.insert(s′, priority)
8 else:
9 q0.insert(s′, priority)

1 function pop-minimum():
2 determine smallest n such that qn 6= ∅
3 return qn.pop-minimum()

Fig. 4.3. Multi-queue accessing functions for context-enhanced directed model checking

4.3 Related Work 51

Let s be a state that was reached with transition t, and let s′ = t′[s] be the
successor state of s under the application of the transition t′. If t is innocent and
t′ /∈ C(t), then we can safely prune s′. If t is innocent and t′ ∈ C(t), then the
successor state s′ is maintained in queue q1 if t′ ∈ C1(t), and maintained in qi if
t′ ∈ Ci(t) and t′ 6∈ Ci−1(t). If t is not innocent, then s′ is stored in q0.

According to the given distance heuristic, pop-minimum returns a state with best
priority from the queue qi with minimal index i that is not empty. The multi-queue
is empty iff all queues are empty. Obviously, our algorithm remains complete, as
only the order in which the states are explored is influenced. The advantage of this
multi-queue algorithm is that we do not have to manually find a good value for n,
which strongly depends on the system. By always expanding states from the lowest
non-empty queue, the algorithm also respects the quality of the estimated relevance.

4.3 Related Work

In general, context-enhanced directed model checking shares the property with pre-
vious transition prioritizing techniques that it labels transitions and defers the ex-
pansion of states that are reached by less relevant transitions. In contrast to previous
techniques, context-enhanced directed model checking does not assign a Boolean
flag to a transition, but an integer value. It is based on a multi queue algorithm that is
well-suited to respect the different levels of relevance. In the following, we compare
our algorithm to the most relevant techniques in more detail.

First, we reconsider relatively useless transitions. As we discussed in the last
chapter, the quality of this technique strongly depends on the accuracy of the ap-
plied distance heuristic. In particular, relatively useless transitions cannot be applied
to uninformed search methods because no distance heuristic is applied there. Com-
plementary to these limitations, context-enhanced directed model checking is inde-
pendent of the distance heuristic. Furthermore, as we will see in the experimental
section, it is successfully applicable to uninformed search.

Musuvathi and Qadeer work in the area of software model checking. They pro-
pose a technique for bug detection based on iterative context bounding [58]. For
multithreaded programs, they propose an algorithm that limits the number of con-
text switches, i. e., the number of execution points where the scheduler forces the
active thread to change. Their algorithm is actually a kind of iterative deepening
search, where the number of context switches that may occur in each trace is in-
creased in each iteration. They define a context essentially as a thread, and restrict
the context switches forced by the scheduler. Compared to context-enhanced di-
rected model checking, such a context switch would correspond to a state where a
transition is executed which is not contained in the interference context induced by
the preceding transition t. In our setting, a context switch in the sense of Musuvathi

52 4 Context-Enhanced Directed Model Checking

and Qadeer corresponds to two consecutive states si and si+1, where si is taken
from queue qn, and si+1 is taken from queue qm with n < m. However, our crite-
rion is stricter than the context switch criterion proposed by Musuvathi and Qadeer:
Exploring a state from a deferred queue with greater index corresponds to a context
switch in the sense of Musuvathi and Qadeer, but not vice versa. Moreover, we han-
dle the different levels of interference with a fine-grained multi-queue search algo-
rithm. Musuvathi and Qadeer propose an algorithm that is guaranteed to minimize
the number of context switches. Contrarily, our search algorithm does not necessar-
ily minimize them. As a consequence, context-enhanced directed model checking
performs better than iterative context bounding in systems with tight interaction of
the processes.

4.4 Evaluation

We have implemented our algorithm based on interference contexts and empirically
evaluate its potential on benchmarks as described in Section 2.4. These include the
Single-Tracked Line Segment case study (S1, . . . , S9), the Mutual-Exclusion case
study (M1, . . . , M4 and N1, . . . , N4), the Fischer Protocols (F5, F10, F15) as well
as the Towers of Hanoi problems (H3, . . . , H9). We evaluate our algorithm on a
number of different search methods, including uninformed search as well as various
heuristic search methods as proposed in the literature.

4.4.1 Experimental Setting

We have implemented our context-enhanced search algorithm (denoted with CE
in the following) into our model checker MCTA [56]. All experiments have been
performed on an AMD Opteron 2.3 GHz system with 4 GByte of memory. We set a
timeout to 30 minutes.

We compare CE to classical directed model checking with the rather coarse
distance heuristics dL and dU [23] as well as to the more informed distance heuris-
tics hL and hU [52]. All of them are implemented in MCTA. As already described
in more detail in Section 2.3, the dL and dU distance heuristics are based on the
graph distance of automata; synchronization behavior and integer variables are
completely ignored. The distance heuristics hL and hU are based on the monotonic-
ity abstraction. Under this abstraction, variables can have multiple values simulta-
neously. The hL heuristic performs a fixed-point iteration under this abstraction
starting in the current state until an error state is reached, and returns the number
of iterations as heuristic value. Based on this fixed-point iteration, hU additionally
extracts an abstract error trace starting from the abstract error state, and returns the
number of abstract transitions as the estimate.

4.4 Evaluation 53

Furthermore, we compare CE to various related search algorithms, including
iterative context bounding (denoted with IB) and useless transitions (denoted with
UT). As threads correspond to processes in our setting, we have implemented IB
with process contexts as proposed by Musuvathi and Qadeer [58], denoted with
IBP . This means that a context switch occurs if two consecutive transitions belong
to different processes.

Moreover, we implemented IB with our definition of interference contexts, de-
noted with IBI . Here, a context switch occurs if a transition t′ does not belong to
Cn(t), where t is the preceding transition. After some limited experiments, we set
the bound n to 2 because we achieved the best results in terms of explored states for
this value. For larger values, no context switches occurred, and hence IBI behaves
like greedy search.

4.4.2 Experimental Results

We give detailed results for CE with the coarse distance heuristic dU , with the
more informed distance heuristic hL, as well as for the uninformed search method
breadth-first search. Moreover, we additionally provide average performance results
for depth-first search as well as for the distance heuristics dL and hU .

Let us start to discuss the results for CE with the dU heuristic from Table 4.1.
First, we observe that for the hard problems, the number of explored states with
CE is significantly lower than with classical directed model checking (i. e., greedy
search without search enhancements) and than with the other, related approaches.
In the smaller instances, e. g., the F examples and the small S examples, the per-
formance is comparable. Compared to classical directed model checking, we could
also solve more problems when CE is applied. This mostly also pays off in better
runtime. Finally, the length of the found error trace is comparable in the F and
the small H instances, but mostly much shorter than with classical directed model
checking and than with UT. Overall, when using dU , CE significantly improves
directed model checking, and also outperforms related approaches in terms of scal-
ability and error trace length.

The results for CE and the hL heuristic are given in Table 4.2. First, we observe
that UT performs much better with hL than with dU and is often the best config-
uration. As already outlined, UT uses the distance heuristic itself to estimate the
quality of a transition. Hence, the performance of UT strongly depends on the qual-
ity of the applied distance heuristic. This also shows up in our experiments, where
UT outperforms the other approaches in the F and S examples. On the other hand,
CE performs best in M , N and H , and only marginally worse than UT in most of
the F and S problems. Moreover, CE scales significantly better than the iterative
context bounding algorithm for both context definitions. Overall, we observe that

54 4 Context-Enhanced Directed Model Checking

Table 4.1. Experimental results for greedy search with the dU heuristic. Abbreviations: plain: greedy
search, CE: greedy search + interference contexts, IBP : iterative context bound algorithm with process
contexts, IBI : iterative context bound algorithm with interference contexts, UT: useless transitions.
Dashes indicate out of memory (> 4 GByte) or out of time (> 30 min). Uniquely best results are
given in bold fonts.

explored states runtime in s trace length
Inst. plain CE IBP IBI UT plain CE IBP IBI UT plain CE IBP IBI UT

F5 9 21 112 8 9 0.0 0.0 0.0 0.0 0.0 6 6 6 6 6
F10 9 36 447 8 9 0.0 0.0 0.0 0.0 0.0 6 6 6 6 6
F15 9 51 1007 8 9 0.0 0.0 0.0 0.0 0.0 6 6 6 6 6
S1 11449 10854 44208 14587 9796 0.0 0.1 0.2 0.2 0.1 823 192 59 1022 842
S2 33859 31986 163020 93047 31807 0.1 0.3 0.8 0.5 0.5 1229 223 59 134 1105
S3 51526 43846 199234 80730 52107 0.2 0.3 1.1 0.5 0.8 1032 184 59 1584 1144
S4 465542 402048 3.0e+6 1.8e+6 504749 2.0 2.1 18.0 8.6 7.5 3132 1508 60 783 5364
S5 4.6e+6 2.8e+6 3.8e+7 2.4e+7 4.6e+6 22.6 18.8 257 137 70.6 14034 886 65 1014 14000
S6 – – – – – – – – – – – – – – –
M1 185416 5360 100300 56712 7557 156 0.1 2.5 1.1 0.1 106224 246 65 94 923
M2 56240 15593 608115 82318 294877 1.1 0.2 22.5 1.7 67.1 13952 520 63 3378 51541
M3 869159 15519 623655 281213 26308 1730 0.2 23.8 7.2 0.5 337857 562 82 3863 1280
M4 726691 21970 3.4e+6 – 100073 428 0.4 221 – 1.8 290937 486 80 – 4436
N1 10215 5688 92416 68582 19698 0.3 0.1 5.6 3.3 0.7 2669 162 79 109 1855
N2 – 11939 645665 161800 96307 – 0.3 71.7 8.2 5.1 – 182 75 277 8986
N3 – 14496 616306 417181 29254 – 0.4 62.4 25.8 1.2 – 623 84 1586 784
N4 330753 25476 3.7e+6 889438 239877 23.0 0.8 761 91.6 17.8 51642 949 89 361 1969
H3 222 279 1000 479 244 0.0 0.0 0.0 0.0 0.1 44 32 52 82 60
H4 2276 2133 11726 7631 545 0.0 0.1 0.0 0.1 0.5 184 132 116 190 92
H5 20858 5056 142359 116200 15435 0.1 0.2 0.3 0.4 13.9 708 238 266 422 400
H6 184707 122473 1.5e+6 1.1e+6 130213 0.6 0.8 4.1 3.2 129 2734 1670 522 918 1242
H7 1.6e+6 876847 1.5e+7 1.4e+7 1.2e+6 5.7 5.4 52.0 42.0 1268 11202 4456 1136 2100 3922
H8 1.4e+7 2.3e+6 – – – 53.8 17.1 – – – 45280 5666 – – –
H9 – – – – – – – – – – – – – – –

CE with hL performs similarly to UT with hL, and scales often significantly better
than the other approaches.

We also applied our context enhanced search algorithm to uninformed search.
The results for breadth-first search are given in Table 4.3. First, we want to stress
that breadth-first search is optimal in the sense that it returns shortest possible error
traces. This is not the case for CE. However, the results in Table 4.3 show that the
length of the found error traces by CE is mostly only marginally longer than the
optimal one (around a factor of 2 in the worst case in S1 and S2, but mostly much
better). Contrarily, the scaling behavior of CE is much better than that of breadth-
first search. This allows us to solve two more problems on the one hand, and also
allows us to solve almost all of the harder problems much faster. In particular, this
shows up in the M and N examples, that could be solved within seconds with CE
(compared to sometimes hundreds of seconds otherwise). Finally, we remark that

4.4 Evaluation 55

Table 4.2. Experimental results for greedy search with the hL heuristic. Abbreviations: plain: greedy
search, CE: greedy search + interference contexts, IBP : iterative context bound algorithm with process
contexts, IBI : iterative context bound algorithm with interference contexts, UT: useless transitions.
Dashes indicate out of memory (> 4 GByte) or out of time (> 30 min). Uniquely best results are
given in bold fonts.

explored states runtime in s trace length
Inst. plain CE IBP IBI UT plain CE IBP IBI UT plain CE IBP IBI UT

F5 179 21 112 216 7 0.0 0.0 0.0 0.0 0.0 12 6 6 12 6
F10 86378 36 447 95972 7 3.3 0.0 0.0 3.8 0.0 22 6 6 22 6
F15 – 51 1007 – 7 – 0.0 0.0 – 0.0 – 6 6 – 6
S1 1704 4903 24590 1971 1537 0.0 0.2 0.4 0.1 0.1 84 68 62 77 76
S2 3526 11594 81562 4646 1229 0.1 0.4 1.2 0.2 0.1 172 70 62 166 76
S3 4182 5508 89879 6118 1061 0.1 0.3 1.4 0.2 0.1 162 73 62 109 76
S4 29167 7728 1.2e+6 108394 879 0.7 0.5 14.1 1.2 0.2 378 198 60 653 77
S5 215525 2715 1.4e+7 870603 1116 5.2 0.4 143 7.4 0.3 1424 85 65 2815 78
S6 1.7e+6 9812 – 1.3e+7 1116 37.4 1.1 – 85.5 0.4 5041 130 – 8778 78
S7 1.6e+7 15464 – – 1114 333 2.0 – – 0.6 15085 130 – – 78
S8 7.1e+6 2695 – – 595 129 0.5 – – 0.3 5435 81 – – 76
S9 9.6e+6 4.0e+6 – – 2771 201 193 – – 1.3 5187 1818 – – 94
M1 4581 1098 102739 3230 4256 0.1 0.0 3.1 0.1 0.2 457 89 66 433 97
M2 15832 1904 605001 53206 7497 0.3 0.0 27.8 1.2 0.5 1124 123 61 113 104
M3 7655 8257 622426 141247 10733 0.1 0.2 26.1 2.8 0.7 748 180 86 100 91
M4 71033 18282 3.3e+6 525160 16287 1.6 0.7 240 14.5 1.7 3381 334 81 118 98
N1 50869 1512 93750 74307 5689 39.0 0.0 7.2 59.9 0.3 26053 93 79 26029 108
N2 30476 2604 634003 82158 22763 1.2 0.1 77.3 3.8 1.5 1679 127 75 97 259
N3 11576 10009 607137 177899 35468 0.4 0.4 77.1 9.6 2.7 799 224 86 106 204
N4 100336 20248 3.7e+6 971927 142946 5.3 1.1 756 103 14.9 2455 396 85 134 792
H3 127 256 1017 164 190 0.0 0.0 0.0 0.0 0.0 48 48 48 86 62
H4 2302 764 11830 7488 620 0.0 0.1 0.0 0.1 0.0 300 94 124 438 114
H5 20186 15999 144668 121027 31553 0.2 0.4 0.5 0.6 1.2 1458 478 252 878 890
H6 230878 85947 1.5e+6 1.5e+6 281014 2.2 2.0 5.8 5.8 13.4 7284 1350 558 2070 2766
H7 2.0e+6 622425 1.5e+7 1.6e+7 2.7e+6 21.4 17.9 69.0 67.1 155 18500 14314 1086 5164 7176
H8 1.8e+7 2.1e+6 – – – 207 78.3 – – – 70334 74594 – – –
H9 – – – – – – – – – – – – – – –

UT is not applicable with breadth-first search, as no distance heuristic is applied.
Overall, we conclude that if short, but not necessarily shortest error traces are de-
sired, breadth-first search should be applied with CE because of the better scaling
behavior of CE on the one hand, and the still reasonable short error traces on the
other hand.

