Merge-and-Shrink Task Reformulation for Classical Planning

Álvaro Torralba¹ Silvan Sievers²

¹Saarland University, Saarland Informatics Campus, Germany ²University of Basel, Switzerland

Summary/TL;DR

Motivation

- Different planning representations for classical planning (e.g., FDR, STRIPS)
- Computational complexity independent of chosen representation
- However: accidental complexity (of the chosen representation and model) can impact planner performance

Contribution

- Merge-and-shrink (M&S) framework for task reformulation:
 - Task representation based on factored transition system (FTS)
 - Various transformations for satisficing and optimal planning
 - Plan reconstruction methods
- Theoretical result: M&S reformulations dominate previous FDR-based

Plan Reconstruction

- Given a sequence of planning tasks and reformulations and a plan of the final reformulated task, reconstruct plan of the original task.
- Treat exact transformations (merging, label reduction and bisimulation) shrinking) as single transformation: only require label and state mapping
- \blacktriangleright Weak bisimulation: re-introduce τ -label transitions whenever necessary

Example

- Example plan for task of Figure c): $(A, 2, off) \xrightarrow{CF} (A, 2, ro) \xrightarrow{DR} (BC, 1, ro) \xrightarrow{DR} (D, 0, ro)$
- \blacktriangleright Execution on task of Figure b): DR fails in rd; insert a τ -transition with ON resulting in the plan: $(A, 2, off) \xrightarrow{CF} (A, 2, rd) \xrightarrow{O_N} (A, 2, on) \xrightarrow{D_R} (BC, 1, on) \xrightarrow{D_R} (D, 0, on).$
- ▶ Reconstruct original plan by inverting label mapping: $(A, 2, off) \xrightarrow{CF}$ $(\Lambda \cap I)$ $(N, (\Lambda \cap I))$ $(R_{A}R_{21}, (\Gamma I))$ $(R_{B}R_{10}, (\Gamma \cap I))$

reformulation methods

Adaptation of delete-relaxation and M&S heuristics to FTS representation

Planning Task Representations

- Compact representation of transition systems (TS): $\Theta = \langle S, L, T, s', S^* \rangle$
- ► FDR task: $\Pi^{\mathcal{V}} = \langle \mathcal{V}, \mathcal{A}, s^{\mathcal{I}}, \mathcal{G} \rangle$
- FTS task: set of TSs $\{\Theta_1, \ldots, \Theta_n\}$ with a common set L of labels
 - ► Limited form of disjunctive preconditions, conditional effects, and non-deterministic effects

FTS Task Reformulations with M&S

Task Reformulation

Partial function ρ on task Π s.t. $\rho(\Pi)$ is solvable iff Π is solvable and there exists a plan reconstruction function $\overleftarrow{\rho}$ that maps each solution π of $\rho(\Pi)$ to a solution $\overleftarrow{\rho}(\pi)$ of Π .

$$A, Z, rd) \xrightarrow{\oplus m} (A, Z, on) \xrightarrow{\oplus m_{A-D,Z-1}} (B, I, on) \xrightarrow{\oplus m_{B-D,I-0}} (D, 0, on).$$

Theoretical Comparison to FDR Reformulations

Dominance

FTS reformulation X dominates FDR reformulation Y if, given an FDR task $\Pi^{\mathcal{V}}$ and an applicable reformulation $\rho^{Y} \in Y$, there exists a reformulation $\rho^{X} \in$ X such that it is applicable in the corresponding FTS task $atomic(\Pi^{\nu})$ and $\rho^{X}(atomic(\Pi^{\mathcal{V}})) = atomic(\rho^{Y}(\Pi^{\mathcal{V}})).$

Generalize actions: substitute two FDR actions by a single one if they are equal except for a precondition on a binary variable. **Theorem:** Exact label reduction strictly dominates generalize actions.

Safe variable abstraction: remove any root variable in the causal graph whose free domain transition graph is strongly connected.

Theorem: Removing transition systems with core states after applying weak bisimulation shrinking strictly dominates safe variable abstraction.

Merge values: reduce the domain of an FDR variable by merging several values whenever they can be switched via actions without any side effects. **Theorem:** Weak bisimulation shrinking strictly dominates merge values.

Planning on the FTS Representation

M&S Transformations on FTS Task $\Pi^{\mathcal{T}}$

Exact transformations preserve the set of solutions (optimal planning):

- Label reduction: combine labels with the same transitions in all but one factor
- Bisimulation Shrinking: combine states in one factor if they are bisimilar (their outgoing transitions lead to equivalent states)
- \blacktriangleright Merging: replace two factors of $\Pi^{\mathcal{T}}$ by their product
- Pruning: throw away states not relevant for solutions

Transformations that preserve the existence of a solution (satisficing planning):

Weak bisimulation: two states are weakly bisimilar if they have equivalent outgoing paths $\xrightarrow{\tau}$... $\xrightarrow{\tau}$ $\xrightarrow{\prime}$ $\xrightarrow{\tau}$ leading to equivalent states, where τ are internal labels that can always be applied locally without side effects.

Example task: one truck, four locations, limited amount of fuel, turn on engine only with full tank \rightarrow 3 FDR variables/atomic TSs

- Applicable actions: multiple transitions with same label for single state \Rightarrow for each abstract state, store set of outgoing labels
- Successor generation: enumerate all successors for single state and label
- Delete relaxation heuristics: factors can be in multiple states simultaneously

Experiments

	FDR	ס	a-Is	d-ls	m-ls	tot	orcl		FDR	ס	a-Is	d-ls	m-ls	tot	orcl
FDR	—	12	13	37	36	797		FDR	_	18	15	27	22	1326	
а	1	_	1	36	36	770	801	а	6	_	13	28	22	1272	1413
a-ls	3	4	_	36	35	780	 ×	a-ls	18	15	_	31	24	1368	1
d-ls	2	2	1	_	7	600	hmai	d-ls	10	10	4	_	11	1208	μFF.
m-ls	4	4	4	19	_	632		m-ls	13	15	7	21	_	1224	
FDR	_	2	3	12	14	822	0	FDR		17	15	24	23	1502	0
а	4	—	1	13	16	826	91(а	8	_	11	25	24	1461	58
a-ls	7	4	_	13	16	831	.p	a-ls	13	8	_	26	26	1471	·:
d-ls 1	13	11	10	_	11	815	M&S	d-ls				_	15	1357	d LL
m-ls 1	16	15	15	16	—	849	4	m-ls	9	7	3	16	—	1322	4

