Summary/TL;DR

Motivation
- Different planning representations for classical planning (e.g., FDR, STRIPS)
- Computational complexity independent of chosen representation
- However: accidental complexity (of the chosen representation and model) can impact planner performance

Contribution
- Merge-and-shrink (M&S) framework for task reformulation:
 - Task representation based on factored transition system (FTS)
 - Various transformations for satisficing and optimal planning
 - Plan reconstruction methods
 - Theoretical result: M&S reformulations dominate previous FDR-based reformulation methods
 - Adaptation of delete-relaxation and M&S heuristics to FTS representation

FTS Task Reformulations with M&S

Task Reformulation
Partial function \(\rho \) on task \(\Pi \) s.t. \(\rho(\Pi) \) is solvable iff \(\Pi \) is solvable and there exists a plan reconstruction function \(\overline{\rho} \) that maps each solution \(\pi \) of \(\rho(\Pi) \) to a solution \(\overline{\rho}(\pi) \) of \(\Pi \).

\[
\begin{align*}
\text{Task } \Pi & \quad \xrightarrow{\text{reformulation } (\rho)} \quad \text{Task } \rho(\Pi) \\
\text{Plan } \pi & \quad \xrightarrow{\text{plan reconstruction } (\overline{\rho})} \quad \text{Plan } \overline{\rho}(\pi)
\end{align*}
\]

M&S Transformations on FTS Task \(\Pi^T \)

Exact transformations preserve the set of solutions (optimal planning):
- **Label reduction**: combine labels with the same transitions in all but one factor
- **Bisimulation Shrinking**: combine states in one factor if they are bisimilar (their outgoing transitions lead to equivalent states)
- **Merging**: replace two factors of \(\Pi^T \) by their product
- **Pruning**: throw away states not relevant for solutions

Transformations that preserve the existence of a solution (satisficing planning):
- **Weak bisimulation**: two states are weakly bisimilar if they have equivalent outgoing paths \(\ldots \rightarrow \tau \ldots \rightarrow \tau \ldots \rightarrow \rightarrow \) leading to equivalent states, where \(\tau \) are **internal labels** that can always be applied locally without side effects.

Example task: one truck, four locations, limited amount of fuel, turn on engine only with full tank \(\rightarrow \) 3 FDR variables/atomic Ts.

Plan Reconstruction

- Given a sequence of planning tasks and reformulations and a plan of the final reformulated task, reconstruct plan of the original task.
- Treat exact transformations (merging, label reduction and bisimulation shrinking) as single transformation: only require label and state mapping
- Weak bisimulation: re-introduce \(\tau \)-label transitions whenever necessary

Example
- Example plan for task of Figure c):
 \((A, 2, \text{off}) \rightarrow (A, 2, \text{on}) \rightarrow (B, 1, \text{off}) \rightarrow (D, 0, \text{on}) \)
- Execution on task of Figure b): Dtr fails in rd; insert a \(\tau \)-transition with \(\text{On} \) resulting in the plan:
 \((A, 2, \text{off}) \rightarrow (A, 2, \text{on}) \rightarrow (B, 1, \text{on}) \rightarrow (D, 0, \text{on}) \)
- Reconstruct original plan by inverting label mapping: \((A, 2, \text{off}) \rightarrow (A, 2, \text{on}) \rightarrow (B, 1, \text{on}) \rightarrow (D, 0, \text{on}) \)

Theoretical Comparison to FDR Reformulations

Dominance
FTRS reformulation \(X \) dominates FDR reformulation \(Y \) if, given an FDR task \(\Pi^T \) and an applicable reformulation \(\rho^Y \) \(\in Y \), there exists a reformulation \(\rho^X \) \(\in X \) such that it is applicable in the corresponding FTS task atomic(\(\Pi^T \)) and \(\rho^X(\text{atomic}(\Pi^T)) = \text{atomic}(\rho^Y(\Pi^T)) \).

Generalize actions: substitute two FDR actions by a single one if they are equal except for a pre-condition on a binary variable.

Safe variable abstraction: remove any root variable in the causal graph whose free domain transition graph is strongly connected.

Theorem: Removing transition systems with core states after applying weak bisimulation shrinking strictly dominates safe variable abstraction.

Merge values: reduce the domain of an FDR variable by merging several values whenever they can be switched via actions without any side effects.

Theorem: Weak bisimulation shrinking strictly dominates merge values.

Planning on the FTS Representation

- **Applicable actions:** multiple transitions with same label for single state \(\rightarrow \) for each abstract state, store set of outgoing labels
- **Successor generation:** enumerate all successors for single state and label
- **Delete relaxation heuristics:** factors can be in multiple states simultaneously

Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>FDR</th>
<th>FDR</th>
<th>FDR</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\rho)</td>
<td>(\rho)</td>
<td>(\rho)</td>
<td>(\rho)</td>
</tr>
<tr>
<td>FDR</td>
<td>12</td>
<td>13</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>a-ls</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>m-ls</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>FDR</td>
<td>18</td>
<td>15</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>a</td>
<td>6</td>
<td>13</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>a-ls</td>
<td>15</td>
<td>18</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>m-ls</td>
<td>13</td>
<td>15</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>FDR</td>
<td>17</td>
<td>15</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>a</td>
<td>8</td>
<td>11</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>a-ls</td>
<td>13</td>
<td>18</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>m-ls</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>FDR</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>a</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>a-ls</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>m-ls</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

b) After shrinking and removing irrelevant On.

Example:
- Atomic task: truck position \(\Theta^T \), fuel \(\Theta^F \), and status \(\Theta^S \).
- After labeling reduction
- After shrinking and removing irrelevant On.
- After merging and pruning unreachable states.