To get a deeper insight into the performance of our context enhanced directed
model checking algorithm in practice, we report average results for for CE applied
to various previously proposed distance heuristics in Table 4.4. For each distance
heuristic as well as breadth-first and depth-first search, we average the data on the

56 4 Context-Enhanced Directed Model Checking

Table 4.3. Experimental results for breadth-first search. Abbreviations: plain: breadth-first search,
CE: breadth first search + interference contexts, IBP : iterative context bound algorithm with process
contexts, IBI : iterative context bound algorithm with interference contexts. Dashes indicate out of
memory (> 4 GByte) or out of time (> 30 min). Uniquely best results are given in bold fonts.

explored states runtime in s trace length
Inst. plain CE IBP IBI plain CE IBP IBI plain CE IBP IBI

F5 333 29 129 273 0.0 0.0 0.0 0.0 6 6 6 6
F10 5313 44 484 3868 0.0 0.0 0.0 0.0 6 6 6 6
F15 34068 59 1064 20538 0.4 0.0 0.0 0.3 6 6 6 6
S1 41517 19167 50361 58379 0.1 0.1 0.2 0.3 54 109 59 54
S2 118075 52433 181941 217712 0.4 0.3 0.8 0.9 54 109 59 54
S3 149478 33297 230173 264951 0.5 0.2 1.1 1.1 54 71 59 54
S4 1.3e+6 146094 3.5e+6 3.7e+6 5.4 0.7 18.7 16.2 55 67 60 55
S5 1.1e+7 569003 4.6e+7 4.4e+7 49.8 3.2 258.5 227.3 56 73 56 56
S6 – 2.5e+6 – – – 16.2 – – – 74 – –
S7 – – – – – – – – – – – –
M1 192773 32593 273074 116682 4.6 0.4 7.4 1.5 47 51 50 50
M2 680288 75159 1.7e+6 1.6e+6 19.1 1.1 95.2 56.6 50 52 53 50
M3 740278 94992 1.7e+6 1.7e+6 22.0 1.6 80.9 76.9 50 54 63 50
M4 2.6e+6 189888 9.7e+6 8.0e+6 87.6 3.5 893.7 506.7 53 55 66 53
N1 361564 34787 310157 157610 20.0 0.7 15.6 4.3 49 56 58 55
N2 2.2e+6 81859 2.4e+6 3.9e+6 399.0 1.8 357.6 622.2 52 57 72 52
N3 2.4e+6 92729 2.3e+6 4.2e+6 442.8 2.5 275.8 677.9 52 54 71 52
N4 – 201226 – – – 5.9 – – – 57 – –
H3 448 315 1062 954 0.0 0.0 0.0 0.0 22 22 30 24
H4 4040 2689 11702 7228 0.0 0.1 0.0 0.1 52 54 64 54
H5 42340 19158 146955 121807 0.1 0.2 0.3 0.4 114 116 148 148
H6 377394 161747 1.5e+6 1.2e+6 0.7 0.8 3.0 2.8 240 300 294 278
H7 3.4e+6 1.2e+6 1.5e+7 1.3e+7 7.2 5.3 36.8 33.7 494 520 634 636
H8 3.0e+7 9.2e+6 – – 67.2 44.0 – – 1004 1302 – –
H9 – – – – – – – – – – – –

instances that could be solved by all configurations. Furthermore, we give the total
number of solved instances.

First, we observe that also on average, CE compares favorably to classical di-
rected model checking. The average number of explored states could sometimes by
an order of magnitude be reduced, which mostly also pays off in overall runtime.
Furthermore, except for breadth-first search which returns shortest possible error
traces, the length of the error traces could be reduced. Compared to the related ap-
proaches IBP , IBI and UT, we still observe that the average number of explored
states is mostly lower with CE (except for the median with UT for hL and hU). In
almost all cases, the average runtime is still much shorter. Apart from breadth-first
search, the shortest error traces are obtained with iterative context bounding. How-
ever, CE scales better than iterative context bounding on average, and could solve

4.4 Evaluation 57

Table 4.4. Summary of experimental results. Abbreviations: plain: (uninformed or informed) search,
CE: breadth first search + interference contexts, IBP : iterative context bound algorithm with process
contexts, IBI : iterative context bound algorithm with interference contexts, DFS: depth-first search,
BFS: breadth-first search, average: arithmetic means, solved: number of solved instances (out of 27).
Uniquely best results in bold fonts for each configuration.

explored states runtime in s trace length solved
average median average median average median

BFS

plain 1266489.9 277168.5 53.0 2.7 78.3 52.0 21
CE 140644.4 43610.0 1.1 0.6 91.9 55.5 23
IBP 4248527.1 291615.5 102.3 5.2 95.7 59.0 20
IBI 4133416.8 241331.5 111.5 2.2 89.7 53.5 20

DFS

plain 445704.1 63712.5 3.6 0.5 37794.3 9624.5 21
CE 197295.0 15688.0 1.1 0.2 2308.8 795.5 22
IBP 3397688.6 409480.0 34.8 2.4 148.7 71.0 21
IBI 2371171.5 155694.0 12.9 1.5 16477.9 1819.5 21

dU

plain 469310.8 42692.5 107.9 0.3 30415.8 1949.0 20
CE 245070.9 13186.5 1.6 0.2 665.4 230.5 22
IBP 3503904.9 152689.5 63.8 1.8 155.0 64.0 21
IBI 2380880.4 81524.0 16.5 0.8 892.9 391.5 20
UT 394999.4 23003.0 87.6 0.6 4764.3 1124.5 21

dL

plain 701962.7 54742.0 14.9 0.5 16414.1 7725.0 21
CE 189144.3 12181.0 1.3 0.2 1391.6 562.0 22
IBP 2783118.2 199548.0 72.7 3.7 100.6 67.0 21
IBI 1918955.4 105246.0 17.5 0.9 2642.1 798.0 19
UT 344885.2 46509.0 23.8 1.4 13664.1 2521.0 20

hL

plain 143536.3 18009.0 4.1 0.4 3327.0 773.5 25
CE 41090.5 5205.5 1.2 0.3 917.8 108.5 26
IBP 2075198.1 374834.5 72.5 6.5 150.5 70.5 21
IBI 1052988.1 89065.0 14.1 2.0 1981.0 126.0 21
UT 164821.9 4972.5 9.7 0.3 657.8 97.5 25

hU

plain 138325.2 12938.0 3.1 0.3 419.6 112.0 26
CE 22956.1 6523.0 1.0 0.3 213.0 92.0 27
IBP 1953710.5 145351.0 73.7 7.3 147.7 66.0 21
IBI 965865.2 72437.0 12.7 1.6 302.1 116.0 21
UT 106837.0 2537.0 9.6 0.2 436.3 80.0 26

the most problem instances in every configuration. Furthermore, the only configu-
ration that could solve all instances is CE with the hU distance heuristic.

58 4 Context-Enhanced Directed Model Checking

Finally, we also compared CE with the exact pruning criterion given by Propo-
sition 4.5. However, it turned out that this exact criterion is very strict in practice,
and did not fire in any case. This effectively means that the results for this criterion
are the same as the results for plain search, except for a slightly longer runtime due
to the preprocessing.

Overall, our evaluation impressively demonstrated the power of directed model
checking with interference contexts and multiple open queues. We have observed
that the overall model checking performance could often significantly be increased
for various search methods and distance heuristics on a range of real world prob-
lems. The question remains on which parameters the performance of the different
search algorithms depend, and in which cases they perform best. We will discuss
these points in the next section.

4.4.3 Discussion

Our context-enhanced directed model checking algorithm uses several open queues
to handle the different levels of interference. In Table 4.5, we provide additional
results about the number of queues and queue accesses for CE and UT, as well as
the number of context switches for iterative context bounding. The data is averaged
over all instances of the specific case study.

For our context-enhanced directed model checking algorithm, we report the
number of queues that are needed for the different problems, as well as the num-
ber of pushed and popped states of these queues. First, we observe that in the F
examples, only one deferred queue (q1) is needed, which is accessed very rarely.
However, the situation changes in the S, M and N examples, where three deferred
queues are needed. Deferred states are explored from up to two deferred queues
(for dU and breadth-first search), whereas the last non-empty deferred queue is
never accessed. Most strikingly, in the H examples, we need six deferred queues,
from which most of them are never accessed. Overall, the performance of CE also
depends on the number of explored deferred states. If there are deferred queues that
never have to be accessed at all, the corresponding states do not have to be explored,
and the branching factor of the system is reduced.

We applied the useless transitions technique in a multi-queue setting, where
useless states, i. e., states reached by a relatively useless transition, are maintained
in a separate queue. Table 4.5 shows the number of explored non-useless states
(q0) as well as the number of explored useless states (q1). Obviously, the number of
explored useless states also indicates the precision of UT for the particular problem.
We observe that for the well-informed hL distance heuristic, q1 is never accessed
except for the H examples, which explains the good performance of UT in this
case. However, for the coarser dU distance heuristic, q1 is accessed very often,
which explains the favorable performance of CE over UT with dU .

4.4 Evaluation 59

Table 4.5. Average number of queue accesses for queues q0, . . . , q6 for CE and UT, and average
number of context switches for IB per case study. Number of pushed states at the top, number of
popped states at the bottom.

Accesses with CE Accesses with UT Context Switches
q0 q1 q2 q3 q4 q5 q6 q0 q1 IBP IBI

hL heuristic

F 38 114 0 0 0 0 0 13 24 2 0
35 1 0 0 0 0 0 7 0

S 169161 742370 87766 136105 0 0 0 1702 2440 31.6 0
169144 277922 0 0 0 0 0 1268 0

M 5585 5687 8598 3455 0 0 0 12308 9137 21 3
5584 1801 0 0 0 0 0 9693 0

N 6654 6547 9384 4124 0 0 0 69534 4332 22.3 3
6652 1941 0 0 0 0 0 51716 0

H 377962 294737 230682 297175 345419 445245 612451 404205 308105 134.8 15.6
377935 93051 0 0 0 0 0 404186 204806

dU heuristic

F 38 114 0 0 0 0 0 14 24 2 0
35 1 0 0 0 0 0 9 0

S 287161 395163 65564 273596 0 0 0 12746 1042207 31.6 3
287149 379679 520 0 0 0 0 12746 1030510

M 9712 7734 11949 5043 0 0 0 23355 115058 21 4
9708 4902 0 0 0 0 0 23354 83849

N 10006 7943 11920 6614 0 0 0 16204 109769 21.5 4.8
10000 4399 0 0 0 0 0 16204 80079

H 379149 289671 222272 289380 323717 385445 498216 117141 220791 134.8 15.2
379100 164472 0 0 0 0 0 117141 143929

BFS

F 56 114 0 0 0 0 0 n/a n/a 2 0
43 1 0 0 0 0 0 n/a n/a

S 323745 607706 189050 447035 0 0 0 n/a n/a 31.6 0
323704 229784 1111 0 0 0 0 n/a n/a

M 50251 56932 86116 30730 0 0 0 n/a n/a 21 1.3
50249 47908 0 0 0 0 0 n/a n/a

N 55105 55314 92173 39908 0 0 0 n/a n/a 20.7 1.7
55103 47546 0 0 0 0 0 n/a n/a

H 894952 925034 649694 843886 861079 980240 1476125 n/a n/a 134.8 20.8
894927 874677 0 0 0 0 0 n/a n/a

60 4 Context-Enhanced Directed Model Checking

Finally, let us give some explanations of the performance of the iterative context
bound algorithm IB compared to CE. The IB approach is guaranteed to minimize
the number of context switches, and obviously performs best in systems where not
many context switches are needed. Contrarily, if the context has to be switched
n times, the whole state space for all context switches smaller than n has to be
explored until an error state is found, which could be problematic if n is high.
Table 4.5 shows the average number n of context switches needed to find an error
state in our examples.1 We observe that, except for the F examples, n is pretty high
for IBP . Contrarily, in the F examples where the context has to be switched only
two times, iterative context bounding performs very well. Overall, we conclude
from our experiments that the approach proposed by Musuvathi and Qadeer works
well for programs with rather loose interaction where not many context switches are
required. However, in protocols with tight interaction and many required changes
of the active threads, directed model checking with interference contexts performs
much better.

4.5 Conclusions

In this chapter, we have introduced a fine-grained heuristic technique based on inter-
ference contexts to prioritize transitions. Based on this technique, we have presented
a context-enhanced directed model checking algorithm that respects the different
levels of transition relevance. The experimental evaluation impressively demon-
strated the practical potential of our algorithm for various distance heuristics from
the literature on large and realistic case studies. We could improve the overall search
behavior compared to various related search algorithms in terms of number of ex-
plored states and search time.

