Merge-and-Shrink Task Reformulation for Classical Planning

Álvaro Torralba ${ }^{1}$ Silvan Sievers ${ }^{2}$
${ }^{1}$ Saarland University, Saarland Informatics Campus, Germany ${ }^{2}$ University of Basel, Switzerland

Summary/TL;DR

Motivation

- Different planning representations for classical planning (e.g., FDR, STRIPS)
- Computational complexity independent of chosen representation
- However: accidental complexity (of the chosen representation and model) can impact planner performance

Contribution

- Merge-and-shrink (M\&S) framework for task reformulation:
- Task representation based on factored transition system (FTS)

Various transformations for satisficing and optimal planning

- Plan reconstruction methods
- Theoretical result: M\&S reformulations dominate previous FDR-based reformulation methods
- Adaptation of delete-relaxation and M\&S heuristics to FTS representation

Planning Task Representations

- Compact representation of transition systems (TS): $\Theta=\left\langle S, L, T, s^{\prime}, \mathcal{S}^{\star}\right\rangle$
- FDR task: $\Pi^{\mathcal{V}}=\left\langle\mathcal{V}, \mathcal{A}, s^{\mathcal{I}}, \mathcal{G}\right\rangle$
- FTS task: set of TSs $\left\{\Theta_{1}, \ldots\right.$
$\left.\Theta_{n}\right\}$ with a common set L of labels
- Limited form of disjunctive preconditions, conditional effects, and non-deterministic effects

FTS Task Reformulations with M\&S

Task Reformulation

Partial function ρ on task Π s.t. $\rho(\Pi)$ is solvable iff Π is solvable and there exists a plan reconstruction function $\overleftarrow{\rho}$ that maps each solution π of $\rho(\Pi)$ to a solution $\overleftarrow{\rho}(\pi)$ of Π.

Task $\Pi \quad$ reformulation (ρ)

- Task $\rho(\square)$

Plan $\left.\pi=\overleftarrow{\rho}\left(\pi^{\rho}\right)\right)^{\text {plan reconstruction }(\overleftarrow{\rho})}$ Plan π^{ρ}

M\&S Transformations on FTS Task $\Pi^{\mathcal{T}}$

Exact transformations preserve the set of solutions (optimal planning):

- Label reduction: combine labels with the same transitions in all but one factor
- Bisimulation Shrinking: combine states in one factor if they are bisimilar (their outgoing transitions lead to equivalent states)
- Merging: replace two factors of $\Pi^{\mathcal{T}}$ by their product
- Pruning: throw away states not relevant for solutions

Transformations that preserve the existence of a solution (satisficing planning):

- Weak bisimulation: two states are weakly bisimilar if they have equivalent outgoing paths $\xrightarrow{\tau_{7}} \ldots \xrightarrow{\tau_{\rightarrow}} \xrightarrow{\tau_{\rightarrow}} \ldots \xrightarrow{\tau_{T}}$ leading to equivalent states, where τ are internal labels that can always be applied locally without side effects.

Example task: one truck, four locations, limited amount of fuel, turn on engine only with full tank $\rightarrow 3$ FDR variables/atomic TSs

(a) Atomic task: truck position $\left(\Theta^{v_{t}}\right)$, fuel $\left(\Theta^{v_{f}}\right)$, and status $\left(\Theta^{v_{s}}\right)$

(b) After label reduction

(c) After shrinking and removing irrelevant ON . (d) After merging and pruning unreachable states.

Plan Reconstruction

- Given a sequence of planning tasks and reformulations and a plan of the final reformulated task, reconstruct plan of the original task.
- Treat exact transformations (merging, label reduction and bisimulation shrinking) as single transformation: only require label and state mapping
Weak bisimulation: re-introduce τ-label transitions whenever necessary

Example

- Example plan for task of Figure C):

$$
(\mathrm{A}, 2, \text { off }) \xrightarrow{\mathrm{CF}}(\mathrm{~A}, 2, \text { ro }) \xrightarrow{\mathrm{DR}}(\mathrm{BC}, 1, \text { ro }) \xrightarrow{\mathrm{DR}}(\mathrm{D}, 0, \text { ro })
$$

- Execution on task of Figure b): DR fails in rd; insert a τ-transition with ON resulting in the plan:
$(A, 2$, off $) \xrightarrow{\mathrm{CF}}(\mathrm{A}, 2$, rd $) \xrightarrow{\mathrm{ON}_{N}}(\mathrm{~A}, 2$, on $) \xrightarrow{\mathrm{DR}_{P}}(\mathrm{BC}, 1$, on $) \xrightarrow{\mathrm{DR}_{\longrightarrow}}(\mathrm{D}, 0$, on $)$.
- Reconstruct original plan by inverting label mapping: $(A, 2, o f f) \xrightarrow{\mathrm{CF}}$

Theoretical Comparison to FDR Reformulations

Dominance

FTS reformulation X dominates FDR reformulation Y if, given an FDR task $\Pi^{\mathcal{V}}$ and an applicable reformulation $\rho^{Y} \in Y$, there exists a reformulation $\rho^{X} \in$ X such that it is applicable in the corresponding FTS task atomic $\left(\Pi^{\mathcal{V}}\right)$ and $\rho^{X}\left(\operatorname{atomic}\left(\Pi^{\mathcal{V}}\right)\right)=\operatorname{atomic}\left(\rho^{Y}\left(\Pi^{\mathcal{V}}\right)\right)$.
Generalize actions: substitute two FDR actions by a single one if they are equal except for a precondition on a binary variable.
Theorem: Exact label reduction strictly dominates generalize actions.
Safe variable abstraction: remove any root variable in the causal graph whose free domain transition graph is strongly connected.
Theorem: Removing transition systems with core states after applying weak bisimulation shrinking strictly dominates safe variable abstraction.
Merge values: reduce the domain of an FDR variable by merging several values whenever they can be switched via actions without any side effects.
Theorem: Weak bisimulation shrinking strictly dominates merge values.

Planning on the FTS Representation

Applicable actions: multiple transitions with same label for single state \Rightarrow for each abstract state, store set of outgoing labels

- Successor generation: enumerate all successors for single state and label
- Delete relaxation heuristics: factors can be in multiple states simultaneously

Experiments

FDR	12133736797
a	$1-13636770$
a-ls	$3 \quad 4-3635780$
d-ls	$221-7600$
m-ls	$\begin{array}{lllll}4 & 4 & 4 & 19 & -632\end{array}$
FDR	- 231214822
a	$4-11316826$
a-ls	$74-1316831 \ddot{\square}$
	$131110-11815$

	$\stackrel{\sim}{\square}$
FDR	- 181527221326
a	- 1328221272
a-ls 18	$1815-31241368$
d-ls	$10104-111208$ 岃
m-ls	$\begin{array}{llll}13 & 15 & 721 & -1224\end{array}$
FDR	- 171524231502
a	$8-1125241461 \stackrel{\circ}{\circ}$
a-ls	$138-26261471$
	$962-151357 \mu^{\circ}$
-Is	$9 \quad 7 \quad 316-1322$

Merge (DFP) $)+$ Expansion FDR + Bisimulation