For the future, it will be interesting to refine and extend our algorithm based on
interference contexts. This includes, for example, to take into account the structure
of our computational model more explicitly. In particular, we plan to better adapt
our technique to timed systems. Although we are able to handle such systems, our
technique is not yet optimized for them as clocks are currently ignored. We expect
that taking clocks into account will lead to further improvements for that class of
systems. Furthermore, the multi-queue search algorithm with interference contexts
could also be adapted to the area of AI planning as we have done with useless tran-
sitions. As pointed out in the previous chapters, techniques to alleviate the state
explosion problem are also strongly required in the area of AI planning. It will be
interesting to investigate if performance improvements with techniques based on
interference contexts can also be achieved in that area. Finally, it will also be in-
1 As a side remark, the different number of context switches for hL, dU and BFS with IBP and IBI

are due to the different number of solved instances of these configurations.

4.5 Conclusions 61

teresting to combine our algorithm with related transition prioritizing techniques
like useless transitions. In particular, this includes to investigate on which param-
eters the overall performance depends when combining context-enhanced directed
model checking with useless transitions, and which combination performs best. We
expect that further synergy effects of these techniques are possible, and even better
scaling behavior will be achieved.

5

The Causal Graph Revisited
for Directed Model Checking

In the previous chapters, we have introduced the concepts of useless transitions and
interference contexts to prioritize transitions for directed model checking. However,
for both of these concepts, there is no theoretical guarantee that transitions that are
expected to be not needed can be pruned. Therefore, in order to not miss any error
state, we assigned lower priorities to such transitions, but have not pruned them
completely. Complementary to these concepts, we propose a criterion to prioritize
transitions in this chapter that allows for pruning transitions. Furthermore, we pro-
pose a distance heuristic for directed model checking that is an adaptation of the
causal graph heuristic from the area of AI planning. Both contributions are based
on the causal graph structure, which is a well known structure in AI planning.

The overall chapter is based on joint work with Helmert [76]. It is organized
as follows. We start by giving additional notation in Section 5.1, and formally in-
troduce the causal graph structure in Section 5.2. Based on causal graph analysis,
we present our transition prioritizing technique in Section 5.3. Furthermore, we
propose the adaptation of the causal graph heuristic from AI planning to directed
model checking in Section 5.4. After an empirical evaluation of our techniques in
Section 5.5, we finally conclude the chapter and discuss future work in Section 5.6.

5.1 Notation

In order to concisely present our techniques based on causal graph analysis in this
chapter, we first introduce some new terminology. In particular, we come up with
the notions of variable domain processes and variable domain systems, and describe
how systems as considered so far can be translated to this formalism. This will
allow us to concisely present the central ideas of this chapter. Roughly speaking,
for a given systemM, the idea is to representM by modelingM’s processes and
integer variables as variable domain processes that run in lockstep. The location set
of a variable domain process corresponds to the domain of the modeled process or

64 5 The Causal Graph Revisited for Directed Model Checking

integer variable. Transitions t ∈ T (M) correspond to synchronization labels from
a global synchronization alphabet Σ. For a systemM, we will use the term system
variables to denote both processes and integer variables ofM.

Definition 5.1 (Variable domain process).
LetM = (P, V) be a system, T (M) be the transition set ofM, and Σ = {ct |

t ∈ T (M)} be the synchronization alphabet containing a label for each transition
in M. Let v be a system variable of M, i. e., either a process in P or an integer
variable in V . The variable domain process for v is defined as the labeled directed
graph p = (L,E), where L is a finite set of locations, and E ⊆ L × Σ × L is the
set of edges of p, where

• L = Li if v corresponds to a process pi = (Li, li, Ei) in P , or L = dom(v) if
v corresponds to an integer variable in V , and

• there is an edge (v1, ct, v2) ∈ E if there is a transition t ∈ T (M) such that the
two following conditions hold.
– The transition guard of t is consistent with the constraint v = v1, i. e.,

guard(t) ∧ v = v1 6|= ⊥.
– If there is an assignment v := v′ ∈ effect(t), then v′ = v2. If there is no

such assignment, then v1 = v2.

The above definition gives a concise description of variable domain processes
to model the domain of processes and integer variables and to model under which
circumstances the values of these domains can change. There is an edge between
locations l1 and l2 if there is a transition t ∈ T (M) that could possibly change the
value of v from l1 to l2. Self loops encode the implicit effect that the value of a vari-
able remains unchanged if it is not set otherwise. We remark that variable domain
processes are finite because the domains of systems M, i. e., the location sets of
processes and the domain of integer variables, are finite as well. Furthermore, we
remark that variable domain processes correspond to the notion of domain transi-
tion graphs as used in the area of AI planning [36].

A system consisting of variable domain processes is called variable domain
system. Such a system is defined as the parallel composition of the variable domain
processes of a given systemM.

Definition 5.2 (Variable domain system).
Let M = (P, V) be a system with processes P = p1 ‖ . . . ‖ pn and integer

variables V = {v1, . . . , vm}. Let p′1, . . . , p
′
n be the variable domain processes for

p1, . . . , pn, and p′n+1, . . . , p
′
n+m be the variable domain processes for v1, . . . , vm.

The variable domain system forM is defined as

S(M) = p′1 ‖S . . . ‖S p′n+m,

where ‖S is a parallel composition symbol for which the semantics is defined below.

5.1 Notation 65

In the following, we use the notation S(M) for a variable domain system corre-
sponding to the systemM. The semantics of S(M) is defined as a system of pro-
cesses that run in lockstep using global synchronization labels. Whenever a given
variable domain process performs an edge from location l to l′ with associated label
ct ∈ Σ, then all other variable domain processes must simultaneously perform an
edge with the same label ct, or else the edge is not permitted. Overall, this gives rise
to the following definition of the semantics of S(M). We first define the semantics
for variable domain systems with two variable domain processes.

Definition 5.3 (Semantics of variable domain systems).
Let S(M) = p1 ‖S p2 be a variable domain system for a system M and

variable domain processes p1 = (L1, E1) and p2 = (L2, E2). The semantics of
S(M) is defined as a variable domain process (L,E) with location setL = L1×L2

and the set of edgesE = {((l1, l2), ct, (l′1, l′2)) | (l1, ct, l′1) ∈ E1∧(l2, ct, l′2) ∈ E2}.
A global state of S(M) is given as a function that maps p1 and p2 to one of its

locations. The initial global state of S(M) is determined by the initial values of the
processes and integer variables ofM.

A trace π = s0, ct0 , s1, ct1 , . . . , ctn−1 , sn of S(M) is an alternating sequence of
global states and synchronization labels starting from the initial global state such
that (si−1, cti−1 , si) ∈ E for all i ∈ {1, . . . , n}. The length of a trace π, denoted
with |π|, is defined as the number of synchronization labels in π, i. e., |π| = n for
the trace given above.

To distinguish between (local) edges of variable domain processes and (global)
edges of variable domain systems, we will call the latter also global transitions. We
observe that the semantics of ‖S is defined as a form of parallel composition which
is an associative and commutative operation, up to isomorphism. For example, we
can obtain p2 ‖S p1 from p1 ‖S p2 by renaming locations (l1, l2) to (l2, l1). The
semantics of systems with more than two variable domain processes is defined ac-
cordingly. Overall, a variable domain system differs in two ways from systemsM
as defined in this thesis so far. First, global synchronization is needed to perform
a global transition (instead of interleaved or binary synchronized transitions). Sec-
ond, there are no explicit integer variables in S(M), but they are modeled as vari-
able domain processes as well. To illustrate these definitions, consider the following
example model checking task in Figure 5.1.

The example model checking task Θ = (M, ϕ) consists of an asynchronous
system M with three parallel processes P1, P2 and P3. The transitions of M
are interleaving transitions, i. e., label(t) = τ for all t ∈ T (M). For the sake
of readability, these labels are omitted in Figure 5.1. Furthermore, M consists
of integer variables v and w with initial value v = 0 and w = 0 and domain
dom(v) = dom(w) = {0, 1, 2, 3}. Global error states inM are global states where
P3 is in the double circled location l3. The edges in P1 and P2 are abbreviations

66 5 The Causal Graph Revisited for Directed Model Checking

P1 P2

P3

dec(v) dec(w)l0

inc(v)

l0

inc(w)

l0 l1 l2 l3
v = 2 w = 2 v = 0 ∧ w = 0

Fig. 5.1. An example system with three processes.

for a set of edges that increase and decrease v or w modulo the size of the do-
main of v and w, respectively. To be more precise, inc(v) = v + 1 mod 4 and
dec(v) = v − 1 mod 4. The model checking task with corresponding variable
domain system is depicted in Figure 5.2.

l0

l1

l2

l3

t1 t1

t1 t1

p1 p2

p3

t2, b, c

t2, b

t2, a, b

t2, b

l0

l1

l2

l3

t2 t2

t2 t2

t1, a, c

t1, a

t1, a, b

t1, a

l0 l1 l2 l3
a b c

t1, t2 t1, t2 t1, t2 t1, t2

000 100 200 201 211 221 222 322 022 032 002 003
t1 t1 a t2 t2 b t1 t1 t2 t2 c

Fig. 5.2. The variable domain system for the example system of Figure 5.1 and an example for an
error trace. An edge with more than one label is an abbreviation for several parallel edges, one for
each label.

In the variable domain system S(M), the integer variables v and w from M
are translated to variable domain processes p1 and p2. Global error states in S(M)
are defined as states where every variable domain process is in one of its error lo-

5.1 Notation 67

cations, where error locations are determined by the error formula ϕ; in variable
domain processes that correspond to system variables inM that are not specified
in ϕ, every location is an error location. In the above example, error locations are
double circled. Transitions to manipulate v and w inM are represented with syn-
chronization labels t1 and t2 in S(M)1. The transitions induced by P3 in M are
represented by the synchronization labels a, b and c in S(M). Figure 5.2 also shows
a shortest error trace in S(M). To reach a global error state in S(M), we first have
to move from l0 to l2 in p1 in order to synchronize with a in p3. This corresponds to
increasing the integer variable v twice inM. Similarly, in S(M), we have to move
from l0 to l2 in p2 in order to be able to synchronize with b. This corresponds to
increasing w twice inM. Finally, in S(M), we have to move back to l0 in p1 and
p2 in order to synchronize with c in p3. This corresponds to decreasing v and w to
zero inM.

Overall, we have seen that a variable domain system S(M) of a systemM is
a different encoding forM. In particular, it has the property that every error trace
ofM corresponds to an error trace of S(M) with the same length, and vice versa.
Again, we remark that we do this effort of introducing such an additional notation
for ease of presentation. We will see that the central ideas and definitions of our
contributions of this chapter are presented very intuitively within this model. As we
have defined the two formalisms in an isomorphic way, we directly work on variable
domain systems in this chapter. A model checking task Θ = (M, ϕ) translates to
the new formalism in a straight forward way: the goal is to find a trace in S(M)
that leads to a global state s such that the relevant processes in S(M) satisfy the
error condition in s with respect to ϕ.

Definition 5.4 (Model checking task for variable domain systems).
LetΘ = (M, ϕ) be a model checking task. The model checking task for variable

domain system corresponding to Θ is defined as (S(M), L∗), where S(M) is the
variable domain system forM. The error locations L∗ = (L∗1, . . . , L

∗
n) with L∗i ⊆

Li for all i ∈ {1, . . . , n} for variable domain process pi = (Li, Ei) in S(M) are
determined by the values specified by ϕ for pi, or L∗i = Li if no value is specified.
An error trace of Θ is a trace ofM that ends in a global state s ∈ L∗1 × · · · × L∗n.

If the meaning is clear from the context, then variable domain processes, vari-
able domain systems and model checking tasks for variable domain systems will
often be shortly called processes, systems and model checking tasks, respectively.
1 To keep things as simple as possible in this example, we do not represent the original processes
P1 and P2 fromM in S(M) because they only have one location and therefore represent con-
stants. Furthermore, we use only one synchronization label for transitions that manipulate v and
w, i. e., one label for each variable (the formal translation would require a separate label for each
transition).

68 5 The Causal Graph Revisited for Directed Model Checking

5.2 The Causal Graph

In this section, we introduce the central concepts based on causal graph analysis,
namely the causal graph and the local subsystems it induces. The causal graph rep-
resents a dependency structure of the given system that reflects how processes in
variable domain systems depend on other processes in a certain sense. Our contri-
butions in this chapter exploit the information gained from the structural analysis
given by the causal graph. To provide some intuition for our definitions, in particular
for the causal graph distance heuristic, we illustrate them with the example model
checking task from Figure 5.2 as a running example. Recall that this system con-
sists of three processes p1, p2 and p3, each with locations {l0, l1, l2, l3} and edges
as shown in the figure. In the initial global state s0, all processes are in location
l0. Global error states are defined by the property that process p3 is in location l3
(i. e., L∗1 = L∗2 = {l0, l1, l2, l3} and L∗3 = {l3}). The shortest error traces for this
example have length 11 as we have discussed in the last section, and indeed this
is the distance estimate that the causal graph distance heuristic will assign in this
case. However, other distance heuristics considered in the directed model checking
literature underestimate the true error distance. We briefly discuss this observation
with respect to the new formalism in the running example.

• The dL and dU distance heuristics [23, 25] measure the graph distance to the
nearest location L∗i in each automaton pi without taking into account syn-
chronization labels. The dL heuristic maximizes over the individual distances,
whereas dU sums these values. We obtain dL(s0) = max {0, 0, 3} = 3 and
dU (s0) = 0 + 0 + 3 = 3 because only p3 needs to move to a different location
(l3), which can be reached from l0 in three steps.

• The hL and hU distance heuristics [52] compute abstract error traces under the
monotonicity abstraction. In the context of our running example, hU consid-
ers an abstracted problem where each process can “jump back to” a previously
visited location at every step free of cost. In this case, we obtain hU (s0) = 7
because hU fails to take into account that processes p1 and p2 must return to
location l0 from l2 in order to support the edge of p3 from l2 to l3 via synchro-
nization label c. The hL heuristic has the same weakness as hU but additionally
assumes in its abstraction that the required edges of p1 and p2 from l0 to l2 can
be performed simultaneously, leading to an estimate of hL(s0) = 5.

A common weakness of all these distance heuristics, which causes the imperfect
distance estimates, is that they fail to take into account that reaching a certain loca-
tion of p3 has a side effect on p1 and p2. In particular, they assume that as soon as
p3 has reached l2, the error location l3 can be reached immediately in one step. The
edge of p3 from l2 to l3 requires p1 and p2 to follow an edge with label c, and the

5.2 The Causal Graph 69

initial locations of p1 and p2 have outgoing edges with this label from their loca-
tions in s0, which is good enough for hU and hL (recall that dL and dU do not care
about synchronization at all). The distance heuristics do not recognize that p1 and
p2 must initially move away from l0 (to location l2) before p3 reaches l2 in order to
synchronize on the labels a (for p1) and b (for p2).

We will see that the causal graph distance heuristic overcomes this limitation
by finding error traces in simple cases like this example directly, without further
abstraction, while distances in “larger” systems are computed by combining infor-
mation from smaller subsystems. To make this more precise, we must introduce the
notion of causal graph. To motivate the following definition, observe that the labels
from Σ = {t1, t2, a, b, c} play very different roles for the three processes in the
example system:

• Label t1 is very important for process p1 because all proper (non-looping) edges
between locations of p1 must synchronize on this label. We say that a label
a ∈ Σ affects a process (L,E) if (l, a, l′) ∈ E for some l 6= l′. In the example,
t1 affects p1, t2 affects p2 and a, b and c affect p3.

• Labels a and c do not cause non-looping edges in p1, but they are still relevant
for the process because the current location of p1 influences whether or not
the overall system can synchronize on these labels. For example, the system
cannot synchronize on a unless p1 is in location l2. We say that a label a ∈ Σ
restricts a process (L,E) if there exists a location l ∈ L such that for all l′ ∈ L,
(l, a, l′) /∈ E. In the example, a restricts p1 and p3, b restricts p2 and p3, and c
restricts all processes.

• Finally, labels t2 and b are completely irrelevant for process p1: no matter in
which location the process is, it can synchronize on these labels, and they cannot
cause a change in location. We say that a label a ∈ Σ is irrelevant for a process
(L,E) if it does not affect or restrict the process. In the example, t1 is irrelevant
for p2 and p3, t2 is irrelevant for p1 and p3, a is irrelevant for p2, and b is
irrelevant for p1.

Using these different roles for labels and processes, we define the causal graph
of a variable domain system as follows.

Definition 5.5 (Causal graph).
For a systemM, let S(M) = p1 ‖S . . . ‖S pn be a variable domain system with

synchronization alphabet Σ. The causal graph CG(S(M)) of S(M) is the directed
graph whose vertices are the component processes p1, . . . , pn of S(M). It contains
an arc from pi to pj iff i 6= j and there exists a label that restricts or affects pi and
affects pj .

Intuitively, the causal graph contains an arc from variable domain process pi to
variable domain process pj if there may be a need to change the location of pi in

70 5 The Causal Graph Revisited for Directed Model Checking

order to change the location of pj . There is no arc if pi can change every location
independently of the current location of pj , and changing locations in pi has no side
effect on the current location in pj either. The causal graph of the running example
from Figure 5.2 is shown in Figure 5.3. We have an arc from p1 to p3 because the
synchronization label a restricts p1 and also affects p3. As location l2 is the only
location in p1 where we can synchronize with a, we possibly have to move to that
location in order to be able to synchronize with a in p3. A symmetrical argument
holds for processes p2 and p3 for synchronization label b. Finally, we observe that
there is no arc between p1 and p2 because these processes can change their locations
independently of the current locations of each other.

p1 p2

p3

Fig. 5.3. The causal graph for the running example system

To translate this intuition into a formal result, we first introduce the notion of
subsystems. Informally speaking, for a given systemM and corresponding variable
domain system S(M), a subsystem of S(M) induced by some processes is defined
as the variable domain system where these processes are removed from S(M).

Definition 5.6 (Subsystem).
For a system M, let S(M) = p1 ‖S . . . ‖S pn be a variable domain system

with initial global state s0, and letΘ = (S(M), (L∗1, . . . , L
∗
n)) be a model checking

task for S(M). Let P = {pi1 , . . . , pik}, 1 ≤ i1 < · · · < ik ≤ n be a subset of the
component processes of S(M). The variable domain system

S(M)[P] := pi1 ‖S . . . ‖S pik

with initial global state s0P = 〈s0i1 , . . . , s0ik〉 is called the subsystem of S(M)
induced by P , and the model checking task Θ[P] := (S(M)[P], (L∗i1 , . . . , L

∗
ik
)) is

called the subtask of Θ induced by P .

We remark that removing a variable domain process p in S(M) corresponds
to removing the corresponding variable inM in the following sense. Let v be the
corresponding variable to p inM. If v corresponds to a process pv in M, then pv is
“shrunken” such that the resulting process only contains one location, and there are
looping edges that assure that every integer assignment and binary synchronization
label in pv is preserved. If v corresponds to an integer variable inM, every integer
constraint and assignment containing v is removed inM.

5.3 Safe Abstraction 71

It is easy to see that for any choice of P , S(M)[P] is an over-approximation of
S(M): every trace π of S(M) induces a corresponding trace of S(M)[P], which
can be obtained from π by projecting all states to the components in P . Moreover,
every error trace for Θ is an error trace for Θ[P]. Of course, the converse is not true
in general, and the existence of error traces for Θ[P] does not imply that there are
error traces for Θ. However, there is a simple sufficient criterion under which all er-
ror traces ofΘ[P] do correspond to error traces ofΘ with the same synchronization
sequence: namely, if P includes all processes with a non-trivial error location set
(i. e., processes pi for which not all locations are in the set L∗i), as well as all causal
graph ancestors of such processes. This is essentially the idea of cone-of-influence
reduction [16].

In fact, cone-of-influence reduction is still error-preserving if we consider an
alternative definition of causal graphs where we only introduce an arc from pi to pj
if some label restricts pi and affects pj . The reason why we also include arcs from
pi to pj if some common label affects both of them is that this gives an additional
decomposition result, which is essential for the safe abstraction technique that is
introduced in the next section.

As a side remark, under our definition, if the causal graph consists of more than
one weakly connected component, then there exists an error trace iff each subtask
induced by a weakly connected component has an error trace. (The overall error
trace is then essentially the concatenation of these “subtraces”.) The intuitive reason
for this property is that if two sets of processes P and P ′ are causally disconnected,
then all state transitions that affect the locations of processes in P are not restricted
by or affect the locations of processes in P ′ (and vice versa), and hence the corre-
sponding subtasks can be addressed independently. A similar decomposition result
does not hold under the alternative definition of causal graphs, where traces that
affect the processes P are not restricted by the processes P ′, but can still change
the locations of P ′ as a side effect.

5.3 Safe Abstraction

In this section, we introduce the safe abstraction technique which is guaranteed
to not introduce spurious error states. In particular, we will see that every error
trace in an abstracted system corresponds to a concrete error trace in the original
system. The approach is based on independent variable domain processes that do
not have any predecessors in the causal graph. We call such processes independent
because by definition of causal graphs, they can change locations independently of
and without affecting the locations of other processes. An independent process p is
called safe if there are no dead ends in p, i. e., if there is a path from every location
in p to every other location.

72 5 The Causal Graph Revisited for Directed Model Checking

Definition 5.7 (Safe process).
For a system M, let Θ = (S(M), L∗) be a model checking task with vari-

able domain system S(M) and error locations L∗. A variable domain process p in
S(M) is safe iff p has no predecessors in the causal graph CG(S(M)), and p is
strongly connected.

Let p be a safe process. For the following considerations, we assume without
loss of generality that

• the error location set for p is not empty (otherwise, trivially there exist no error
states, since the error states are formed as the Cartesian product of the error
location sets of the processes), and

• each label a that occurs in an edge of any process also occurs in an edge of p
(otherwise edges with label a can never be synchronized, and we can remove all
such edges in a preprocessing step).

In this case, it is possible to separate the edges for p from the rest of the model
checking task completely. Let S(M)[P ′] be the subsystem induced by all processes
of S(M) except p, i. e., P ′ = {p1, . . . , pn} \ {p}. Given a global state s of S(M)
and an error trace π′ for S(M)[P ′] that starts in the projection of s to P ′, we
can compute an error trace for S(M) starting from s with a simple polynomial
algorithm:

• If |π′| = 0 (i. e., π′ is the empty trace), then the projection state of s to P ′ is
already an error state for S(M)[P ′], and hence all processes except possibly p
are in an error location in state s. Because p is strongly connected and has at
least one error location, we can find a sequence of edges of p that lead from its
location in s to an error location of p. Because p is independent, these edges
are not restricted by the other processes and do not affect their locations. By
following these edges, we can go from state s to a global error state of S(M).

• If |π′| = n ≥ 1, then the trace starts with some global edge (s′, a, t′) of
S(M)[P ′]. Because p is strongly connected and has at least one location with
an outgoing edge labeled a, we can find a sequence of edges of p that lead from
its location in s to a location in which p can synchronize on a. Because p is
independent, these edges are not restricted by the other processes and do not
affect their locations. By following these edges, we can go from state s to a state
s̃ whose projection to P ′ is s′ and in which all processes can synchronize on a,
and from there to a state t whose projection to P ′ is t′. Since t′ starts an error
trace of length n− 1 in S(M)[P ′], we can reach an error state of S(M) from t
(and hence, from s) by an inductive argument.

The analysis shows that if the independent process p is strongly connected, there
exists a safe abstraction of S(M) to P ′: any error trace of S(M)[P ′] induces an
error trace of S(M), and of course the converse is also true because subsystems are

5.4 The Causal Graph Heuristic for Directed Model Checking 73

always over-approximations. Under these circumstances, we can run the directed
model checking algorithm directly on the subsystem S(M)[P ′] instead of S(M),
and then apply the above procedure to convert the error trace for the abstracted
problem into a concrete one. Of course, the abstraction may cascade, as S(M)[P ′]
may admit further safe abstractions, even for processes that were not originally
independent in P .

In our running example from Figure 5.2, we observe that the processes p1 and p2
are safe since they are independent and strongly connected. The resulting subsystem
consists of p3. Performing directed model checking on that subsystem results in the
simple spurious error trace π = l0, a, l1, b, l2, c, l3 that leads from location l0 to l3 in
p3. Spurious edges in π can only be caused by the safe processes p1 and p2. These
are resolved according to the above procedure: for example, the first spurious edge
(l0, a, l1) in π is resolved by first moving in p1 from location l0 to location l2 to
enable synchronization with a.

5.4 The Causal Graph Heuristic for Directed Model Checking

In this section, we introduce the causal graph distance heuristic to directed model
checking [76]. It has originally been introduced in the area of AI planning [35, 36]
and was an important ingredient of FAST DOWNWARD, the winner in the track for
classical planning of the international planning competition 2004.

For a variable domain system S(M), the causal graph heuristic estimates the
cost of reaching a global error state in S(M) by computing distance estimates for a
number of subtasks which are derived by looking at small “windows” of the causal
graph. In this section, we describe this procedure conceptually as a bottom-up com-
putation along a topological sorting of the causal graph. (In a practical implemen-
tation, a top-down implementation is more efficient, but both approaches lead to
the same distance estimates.) Since we require a topological sorting of the causal
graph, the procedure only works for acyclic causal graphs; we will later explain how
to deal with the cyclic case. For now, let us just remark that deciding the existence
of error traces is already PSPACE-complete for systems with acyclic causal graphs,
even under the further restriction that all processes have only two locations [11].

Throughout this section, we assume that we are given a model checking task
Θ = (S(M), (L∗1, . . . , L

∗
n)) for a variable domain system S(M) = p1 ‖S . . . ‖S

pn with initial global state s0. Our objective is to compute a distance estimate for
a given global state s of S(M), which we denote as hCG(s). For each process
pi = (Li, Ei) and each pair of locations li, l′i ∈ Li, the causal graph heuris-
tic computes a distance estimate costpi(li, l

′
i) for the cost of changing the loca-

tion of pi from li to l′i. The overall distance estimate of s is then defined as
the sum of the costs of reaching the nearest error location in each process, i. e.,

74 5 The Causal Graph Revisited for Directed Model Checking

hCG(s) =
∑n

i=1minl∗i ∈L∗i costpi(li, l
∗
i) for s = 〈l1, . . . , ln〉. Note that the dU esti-

mate, due to Edelkamp et al. [23, 25], is defined by the same equation, but using a
different estimate for costpi(li, l

∗
i), which is simply the graph distance from li to l∗i .

In contrast, the cost estimates for hCG take synchronization labels into account and
usually provide larger (and, as we will see in the experimental evaluation in Section
5.5.2, more accurate) estimates than the graph distance.

5.4.1 Independent Processes

In this section and the following, we describe how the costp(l, l′) estimates are com-
puted. We begin with the base case of independent processes with no predecessors
in the causal graph.

Let p = (L,E) be an independent variable domain process. In this case, like
in the case of the dU heuristic, we define costp(l, l′) as the graph distance from l
to l′ in p. For independent processes, this is an appropriate definition because their
edges are not restricted by any other processes. Hence, in any global state of the
system, a sequence of synchronization labels leading from l to l′ does correspond
to an executable trace that changes the location of p from l to l′, without affecting
the locations of other processes.

In our running example, Figure 5.3 shows that processes p1 and p2 do not have
predecessors in the causal graph, and indeed, Figure 5.2 shows that these are in-
dependent processes, as the only labels affecting them – t1 for p1, t2 for p2 – are
irrelevant for the other processes. Therefore, the cost estimates for these processes
equal the graph distances. For example, costp1(l0, l2) = 2 and costp2(l2, l3) = 1.

5.4.2 Processes with Causal Predecessors

For variable domain processes p which do have predecessors in the causal graph,
cost estimates are also computed by searching for paths in the labeled directed graph
defined by the process. However, here we improve on the dU approach by taking
into account the synchronization labels on the edges: in addition to counting the
number of edges of p required to reach a given location, we also consider the costs
for moving the other processes of the system into locations which can synchronize
with these edges. Note that by the definition of causal graphs, the only processes
which can potentially restrict the non-looping edges of p are its causal predeces-
sors, which we denote as pred(p). Because we compute costs in a bottom-up order
along a topological sorting of the causal graph, we have already computed all cost
estimates for these processes. Hence, the computation of costp(l, l′) is based on
finding traces from l to l′ in the subsystem of S(M) induced by {p} ∪ pred(p),
taking into account the known cost estimates for the processes pred(p).

The algorithm for computing the cost values costp(l, l′) is shown in Figure 5.4.
It is a modification of Dijkstra’s algorithm for finding shortest paths in weighted

5.4 The Causal Graph Heuristic for Directed Model Checking 75

1 function compute-costs(S(M), s, p, l):
2 Let pred(p) be the set of immediate predecessors of p in CG(S(M)).
3 (L,E) := p
4 costp(l, l) := 0
5 costp(l, l′) :=∞ for all l′ ∈ L \ {l}
6 context(l, pi) := location of pi in s, for all pi ∈ pred(p)
7 unreached := L
8 while unreached contains a location l′ ∈ L with costp(l, l′) <∞:
9 Choose such a location l′ ∈ unreached minimizing costp(l, l′).

10 unreached := unreached \ {l′}
11 for each edge (l′, a, l′′) ∈ E from l′ to some l′′ ∈ unreached:
12 target-cost := costp(l, l′) + 1
13 target-context := ∅
14 for each process pi = (Li, Ei) ∈ pred(p):
15 m := context(l′, pi)
16 Choose (m′,m′′) ∈ Li × Li such that (m′, a,m′′) ∈ Ei

and costpi(m,m
′) is minimized.

17 target-cost := target-cost + costpi(m,m
′)

18 target-context(pi) := m′′

19 if target-cost < costp(l, l′′):
20 costp(l, l′′) := target-cost
21 context(l′′, pi) := target-context(pi) for all pi ∈ pred(p)
22 return costp(l, l′) for all l′ ∈ L

Fig. 5.4. Modified Dijkstra algorithm for computing costp(l, l′).

directed graphs, applied to the process p = (L,E). Like Dijkstra’s algorithm, it is
a one-to-all procedure, i. e., for a given start location l, it computes costp(l, l′) for
all l′ ∈ L. The only difference to Dijkstra’s algorithm is that we do not define the
cost of an edge (l′, a, l′′) ∈ E before applying the algorithm. Instead, the edge cost
is computed as soon as location l′ is expanded by the algorithm, and it depends on
the current locations of pred(p) in the situation where l′ is reached.

In detail, the cost of reaching l′′ ∈ L through edge (l′, a, l′′) ∈ E is computed as
the cost of reaching l′ plus the setup cost required to take pred(p) into locations that
allow synchronization on the label a, plus 1 for taking the actual edge with label a
that takes p from l′ to l′′ (lines 12–18). To estimate the setup cost for each prede-
cessor pi ∈ pred(p), we associate each location l′ ∈ L with locations context(l′, pi)
for each pi ∈ pred(p), with the interpretation that when l′ ∈ L is first reached,
we assume that process pi is in location m = context(l′, pi)2. The setup cost for a
given process is then the cheapest cost, according to the previously computed costpi
values, for taking process pi from m to a location m′ where it can synchronize on
the label a (lines 15–17).
2 To avoid confusion, note that contexts in the causal graph setting are not related to the notion of

contexts that has been used in the previous chapter. In this chapter, the term context is mainly used
to be consistent with the literature.

76 5 The Causal Graph Revisited for Directed Model Checking

If it turns out that (l′, a, l′′) ∈ E reaches l′′ more cheaply than the previously
considered edges (line 19), then the cost of l′′ is updated accordingly (line 20, as in
Dijkstra’s algorithm). At the same time, the context of l′′ is set so that it reflects the
way in which we have reached the location: by performing appropriate setup edges
for pred(p) and then synchronizing on label a (lines 16, 18, 21).

We remark that the algorithm is not guaranteed to find a globally shortest trace
in the subsystem induced by {p} ∪ pred(p). Indeed, it may fail to find any path to a
given location l′ ∈ L even though it is reachable. The reason for this is that the setup
for each edge (l′, a, l′′) is performed greedily, without backtracking on the choice
of how to modify the current context in order to allow synchronization on label
a: we always pick a locally cheapest setup sequence. While it would of course be
preferable to guarantee the success of the compute-costs algorithm, unfortunately
this is not possible to do in polynomial time if P 6= NP: if we could, this would
decide the existence of error traces in the model checking task induced by {p} ∪
pred(p). However, it is known that error detection for the subtask induced by a
single process and its direct causal graph predecessors is NP-complete [35].

Returning to our running example from Figure 5.2, the algorithm computes the
following cost estimates costp3(l0, l

′) for the global state 〈l0, l0, l0〉:

• costp3(l0, l0) = 0: this is due to the initialization step (line 4).
• costp3(l0, l1) = 0+1+2 = 3: the three terms correspond to the cost of location

l0, the constant term 1, and the setup cost to reach locations of p1 and p2 in
which we can synchronize on label a. In this case, we need to change p1 from
location l0 to l2, for a setup cost of 2.

• costp3(l0, l2) = 3 + 1 + 2 = 6: cost of location l1, constant term 1, setup cost
to reach locations of p1 and p2 in which we can synchronize on label b. In this
case, we need to change p2 from location l0 to l2, for a setup cost of 2.

• costp3(l0, l3) = 6 + 1 + 4 = 11: cost of location l2, constant term 1, setup cost
to reach locations of p1 and p2 in which we can synchronize on label c. In this
case, we need to change both processes from location l2 to l0, for a setup cost of
2 + 2.

5.4.3 Causal Graphs with Cycles

Up to this point, we have given a complete description of how to compute hCG(s)
for systems with acyclic causal graphs. Unfortunately, many practical systems tend
to have causal graphs with cycles. In this work, we use a rather simple idea to extend
the definition of the heuristic to the general case (for an alternative approach, see
Section 5.6).

If CG(S(M)) is not acyclic, we impose a total order p′1 ≺ · · · ≺ p′n on the
processes of S(M). The computation of cost values then proceeds as previously
described, except that for process p′i, the compute-costs function does not consider

5.4 The Causal Graph Heuristic for Directed Model Checking 77

all causal predecessors pred(p′i) of p′i, but only those which are ordered before p′i in
the ordering. Semantically, this means that we do not consider the synchronization
costs for all processes, but only a subset of them. Of course, different total orders
lead to different synchronization aspects being respected by this abstraction. There-
fore, in practice one would prefer an order which is “close” to a topological sorting
in some sense, i. e., loses as few arcs of the causal graph as possible. In our experi-
ments, we use some simple greedy criteria to compute a reasonable ordering which
are explained in more detail in Section 5.5.1.

5.4.4 Discussion: Sources of Imprecision

As distance heuristics estimate the distance to error states, we discuss reasons where
precision is lost in the distance estimation of the causal graph heuristic. We will
identify several sources of imprecision. Possible ways to overcome these limitations
are described as future work in Section 5.6.

Turning the causal graph acyclic

In the previous sections, we have described a procedure to compute distance es-
timation values for acyclic causal graphs. However, in practice, almost all causal
graphs have cycles (and may even consist of one single strongly connected com-
ponent). The first (and most obvious) reason why precision is lost by hCG is that
the causal graph is statically turned acyclic in such cases. Therefore, some of the
variable dependencies are not considered for the computation of the heuristic val-
ues. Semantically, this means that some setup costs of variables are not taken into
account for the distance computation, which obviously might influence and worsen
the quality of the resulting distance estimates.

The greedy algorithm for the cost-computation

To compute the cost-estimates as described in Figure 5.4, we use a greedy search
algorithm. As argued in Section 5.4.2, this algorithm is not complete, and even
may return infinity although a concrete solution exists. This is because the location
contexts, once they are set, are not changed again later unless the location is reached
more cheaply than before. A way that has looked shortest may turn out to be a dead
end, and therefore, the heuristic may fail to find a solution even if the causal graph
is acyclic.

Example 5.8. Consider the example system in Figure 5.5 consisting of two parallel
processes with synchronization labels a, b and c.

The causal graph for this system is acyclic: we have an arc in the causal graph
from p2 to p1 because a and b restrict p2 and affect p1. A simple trace to reach the

78 5 The Causal Graph Revisited for Directed Model Checking

l0 l1 l2 l3 l4 l5
a a a a a

b

p1 p2

c c c c c c

l0 l1
c

a b, c

Fig. 5.5. Example where hCG fails because of the greedy search algorithm

global error state is obtained by successively applying the edges in p1 that synchro-
nize on a. However, the causal graph distance heuristic also checks the edge from
l0 to l4 in p1 that is labeled with b. The modified Dijkstra algorithm for computing
the cost estimates checks every outgoing edge of p1, and reaches l4 within two steps
from l0 (and therefore, costp1(l0, l4) = 0 + 1 + 1 = 2). In particular, this enforces
p2 to go to location l1 to synchronize with b. Hence, the context in p1 of location l4
is set to p2 = l1, from which the global error state is no longer reachable as there is
no possibility to go back in p2 to its initial location. As this context is not changed
again, hCG fails to find a solution and returns infinity as estimated error distance.

Limited context information

The previous section showed that the causal graph algorithm may fail to find a solu-
tion because of the greedy search algorithm. In this section, we investigate another
source of imprecision that arises because the context information of each process is
limited to one level in the causal graph: The contexts only store the configurations of
the direct causal predecessors, whereas configurations of other predecessors are not
taken into account for the cost computation. As a consequence, error traces found
by hCG might be arbitrarily longer or shorter than the shortest concrete one. To see
this, consider the following example.

l0 l1 l2 l3 l4 l5 l6
x x x x x xp1 p2

p3 p4

c, d c, d c, d c, d c, d c, d a, b, c, d

l0 l1
a

x, b, d x, b, c, d

l0 l1
b

x, a, c x, a, c, d

l0 l1 l2
c d

x, a, b x, a, b x, a, b

Fig. 5.6. Example system where hCG overestimates the true error distance

Example 5.9. The example system depicted in Figure 5.6 consists of four parallel
processes and label set {a, b, c, d, x}. The causal graph of this system is acyclic and

5.4 The Causal Graph Heuristic for Directed Model Checking 79

shown in Figure 5.7. In order to reach the global error state, p4 has to synchronize
with c and d, which enforces p2 to first synchronize with a and p3 to synchronize
with b. To achieve this, p1 has to reach its “last” location l6. In particular, it is
important to note that p1 has to go from its initial location l0 to l6 only once. Overall,
the true error distance in the initial global state where every process is in its initial
location is equal to 10. However, this is not recognized by the causal graph distance
heuristic because for p4, only context information for p2 and p3 is stored. In more
detail, we obtain the following cost estimates: costp1(l0, l6) = 6, costp2(l0, l1) =
1 + 6 = 7, costp3(l0, l1) = 1 + 6 = 7, and costp4(l0, l2) = 1 + 7 + 1 + 7 = 16.
The resulting overestimation for p4 is due to the fact that the costs to reach l6 in p1
have been counted twice.

p1

p2 p3

p4

Fig. 5.7. The causal graph for the system in Example 5.9

Analogously, the causal graph distance heuristic may find an abstract error trace
that is arbitrarily shorter than the shortest concrete one. To see this, consider the
process p′1 as shown in Figure 5.8, and assume that process p1 in Example 5.9 is
replaced by p′1.

l0l1 l2
x xp′1

c, da, c, d b, c, d

Fig. 5.8. Process for system in Figure 5.6 where hCG underestimates the true error distance

In this example, we obtain a shortest error distance of 7 for the initial global
state. However, in this case, hCG underestimates this distance, as the cost estimates
computed by hCG to reach l1 and l2 in p′1 are equal to 1. However, as we have to
initially move to l1, and then to move to l2 from l1, the true costs to reach l2 from l1
are equal to 2. Again, this is not recognized by the causal graph distance heuristic
since the context information is limited, and the contexts in p4 do not contain any
information about p1. Overall, this results in a distance estimate of 6 for the initial
global state, underestimating the true error distance by one.

80 5 The Causal Graph Revisited for Directed Model Checking

5.5 Evaluation

We implemented the causal graph distance heuristic hCG and the safe abstraction
technique in our model checker MCTA and evaluated it on benchmarks from the
benchmark set as described in Section 2.4 on page 18 of this thesis. These include
the Single-Tracked Line Segment case study (S1, . . . , S9), the Mutual-Exclusion
case study (M1, . . . , M4 and N1, . . . , N4), the Fischer Protocols (F5, F10, F15) as
well as the Towers of Hanoi problems (H3, . . . , H9). The experimental results were
obtained on a system with a 3 GHz Intel Pentium 4 CPU, using a memory bound of
1 GByte.

5.5.1 Implementation Details

As described in Section 2.4, our benchmark models consist of parallel processes
with interleaving and binary synchronization semantics with bounded integer vari-
ables. Essentially, in our implementation, each process and bounded integer variable
is identified with a variable domain process, and systems are translated to variable
domain systems. In addition, recall that some benchmarks feature clock variables
and actually represent timed automata [3]. Currently, clocks are ignored for the dis-
tance computation. (In fact, abstracting clocks away is the easiest way to deal with
them for the computation of distance heuristics, and has already successfully been
done in other approaches [21, 52].) For the safe abstraction technique, we addition-
ally check that clocks do not affect any process.

As we have already pointed out, the procedure to compute the causal graph dis-
tance heuristic is defined for acyclic causal graphs. For systems with cyclic causal
graphs, we greedily impose an ordering ≺ on the processes such that as much as
possible of the important synchronization behavior is respected. For the following
description, let M be a system and S(M) be the corresponding variable domain
system. For the computation of the ordering ≺, first recall that arcs in the causal
graph CG(S(M)) are generally induced by several synchronization labels. Essen-
tially, in our implementation, arcs in CG(S(M)) are preferably ignored if they are
induced by as few synchronization labels as possible. This is the same procedure
as applied in the FAST DOWNWARD planning system [36]. Furthermore, variable
domain processes in S(M) that correspond processes in M are treated in a spe-
cial way. As such variable domain processes play a dedicated role in S(M) (and
hence, so do the corresponding processes inM), we order them after variable do-
main processes that correspond to integer variables. In more detail, we require for
all variable domain processes p and p′ that if p corresponds to a process inM and
p ≺ p′, then p′ also corresponds to a process inM.

5.5 Evaluation 81

5.5.2 Experimental Results and Discussion

We compare hCG and hCG with safe abstraction with the distance heuristics dL,
dU , hL and hU as implemented in MCTA. Recall that a detailed description of these
distance heuristics is provided in Section 2.3 on page 16 of this thesis. We report
the number of explored states, the runtime and the error trace length in Tables 5.1,
5.2 and 5.3.

Table 5.1. Number of explored states for hCG and hCG
safe compared to the other distance heuristics.

Abbreviations: #a: number of parallel automata, #v: number of variables, #s: number of variables
removed by safe abstraction, dashes indicate out of memory (> 1 GByte). Best results are given in
bold fonts.

explored states
Instance #a #v #s dL dU hL hU hCG hCG

safe

S1 5 15 0 12780 11449 1704 429 2582 2582
S2 6 17 1 38158 33859 3526 828 2203 1102
S3 6 18 1 54871 51526 4182 1033 2668 1330
S4 7 20 2 519921 465542 29167 12938 17566 2535
S5 8 22 3 4763592 4617860 215525 65506 150176 7247
S6 9 24 4 – – 1710432 453763 1410955 23383
S7 10 26 5 – – – 4230394 – 86900
S8 10 27 5 – – 7128947 3403395 – 126160
S9 10 28 5 – – – – – 600557
M1 3 15 0 12277 185416 4581 7668 6245 6245
M2 4 17 1 43784 56240 15832 18847 18988 8472
M3 4 17 1 54742 869159 7655 19597 27365 10632
M4 5 19 2 202924 726691 71033 46170 96418 18574
N1 3 18 0 15732 10215 50869 9117 8171 8171
N2 4 20 0 102909 642660 30476 23462 30540 30540
N3 4 20 0 131202 1155574 11576 43767 40786 40786
N4 5 22 0 551091 330753 100336 152163 252558 252558
F5 5 6 0 496 9 179 7 9 9
F10 10 11 0 – 9 86378 7 9 9
F15 15 16 0 – 9 – 7 9 9
H3 4 0 0 216 222 127 121 254 254
H4 5 0 0 2732 2276 2302 839 2398 2398
H5 6 0 0 22226 20858 20186 21262 26410 26410
H6 7 0 0 76088 184707 230878 235474 256279 256279
H7 8 0 0 443403 1607485 1984213 2245588 1880203 1880203
H8 9 0 0 – – – – 7641230 7641230
H9 10 0 0 – – – – – –

Overall, we observe that the causal graph distance heuristic hCG is competitive
with previously proposed distance heuristics. First, we observe that hCG mostly
outperforms dL and dU that are based on the plain graph distance. This is reflected
in the number of explored states, the runtime and the length of the found error

82 5 The Causal Graph Revisited for Directed Model Checking

Table 5.2. Runtime for hCG and hCG
safe compared to the other distance heuristics. Abbreviations: #a:

number of parallel automata, #v: number of variables, #s: number of variables removed by safe ab-
straction, dashes indicate out of memory (> 1 GByte). Best results are given in bold fonts.

runtime in seconds
Instance #a #v #s dL dU hL hU hCG hCG

safe

S1 5 15 0 0.1 0.1 0.1 0.0 0.4 0.4
S2 6 17 1 0.2 0.2 0.1 0.1 0.3 0.2
S3 6 18 1 0.3 0.3 0.2 0.1 0.3 0.2
S4 7 20 2 3.2 2.8 1.1 0.8 0.4 0.1
S5 8 22 3 31.3 30.0 7.3 3.9 2.4 0.3
S6 9 24 4 – – 53.5 23.8 37.7 1.6
S7 10 26 5 – – – 201.5 – 5.3
S8 10 27 5 – – 182.9 157.5 – 10.3
S9 10 28 5 – – – – – 51.2
M1 3 15 0 0.3 253.5 0.2 0.3 0.1 0.1
M2 4 17 1 1.1 2.5 0.5 0.8 0.4 0.2
M3 4 17 1 1.5 1938.5 0.2 0.7 0.5 0.3
M4 5 19 2 6.3 506.2 2.3 2.0 2.1 0.5
N1 3 18 0 0.8 0.4 46.3 0.5 0.3 0.3
N2 4 20 0 7.1 2238.9 1.7 1.6 1.4 1.4
N3 4 20 0 11.3 8401.6 0.5 3.1 1.9 1.9
N4 5 22 0 71.4 31.2 7.1 18.1 21.7 21.6
F5 5 6 0 0.0 0.0 0.0 0.0 0.0 0.0
F10 10 11 0 – 0.0 4.2 0.0 0.0 0.0
F15 15 16 0 – 0.0 – 0.0 0.0 0.0
H3 4 0 0 0.0 0.0 0.0 0.0 0.0 0.0
H4 5 0 0 0.0 0.0 0.0 0.0 0.1 0.1
H5 6 0 0 0.1 0.1 0.3 0.5 0.6 0.6
H6 7 0 0 0.3 0.7 3.3 5.7 5.5 5.5
H7 8 0 0 2.1 6.6 30.9 59.0 45.5 45.6
H8 9 0 0 – – – – 190.1 193.3
H9 10 0 0 – – – – – –

traces. In particular, this is interesting because hCG can be considered as a direct
extension of the graph distance heuristic dU (recall that hCG additionally takes
the local context information of causal predecessors into account). The benefit of
this conceptual extension is clearly indicated by the experimental results, and also
motivates to consider more sophisticated context information as future work (see
also Section 5.6). Furthermore, we observe that the performance of hCG is similar
to that of hL in terms of the number of explored states until an error state in found.
The runtimes are also comparable. However, hCG solves one more problem than
hL, and the length of the error traces found with hCG is mostly shorter that with
hL. Finally, we also observe that hCG is somewhat less informed than hU , which
can be observed particularly in the Single-Tracked-Line-Segment case study.

5.5 Evaluation 83

Table 5.3. Error trace length for hCG and hCG
safe compared to the other distance heuristics. Abbrevi-

ations: #a: number of parallel automata, #v: number of variables, #s: number of variables removed
by safe abstraction, dashes indicate out of memory (> 1 GByte). For hCG

safe , trace lengths reported as
x + y denote trace length x for the abstract error trace and x + y for the concrete error trace. Best
results are given in bold fonts.

error trace length
Instance #a #v #s dL dU hL hU hCG hCG

safe

S1 5 15 0 922 823 84 67 112 112
S2 6 17 1 1386 1229 172 83 134 112 + 0
S3 6 18 1 1524 1032 162 79 138 112 + 0
S4 7 20 2 7725 3132 378 112 313 119 + 5
S5 8 22 3 25647 14034 1424 176 773 124 + 11
S6 9 24 4 – – 5041 432 4480 159 + 21
S7 10 26 5 – – – 924 – 250 + 45
S8 10 27 5 – – 5435 2221 – 124 + 16
S9 10 28 5 – – – – – 124 + 23
M1 3 15 0 2779 106224 457 71 231 231
M2 4 17 1 11739 13952 1124 119 395 240 + 3
M3 4 17 1 12701 337857 748 124 361 205 + 4
M4 5 19 2 51402 290937 3381 160 642 219 + 7
N1 3 18 0 3565 2669 26053 99 243 243
N2 4 20 0 18180 415585 1679 154 376 376
N3 4 20 0 20021 262642 799 147 232 232
N4 5 22 0 90467 51642 2455 314 478 478
F5 5 6 0 79 6 12 6 6 6
F10 10 11 0 – 6 22 6 6 6
F15 15 16 0 – 6 – 6 6 6
H3 4 0 0 94 44 48 52 52 52
H4 5 0 0 1108 184 300 102 186 186
H5 6 0 0 4442 708 1458 402 320 320
H6 7 0 0 30980 2734 7284 1544 1228 1228
H7 8 0 0 138584 11202 18500 4988 2954 2954
H8 9 0 0 – – – – 5012 5012
H9 10 0 0 – – – – – –

Moreover, safe abstraction leads to strong performance improvements when ap-
plicable. This is reflected in the S and M examples, where the model reduction
obtained by safe abstraction further significantly reduced the number of states to be
explored. In particular, this is the case in the large S examples. Furthermore, we
observe that the computation of the causal graph structure and the check for safe
variables is very cheap, and the runtime overhead is negligible (a fraction of a sec-
ond in most of the examples). Therefore, the overall model checking performance
is almost not affected by this precomputation if safe abstraction is not applicable
and the system cannot be reduced.

Finally, we remark that safe abstraction is applicable to directed model check-
ing with arbitrary distance heuristics. Currently, our implementation only handles

84 5 The Causal Graph Revisited for Directed Model Checking

safe abstraction with hCG , for which we have shown detailed results. A more gen-
eral implementation is subject to future work. However, we can announce that a
preliminary implementation for other distance heuristics is available and indicates
that similar performance improvements will be achieved also in the general case for
arbitrary distance heuristics.

5.6 Conclusions

In this chapter, we have introduced the causal graph structure to directed model
checking. Based on causal graph analysis, we have first proposed the safe abstrac-
tion principle. This abstraction technique guarantees to preserve error traces in the
sense that every concrete error trace corresponds to an abstract error trace, and
vice versa. Furthermore, we adapted the causal graph distance heuristic from AI
planning to our context of directed model checking. We have also discussed rea-
sons why and where precision is lost when abstract error traces are computed. The
experimental results show that the causal graph heuristic is competitive with pre-
viously proposed heuristics. Moreover, safe abstraction has shown to significantly
improve the directed model checking performance when applicable, while needing
only little computational overhead when not. Overall, the contributions based on
causal graph analysis show to be promising also in directed model checking. Once
more, this reflects the close relationship between directed model checking and AI
planning as heuristic search.

In the future, the precision of the causal graph distance heuristic could be im-
proved in several ways, where the sources of imprecision that we have discussed
in Section 5.4.4 can serve as a starting point for improvements. As an example,
we have observed that pruning arcs in the causal graph affects the distance esti-
mates. In this work, we have applied a rather simple strategy to prune them, and the
question arises if there are more sophisticated pruning strategies that lead to better
distance estimates. Moreover, it will be interesting to investigate if there are classes
of systems where specific pruning strategies work better than others. A problem that
should also be addressed in the future is the treatment of cycles in general. More
sophisticated ways than just statically pruning arcs are likely to further improve the
accuracy of the distance heuristic [38]. Finally, as we have observed that the limited
context information is another source of imprecision of hCG , it will also be inter-
esting to consider “larger” local subproblems for the hCG computation. This means
to extend the context information to n ≥ 1 levels, where the current version of hCG

will be a special case for n = 1.

6

The Model Checker MCTA

In this chapter, we present our directed model checking tool MCTA [56]. The
corresponding tool paper is based on joint work with Kupferschmid, Nebel, and
Podelski. MCTA provides various directed model checking techniques, including
the transition-based techniques presented in this thesis. In addition to the computa-
tional model as considered so far, MCTA is a model checker for real-time systems
modeled as timed automata [3]. We will give a brief and intuitive introduction to
that formalism in Section 6.1. Thereafter, we describe MCTA, its features and an
experimental comparison with the UPPAAL model checker in Section 6.2.

6.1 Timed Automata

The theory of timed automata has been introduced by Alur and Dill [3] and has
been studied in different variants [7, 18, 41, 63]. In this section, we focus on giving
a high level description of this theory that is sufficient to capture the basic ideas
and the description of MCTA in Section 6.2. For more technical details, the reader
is referred to the literature.

Real time systems modeled as timed automata consist of finite state automata
(as the computational model we have considered in this thesis) that are augmented
with real valued clock variables (clocks for short). As one would expect, clocks have
a special semantics and increase synchronously with the same rate. The initial value
of each clock is zero. Transitions can additionally be guarded by clock constraints,
and can reset clock values to zero in the effect. Moreover, locations l contain in-
variants, i. e., clock constraints that specify for which clock values it is allowed to
stay in l.

The operational semantics of systems of timed automataM is given as a transi-
tion system. In addition to the definition of global states so far, global states ofM
also reflect the current values of the clocks. As the domain of clocks is the set that
consists of the non-negative real numbers, the explicit representation of states leads

86 6 The Model Checker MCTA

to an uncountable size of the induced transition system. However, for certain classes
of timed automata, there is a finite symbolic representation of the state space with
the property that every global state that is reachable in the original transition system
is also reachable in the symbolic representation, and vice versa. This representation
is based on the idea that in every global state s, it is sufficient to determine if the
clock values in s satisfy the clock constraints that occur in the system. Therefore,
little differences of clock values are often irrelevant because they cannot be distin-
guished by any clock constraint. For example, if the only clock constraint of the
system is x ≤ 1 for a clock x, it is only important to determine if x is less than
or equal to one or not; given this information, the exact value of x is not relevant.
Such symbolic representations of clock values are called zones. In general, a zone
is defined as a conjunction of clock constraints. The symbolic representation of the
state space is called the zone graph. For a more detailed introduction to timed au-
tomata, the reader is referred to the literature [7]. We conclude the section with a
simple example.

Example 6.1. Consider the simple systemM of Figure 6.1, consisting of one timed
automaton p with 3 locations, initial location l1, no integer variables and one
clock x.

l1 l2 l3press
x := 0

press
x ≥ 50

x ≤ 100

〈l1, x = 0〉 〈l1, x ≥ 0〉 〈l2, x ≤ 100〉

〈l3, x ≥ 50〉〈l1, x ≥ 50〉

Fig. 6.1. Example timed automaton and corresponding zone graph

The timed automaton models a controller of a simple keyboard of a mobile
phone that only consists of one button. The objective is to write a text message
consisting of the letters A and B. If the button is pressed, then A is retrieved. If the
button is pressed again between 50 and 100 milliseconds, A changes to B. In this
example, pressing the button corresponds to receiving a press event. To model the
timing behavior, a clock x is reset to zero when the button is pressed for the first
time. The l2 location (“retrieve A”) has an invariant that specifies that x must not
exceed 100 milliseconds while staying in l2. If the press event is received again and
within 50 and 100 milliseconds, then l3 is reached (“retrieve B”). In both cases, we
finally have to return to l1 in order to receive the next press event, i. e., in order to
write the next letter.

The zone graph ofM is depicted on the right of Figure 6.1. A symbolic state
consists of the current location of p and the zone that describes the possible values
for x. The initial symbolic state is 〈l1, x = 0〉, from which we reach 〈l1, x ≥ 0〉 by

6.2 Description of MCTA 87

letting time pass. As there is no invariant in l1 that restricts x, x can have every non-
negative real value. By pressing the button, we reach state 〈l2, x ≤ 100〉, where the
clock values are restricted to less than or equal to hundred because of l2’s invariant.
From there, when pressing the button again, we reach state 〈l3, x ≥ 50〉. In this
state, x is larger or equal to fifty because of the corresponding guard x ≥ 50, and
there is no upper bound on the values of x any more as there is no invariant in l3.
By returning to the initial location, we end up in the state 〈l1, x ≥ 50〉, where the
values of x are still larger or equal to fifty as no clock reset has been performed.
Finally, the whole procedure can restart from the beginning, and the button can be
pressed again for the next letter. Overall, we have a symbolic representation of the
infinite state space that consists of five symbolic states.

6.2 Description of MCTA

MCTA is a directed model checking tool for timed automata. The input of MCTA is
a system of timed automata and a formula that describes the error states. Given a
model checking task Θ = (M, ϕ), MCTA performs a symbolic reachability anal-
ysis, which means that directed model checking is performed directly on the zone
graph of M. Several types of traces can be generated, including options to find
(guaranteed) shortest error traces. There is also the possibility to examine MCTA’s
traces with UPPAAL’s [6] graphical user interface.

MCTA accepts input models in the form of the UPPAAL input language [6]. So
far, only a fraction thereof is supported, e. g., there is no support for urgent channels,
arrays, etc. yet. Internally, UPPAAL’s timed automata parser library is used. For the
representation of zones, MCTA uses UPPAAL’s difference bound matrices library.
Both libraries are released under the terms of the LGPL or GPL, respectively. All
other data structures, algorithms and their implementation are genuine to MCTA.

MCTA is free software and also released under the terms of the GPL. Precom-
piled Linux binaries and a snapshot of the source code of our tool are also freely
available at http://mcta.informatik.uni-freiburg.de/.

6.2.1 Ingredients in a Nutshell

MCTA is written in C++ and provides a flexible platform to apply and implement
directed model checking techniques. It offers various search algorithms, distance
heuristics and search enhancements for directed model checking. First, MCTA pro-
vides an implementation of breadth-first and depth-first search as well as greedy
search and A∗. Breadth-first search and A∗ with admissible distance heuristics
are guaranteed to find shortest possible error traces [64]. Furthermore, the dis-
tance heuristics dL, dU , hL, hU and hCG are implemented. In addition to the dis-
tance heuristics, the transition-based techniques from this thesis are implemented in

88 6 The Model Checker MCTA

Table 6.1. Experimental results with UPPAAL and MCTA. Dashes indicate out of memory
(> 1 GByte). Best results are given in bold fonts.

explored states runtime in seconds error trace length
Instance UPPAAL MCTA UPPAAL MCTA UPPAAL MCTA

S1 14462 243 0.26 0.05 1037 54
S2 32677 212 0.50 0.06 894 54
S3 45427 198 0.63 0.06 552 54
S4 338814 174 5.35 0.08 1195 55
S5 2655586 147 48.66 0.10 3086 61
S6 22044252 147 448.88 0.13 3019 61
S7 – 143 – 0.15 – 61
S8 – 1466 – 1.28 – 56
S9 – 1575 – 1.49 – 69
M1 9888 4366 0.65 0.24 851 73
M2 29858 2018 2.28 0.21 3456 81
M3 23765 17315 1.82 1.60 2938 163
M4 88622 15349 7.88 2.23 11992 91
N1 9675 5191 1.30 0.33 787 80
N2 48420 3260 8.47 0.32 3870 136
N3 30028 19271 5.00 1.55 3302 149
N4 174206 15102 34.38 1.88 11652 377
A2 57 20 0.01 0.00 34 18
A3 4365 27 0.07 0.02 147 17
A4 6598 34 0.17 0.13 298 22
A5 – 42 – 0.66 – 27
A6 – 50 – 3.26 – 32

MCTA. These include useless transitions, context-enhanced directed model check-
ing, and the safe abstraction technique. We also implemented caching strategies to
avoid the recomputation of heuristic values for the same state. In particular, this is
useful in the context of useless transitions, where heuristic values have to be ac-
cessed several times to decide if a given transition is useless in a given state.

6.2.2 Results

To emphasize MCTA’s performance, we compare MCTA with UPPAAL (version
4.0.6). UPPAAL is a state-of-the-art model checker for timed automata systems and
provides a very efficient implementation of uniformed search methods [6]. The ex-
perimental results were obtained on a system with a 3 GHz Intel Pentium 4 CPU,
using a memory bound of 1 GByte. We show that the application of directed model
checking (MCTA) pays off compared to uninformed search (UPPAAL) when the
aim is to find short error traces. For UPPAAL, we report the results obtained with
its most efficient search algorithm which is randomized depth first search (averaged
over 10 runs). For MCTA, we exemplary report the results obtained with the hU dis-
tance heuristic applied with relatively useless transitions and a caching strategy for
the heuristic values. The results in Table 6.1 impressively demonstrate the power of
directed model checking when the aim is to find short error traces.

6.2 Description of MCTA 89

Compared to the very efficient implementation of uninformed search provided
by the UPPAAL model checker, we observe that MCTA finds significantly shorter
error traces and explores less states. As a consequence, MCTA can handle much
larger systems and is often by orders of magnitude faster. Overall, we observe that
directed model checking with our transition prioritizing techniques is able to handle
very large state spaces. This allows us to handle large and realistic systems very
efficiently. In particular, we have demonstrated that we are able to efficiently handle
systems that cannot be handled by UPPAAL at all.

6.2.3 Future Work

In the future, MCTA will evolve by supporting more language constructs for defin-
ing (extensions of) timed automata and by providing more distance heuristics. Fur-
thermore, MCTA will also provide more search enhancements to prune the state
space. The long term vision is that the results and the practical experience with
MCTA for analyzing incorrect specifications will also flow into tools that were orig-
inally geared towards analyzing correct timed automata. We have done a first step
in this direction with our pattern database approach based on downward pattern
refinement [55], which we will discuss in more detail in the next chapter.

7

Conclusions and Future Research

In this thesis, we have introduced the concept of transition-based directed model
checking, which advances classical directed model checking by prioritizing transi-
tions rather than only prioritizing states. All of the presented techniques are fully
automated and do not need any further user input. To estimate if a transition is
needed to find an error state, we have first presented the concept of useless transi-
tions. This concept has been further adapted to the area of AI planning as heuristic
search. Moreover, based on the notion of interference contexts, we have presented
an alternative technique to compute transition priorities that is more fine-grained
than the Boolean property of uselessness. As there is no theoretical guarantee that
transitions identified with these concepts can always be pruned, we have presented
search algorithms with the property that such transitions are less preferred over oth-
ers. Furthermore, we have proposed the safe abstraction technique to identify transi-
tions that can provably be pruned without affecting completeness. The experimental
evaluation of our techniques in the MCTA model checker revealed significant per-
formance improvements compared to existing directed model checking techniques
on large and realistic case studies. We have also demonstrated that the adaptation of
useless transitions to the area of AI planning improves existing planning techniques
on a large number of benchmarks from the international planning competitions. Fi-
nally, we have demonstrated that transition-based directed model checking enables
us to handle systems that have been out of scope for non-heuristic search algorithms
provided by the UPPAAL model checker. Let us conclude the summary of this the-
sis with a statement of one of the 2007 ACM Turing Award Winners Edmund M.
Clarke: in the 25 Years of Model Checking Festschrift [14], he described challenges
for the future, including the challenge to “scale up even more”, and the challenge
to find efficient model checking techniques for timed automata. In this thesis, we
have demonstrated that transition-based directed model checking improves classi-
cal directed model checking for various distance heuristics, and the implementation
in MCTA shows that transition-based directed model checking is also successfully

92 7 Conclusions and Future Research

applicable to timed automata. In this sense, we conclude that we have done an im-
portant step in this direction.

For the future, it will be important to further investigate (transition-based) search
techniques to advance classical directed model checking. The first reason to do so
is that such techniques provide much potential as we have demonstrated in this the-
sis. The second reason is that there are impressive empirical results for a recently
proposed distance heuristic that indicate that not much more room for improve-
ments with pure heuristic search is achievable, at least not with distance heuristics
based on the monotonicity abstraction in the context of optimal search [37]. Hence,
further search enhancement techniques have to be considered. In a suboptimal set-
ting, a first step in this direction could be to investigate the notion of landmarks
in our directed model checking setting. Landmarks are a successful technique in
AI planning [43, 67]. Adapted to directed model checking, they provide informa-
tion about predicates that have to be true on every error trace at some time point.
Considering this information, e. g., by preferring states that are reached on a trace
where more landmarks have already been satisfied, could lead to further guidance
improvements.

In this thesis, we have intensively discussed strategies to evaluate transitions
during the search. Closely related to the problem of evaluating transitions is the
problem of evaluating variables or predicates of the system under consideration. In
particular, this is important in the context of pattern database heuristics [17, 22].
Pattern database heuristics are an important class of admissible distance heuristics
that are guaranteed to find shortest possible error traces with the A∗ search algo-
rithm [64]. Typically, such distance heuristics are built in a preprocessing step prior
to model checking by an exhaustive state space exploration of an abstracted system.
Abstract system states are stored in a table (the pattern database) together with the
corresponding abstract error distances. During directed model checking, the dis-
tance estimation for a concrete state s corresponds to the abstract error distance of
the corresponding abstract state of s. The abstract system is determined by a set of
variables, the pattern. On the one hand, the abstract system should appropriately
reflect the original system behavior. Therefore, the pattern should contain the most
important variables of the system. On the other hand, the pattern should also yield
abstractions that are as small as possible to be able to handle large systems. On this
point, we emphasize the importance of being able to appropriately evaluate vari-
ables. Obviously, the choice of the pattern is the most crucial part in the design
of a pattern database heuristic because it determines the overall quality of the re-
sulting distance heuristic. However, although various approaches for the automatic
pattern selection have been proposed in the literature [33, 44, 54, 55, 72], the prob-
lem of how to automatically select good patterns is still not considered as solved.
More precisely, the questions remain if there are variables that lead to better pat-
terns and more informed distance heuristics than others, and if these variables can

7 Conclusions and Future Research 93

be identified automatically. In this context, our recently proposed approach based
on downward pattern refinement to evaluate the importance of processes and vari-
ables seems to be very promising [55]. It is based on techniques that have been
adapted from this thesis and appears to be a good starting point for future research.
In particular, the treatment of clocks in the context of timed systems remains as an
important research topic.

For the class of pattern database heuristics, we finally mention that there also
is potential in verifying correct systems with heuristic search. To see this, we
first point out that admissible distance heuristics h, i. e., distance heuristics that
never overestimate the real error distance, can be used as a pruning technique: if
h(s) = ∞ for a global state s, then s can safely be pruned as there is no concrete
error trace from s. Therefore, the absence of error states might be shown without
actually exploring the entire reachable state space. As far as we are aware, the prun-
ing capabilities of admissible distance heuristics like hL have not been powerful
enough to obtain spectacular results. However, the situation changes with more so-
phisticated admissible distance heuristics like the above explained pattern database
heuristics, which have the potential to achieve much more powerful results. In this
direction, Kupferschmid [50] presents encouraging results for the pattern database
heuristic based on Russian Doll abstraction. Furthermore, we have successfully ver-
ified large systems with our recently proposed approach based on downward pattern
refinement [55]. These results demonstrate the potential of applying directed model
checking also for verification, and show that this area should be further explored in
the future.

References

1. The international planning competition 2008. http://ipc.informatik.uni-freiburg.de/. [Online;
accessed 28-February-2011].

2. Journal of artificial intelligence research. http://www.jair.org/. [Online; accessed 28-February-
2011].

3. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. Fahiem Bacchus and Michael Ady. Planning with resources and concurrency: A forward chaining
approach. In Bernhard Nebel, editor, Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI 2001), volume 1, pages 417–424. Morgan Kaufmann, 2001.

5. Jorge Baier and Adi Botea. Improving planning performance using low-conflict relaxed plans. In
Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis, editors, Proceedings of
the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009), pages
10–17. AAAI Press, 2009.

6. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal. In Marco Bernardo
and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems: 4th Inter-
national School on Formal Methods for the Design of Computer, Communication, and Software
Systems (SFM-RT 2004), volume 3185 of Lecture Notes in Computer Science. Springer-Verlag,
2004.

7. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg Desel,
Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri Nets,
volume 3098 of Lecture Notes in Computer Science, pages 87–124. Springer-Verlag, 2004.

8. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:118–149, 2003.

9. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model check-
ing without BDDs. In Rance Cleaveland, editor, Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and Analysis of Systems (TACAS 1999), volume 1579
of Lecture Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.

10. Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence, 129(1–2):5–
33, 2001.

11. Ronen I. Brafman and Carmel Domshlak. Structure and complexity in planning with unary
operators. Journal of Artificial Intelligence Research, 18:315–349, 2003.

12. Tom Bylander. The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 69(1-2):165–204, 1994.

13. Yixin Chen, Benjamin W. Wah, and Chih-Wei Hsu. Temporal planning using subgoal partitioning
and resolution in SGPlan. Journal of Artificial Intelligence Research, 26:323–369, 2006.

96 References

14. Edmund M. Clarke. The birth of model checking. In Orna Grumberg and Helmut Veith, editors,
25 Years of Model Checking, volume 5000 of Lecture Notes in Computer Science, pages 1–26.
Springer-Verlag, 2008.

15. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

16. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
2000.

17. Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

18. Henning Dierks. PLC automata: A new class of implementable real-time automata. Theoretical
Computer Science, 253(1):61–93, 2001.

19. Henning Dierks. Comparing model-checking and logical reasoning for real-time systems. Formal
Aspects of Computing, 16(2):104–120, 2004.

20. Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking with distance-
preserving abstractions. In Antti Valmari, editor, Proceedings of the 13th International SPIN
Workshop (SPIN 2006), volume 3925 of Lecture Notes in Computer Science, pages 19–34.
Springer-Verlag, 2006.

21. Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking with distance-
preserving abstractions. International Journal on Software Tools for Technology Transfer,
11(1):27–37, 2009.

22. Stefan Edelkamp. Planning with pattern databases. In Amedeo Cesta and Daniel Borrajo, editors,
Proceedings of the 6th European Conference on Planning (ECP 2001), pages 13–24, 2001.

23. Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed explicit-state model check-
ing in the validation of communication protocols. International Journal on Software Tools for
Technology Transfer, 5(2):247–267, 2004.

24. Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Partial-order reduction and trail im-
provement in directed model checking. International Journal on Software Tools for Technology
Transfer, 6(4):277–301, 2004.

25. Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit model checking
with HSF-SPIN. In Matthew B. Dwyer, editor, Proceedings of the 8th International SPIN Work-
shop (SPIN 2001), volume 2057 of Lecture Notes in Computer Science, pages 57–79. Springer-
Verlag, 2001.

26. Stefan Edelkamp, Peter Sanders, and Pavel Simecek. Semi-external LTL model checking. In
Aarti Gupta and Sharad Malik, editors, Proceedings of the 20th International Conference on
Computer Aided Verification (CAV 2008), volume 5123 of Lecture Notes in Computer Science,
pages 530–542. Springer-Verlag, 2008.

27. Stefan Edelkamp, Viktor Schuppan, Dragan Bošnački, Anton Wijs, Ansgar Fehnker, and Hu-
sain Aljazzar. Survey on directed model checking. In Doron Peled and Michael Wooldridge,
editors, Proceedings of the 5th International Workshop on Model Checking and Artificial Intelli-
gence (MOCHART 2008), volume 5348 of Lecture Notes in Artificial Intelligence, pages 65–89.
Springer-Verlag, 2009.

28. E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

29. Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

30. Alfonso Gerevini, Derek Long, Patrik Haslum, Alessandro Saetti, and Yannis Dimopoulos. De-
terministic planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence, 173:619–668, 2009.

31. Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through stochastic local search
and temporal action graphs. Journal of Artificial Intelligence Research, 20:239–290, 2003.

References 97

32. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems — An Ap-
proach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer Science.
Springer-Verlag, 1996.

33. Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-independent
construction of pattern database heuristics for cost-optimal planning. In Proceedings of the 22nd
AAAI Conference on Artificial Intelligence (AAAI 2007), pages 1007–1012. AAAI Press, 2007.

34. Patrik Haslum and Peter Jonsson. Planning with reduced operator sets. In Steve Chien, Subbarao
Kambhampati, and Craig A. Knoblock, editors, Proceedings of the 5th International Conference
on Artificial Intelligence Planning Systems (AIPS 2000), pages 150–158. AAAI Press, 2000.

35. Malte Helmert. A planning heuristic based on causal graph analysis. In Shlomo Zilberstein,
Jana Koehler, and Sven Koenig, editors, Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS 2004), pages 161–170. AAAI Press, 2004.

36. Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

37. Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What’s the
difference anyway? In Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis,
editors, Proceedings of the 19th International Conference on Automated Planning and Schedul-
ing (ICAPS 2009), pages 162–169. AAAI Press, 2009.

38. Malte Helmert and Héctor Geffner. Unifying the causal graph and additive heuristics. In Jussi
Rintanen, Bernhard Nebel, J. Christopher Beck, and Eric Hansen, editors, Proceedings of the 18th
International Conference on Automated Planning and Scheduling (ICAPS 2008), pages 140–147.
AAAI Press, 2008.

39. Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for optimal
sequential planning. In Mark Boddy, Maria Fox, and Sylvie Thiébaux, editors, Proceedings of
the 18th International Conference on Automated Planning and Scheduling (ICAPS 2007), pages
176–183. AAAI Press, 2007.

40. Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Explicit-state abstraction: A new method for
generating heuristic functions. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the
23rd AAAI Conference on Artificial Intelligence (AAAI 2008), pages 1547–1550. AAAI Press,
2008.

41. Jochen Hoenicke. Combination of Processes, Data, and Time. PhD thesis, University of Olden-
burg, July 2006.

42. Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

43. Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. Journal of
Artificial Intelligence Research, 22:215–278, 2004.

44. Jörg Hoffmann, Jan-Georg Smaus, Andrey Rybalchenko, Sebastian Kupferschmid, and Andreas
Podelski. Using predicate abstraction to generate heuristic functions in Uppaal. In Stefan
Edelkamp and Alessio Lomuscio, editors, Proceedings of the 4th Workshop on Model Check-
ing and Artificial Intelligence (MOCHART 2006), volume 4428 of Lecture Notes in Computer
Science, pages 51–66. Springer-Verlag, 2007.

45. Gerard J. Holzmann. The SPIN Model Checker – Primer and Reference Manual. Addison-
Wesley, 2003.

46. Shahid Jabbar and Stefan Edelkamp. I/O efficient directed model checking. In Radhia Cousot,
editor, Proceedings of the 6th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI 2005), volume 3385 of Lecture Notes in Computer Science,
pages 313–329. Springer-Verlag, 2005.

47. Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig Boutilier,
editor, Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pages 1728–1733, 2009.

98 References

48. Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic, and stochas-
tic search. In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI 1996),
pages 1194–1201, 1996.

49. Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer. The UniForM
workbench, a universal development environment for formal methods. In Jeannette M. Wing, Jim
Woodcock, and Jim Davies, editors, Proceedings of the World Congress on Formal Methods in
the Development of Computing Systems (FM 1999), volume 1709 of Lecture Notes in Computer
Science, pages 1186–1205. Springer-Verlag, 1999.

50. Sebastian Kupferschmid. Directed Model Checking for Timed Automata. PhD thesis, Albert-
Ludwigs-Universität Freiburg, 2009.

51. Sebastian Kupferschmid, Klaus Dräger, Jörg Hoffmann, Bernd Finkbeiner, Henning Dierks, An-
dreas Podelski, and Gerd Behrmann. Uppaal/DMC – abstraction-based heuristics for directed
model checking. In Orna Grumberg and Michael Huth, editors, Proceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007), volume 4424 of Lecture Notes in Computer Science, pages 679–682. Springer-Verlag,
2007.

52. Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann. Adapting an AI
planning heuristic for directed model checking. In Antti Valmari, editor, Proceedings of the 13th
International SPIN Workshop (SPIN 2006), volume 3925 of Lecture Notes in Computer Science,
pages 35–52. Springer-Verlag, 2006.

53. Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann. Adapting
an AI planning heuristic for directed model checking. Technical Report 222, University of
Freiburg, Department of Computer Science, Freiburg, Germany, 2006. Available at http:
//www.informatik.uni-freiburg.de/tr/2006/Report222/.

54. Sebastian Kupferschmid, Jörg Hoffmann, and Kim G. Larsen. Fast directed model checking via
russian doll abstraction. In C. R. Ramakrishnan and Jakob Rehof, editors, Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008), volume 4963 of Lecture Notes in Computer Science. Springer-Verlag, 2008.

55. Sebastian Kupferschmid and Martin Wehrle. Abstractions and pattern databases: The quest for
succinctness and accuracy. In Parosh A. Abdulla and K. Rustan M. Leino, editors, Proceedings
of the 17th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2011), volume 6605 of Lecture Notes in Computer Science, pages 276–290.
Springer-Verlag, 2011.

56. Sebastian Kupferschmid, Martin Wehrle, Bernhard Nebel, and Andreas Podelski. Faster than
Uppaal? In Aarti Gupta and Sharad Malik, editors, Proceedings of the 20th International Con-
ference on Computer Aided Verification (CAV 2008), volume 5123 of Lecture Notes in Computer
Science, pages 552–555. Springer-Verlag, 2008.

57. Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Systems,
5(1):1–11, 1987.

58. Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing of mul-
tithreaded programs. In Jeanne Ferrante and Kathryn S. McKinley, editors, Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation (PLDI
2007), pages 446–455. ACM Press, 2007.

59. Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., 1 edition, 1979.
60. Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory and Practice. Mor-

gan Kaufmann Publishers, San Fransisco, CA, 2004.
61. Bernhard Nebel, Yannis Dimopoulos, and Jana Koehler. Ignoring irrelevant facts and operators

in plan generation. In Sam Steel and Rachid Alami, editors, Proceedings of the 4th European
Conference on Planning (ECP 1997), volume 1348 of Lecture Notes in Computer Science, pages
338–350. Springer-Verlag, 1997.

References 99

62. Ernst-Rüdiger Olderog and Henning Dierks. Moby/RT: A tool for specification and verification
of real-time systems. Journal of Universal Computer Science, 9(2):88–105, 2003.

63. Ernst-Rüdiger Olderog and Henning Dierks. Real-Time Systems: Formal Specification and Au-
tomatic Verification. Cambridge University Press, 2008.

64. Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

65. Kairong Qian and Albert Nymeyer. Guided invariant model checking based on abstraction and
symbolic pattern databases. In Kurt Jensen and Andreas Podelski, editors, Proceedings of the
10th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer Science, pages 497–511.
Springer-Verlag, 2004.

66. Silvia Richter and Malte Helmert. Preferred operators and deferred evaluation in satisficing plan-
ning. In Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis, editors, Pro-
ceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS
2009), pages 273–280. AAAI Press, 2009.

67. Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In Dieter Fox
and Carla P. Gomes, editors, Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI 2008), pages 975–982. AAAI Press, 2008.

68. Jussi Rintanen. Introduction to automated planning. manuscript, 2006.
69. Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: Parallel plans and

algorithms for plan search. Artificial Intelligence, 170(12–13):1031–1080, 2006.
70. Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. SAT-based parallel plan-

ning using a split representation of actions. In Alfonso Gerevini, Adele E. Howe, Amedeo Cesta,
and Ioannis Refanidis, editors, Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS 2009). AAAI Press, 2009.

71. Charles L. Seitz. Ideas about arbiters. Lambda, 1:10–14, 1980.
72. Jan-Georg Smaus and Jörg Hoffmann. Relaxation refinement: A new method to generate heuristic

functions. In Doron Peled and Michael Wooldridge, editors, Proceedings of the 5th International
Workshop on Model Checking and Artificial Intelligence (MOCHART 2008), volume 5348 of
Lecture Notes in Artificial Intelligence, pages 147–165. Springer-Verlag, 2009.

73. Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz Rozenberg, editor,
Proceedings of the 10th International Conference on Applications and Theory of Petri Nets (APN
1989), volume 483 of Lecture Notes in Computer Science, pages 491–515. Springer-Verlag, 1991.

74. Vincent Vidal. A lookahead strategy for heuristic search planning. In Shlomo Zilberstein, Jana
Koehler, and Sven Koenig, editors, Proceedings of the 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2004), pages 150–159. AAAI Press, 2004.

75. Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda. Model
checking programs. Automated Software Engeneering, 10(2):203–232, 2003.

76. Martin Wehrle and Malte Helmert. The causal graph revisited for directed model checking. In
Jens Palsberg and Zhendong Su, editors, Proceedings of the 16th International Symposium on
Static Analysis (SAS 2009), volume 5673 of Lecture Notes in Computer Science, pages 86–101.
Springer-Verlag, 2009.

77. Martin Wehrle and Sebastian Kupferschmid. Context-enhanced directed model checking. In
Jaco van de Pol and Michael Weber, editors, Proceedings of the 17th International SPIN Work-
shop (SPIN 2010), volume 6349 of Lecture Notes in Computer Science, pages 88–105. Springer-
Verlag, 2010.

78. Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski. Useless actions are useful. In
Jussi Rintanen, Bernhard Nebel, J. Christopher Beck, and Eric Hansen, editors, Proceedings of
the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008), pages
388–395. AAAI Press, 2008.

100 References

79. Martin Wehrle, Sebastian Kupferschmid, and Andreas Podelski. Transition-based directed model
checking. In Stefan Kowalewski and Anna Philippou, editors, Proceedings of the 15th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2009), volume 5505 of Lecture Notes in Computer Science, pages 186–200. Springer-Verlag,
2009.

80. C. Han Yang and David L. Dill. Validation with guided search of the state space. In Proceedings
of the 35th Conference on Design Automation (DAC 1998), pages 599–604. ACM Press, 1998.

