Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Merge-and-Shrink Task Reformulation for Classical Planning

Álvaro Torralba, Silvan Sievers

HSDIP 2019

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
●0000000	00		0000	o
Classical Pla	anning			

Definition. A planning task is a 4-tuple $\Pi = (V, A, I, G)$ where:

- *V* is a set of state variables, each $v \in V$ with a finite domain D_v .
- A is a set of actions; each a ∈ A is a triple (pre_a, eff_a, c_a), of precondition and effect (partial assignments), and the action's cost c_a ∈ ℝ⁺₀.
- Initial state I (complete assignment), goal G (partial assignment).

 \rightarrow Solution ("Plan"): Action sequence mapping *I* into *s* s.t. *s* \models *G*.

Accidental Complexity ●0000000	FTS oo	M&S Reformulation	Experiments	Conclusion o
Classical Pla	anning			

Definition. A planning task is a 4-tuple $\Pi = (V, A, I, G)$ where:

- *V* is a set of state variables, each $v \in V$ with a finite domain D_v .
- A is a set of actions; each a ∈ A is a triple (pre_a, eff_a, c_a), of precondition and effect (partial assignments), and the action's cost c_a ∈ ℝ⁺₀.
- Initial state I (complete assignment), goal G (partial assignment).
- \rightarrow Solution ("Plan"): Action sequence mapping *I* into *s* s.t. *s* \models *G*.

Running Example:

•
$$V = \{T, F\}$$
 with $D_t = \{A, B, C, D\},$
 $D_F = \{0, 1, 2\}.$

•
$$A = \{drive(x, x', f, f')\}$$

- $I = \{T = A, F = 2\}$
- $G = \{T = D\}$

B C A C

Álvaro Torralba, Silvan Sievers

A a al a la la tal C		L		
0000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Accidental Complexity

•
$$I = \{T = A, F = 2\}$$

•
$$G = \{T = D\}$$

Accidental complexity: when solving the problem is harder due to how it is encoded

A a al d a ratal C		L		
0000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Accidental Complexity

Accidental complexity: when solving the problem is harder due to how it is encoded

Álvaro Torralba, Silvan Sievers

Defensedette				
0000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Reformulation

Accidental Complexity	FTS oo	M&S Reformulation	Experiments	Conclusion o

Reformulation

Transform the model to get rid of "accidental" complexity

Task ∏

Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion o
Reformulation				

Task II
$$\longrightarrow$$
 Task $\rho(\Pi)$

Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion o
Reformulation				

Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion O
Reformulation				

Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion O
Reformulation				

Properties:

• Polynomial: ρ and $\overleftarrow{\rho}$ run in polynomial time in the $|\Pi|$ and $|\overleftarrow{\rho}(\pi^{\rho})|$.

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion o
Reformulatio	n			

Properties:

- Polynomial: ρ and $\overleftarrow{\rho}$ run in polynomial time in the $|\Pi|$ and $|\overleftarrow{\rho}(\pi^{\rho})|$.
- Optimal: π^{ρ} is optimal for $\rho(\Pi) \Rightarrow \overleftarrow{\rho}(\pi^{\rho})$

Álvaro Torralba, Silvan Sievers

	Les sub ette	_		
000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Abstraction Heuristics

Θ

Álvaro Torralba, Silvan Sievers

	Les sub ette	_		
000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Abstraction Heuristics

Θ

Álvaro Torralba, Silvan Sievers

Abstraction He	uristics	3		
Accidental Complexity	FTS oo	M&S Reformulation	Experiments	Conclusion o

Abstraction H	euristic	S		
Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion o

Álvaro Torralba, Silvan Sievers

Abstraction I	Jouriotia			
Accidental Complexity	FTS 00	M&S Reformulation	Experiments	$\stackrel{\text{Conclusion}}{\circ}$

Álvaro Torralba, Silvan Sievers

Abstraction I	Jouristic	NC NO.		
Accidental Complexity	FTS oo	M&S Reformulation	Experiments	Conclusion o

 \rightarrow An abstraction is refinable if a solution for the abstract task can be transformed in polynomial time in a solution for the original

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away

 \rightarrow In our example: gets rid of variable E

Abstract plan =
$$\langle DR_{A-B,2-1}, DR_{B-D,1-0} \rangle$$

Original plan = \langle

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away

 \rightarrow In our example: gets rid of variable E

Abstract plan =
$$\langle DR_{A-B,2-1}, DR_{B-D,1-0} \rangle$$

Original plan = $\langle turnon, DR_{A-B,2-1}, DR_{B-D,1-0} \rangle$

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away

 \rightarrow In our example: gets rid of variable E

Abstract plan =
$$\langle DR_{A-B,2-1}, DR_{B-D,1-0} \rangle$$

Original plan = $\langle turnon, DR_{A-B,2-1}, DR_{B-D,1-0} \rangle$

 \rightarrow In Logistics: solves the problem without doing any search

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
00000000				

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away

 \rightarrow In our example: gets rid of variable E

Abstract plan =
$$\langle DR_{A-B,2-1}, DR_{B-D,1-0} \rangle$$

Original plan = $\langle turnon, DR_{A-B,2-1}, DR_{B-D,1-0} \rangle$

 \rightarrow In Logistics: solves the problem without doing any search

Extensions:

- Haslum (2007) gave a stronger criteria
- Tozicka et al. (2016) use this to merge values of a variable

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
00000000				

Running Example with Accidental Complexity

 \rightarrow Before turning on the engine, we need to check that we have 2 units of fuel with the check-fuel action

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
00000000				

Running Example with Accidental Complexity

 \rightarrow Before turning on the engine, we need to check that we have 2 units of fuel with the check-fuel action

check-fuel:
 pre: E=off, F=2
 eff: E=rd
 eff: E=on

Álvaro Torralba, Silvan Sievers

Merge-and		00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
000000●0	00		0000	O
Merge-and-S	Shrink			

Álvaro Torralba, Silvan Sievers

Morgo and	Shrink			
00000000				
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Álvaro Torralba, Silvan Sievers

Marga and	Chrink			
00000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Álvaro Torralba, Silvan Sievers

	Oleviale			
00000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Álvaro Torralba, Silvan Sievers

	Oleviale			
00000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
0000000				

Álvaro Torralba, Silvan Sievers

00000	0000	
	00000	00000

FTS Representation and Successor Generation

00000	0000	
	00000	00000

State: (T=A, F=2, E=off)

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	•0			

State: (T=A, F=2, E=off) Applicable labels:

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	•0			

State: $\langle T=A, F=2, E=off \rangle$ Applicable labels: $\{CF\}$

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	••			

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

00000	0000	
	00000	00000

State: (T=A, F=2, E=on)

00000000 00 00000 0000	Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
		•0			

State: $\langle T=A, F=2, E=on \rangle$ Applicable labels: $\{DR_{A-B,2-1}, DR_{A-C,2-1}\}$

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	•0			

 $\begin{array}{l} State: \langle T=A, \ F=2, \ E=on \rangle \\ \mbox{Applicable labels: } \{ DR_{A-B,2-1}, DR_{A-C,2-1} \} \\ Successor (DR_{A-B,2-1}): \langle T=B, \ F=1, \ E=on \rangle \\ Successor (DR_{A-C,2-1}): \langle T=C, \ F=1, \ E=on \rangle \end{array}$

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	•0			

Álvaro Torralba, Silvan Sievers

000000 00 0000		
	0000	

Accident	рісліту	FTS ⊙●	M&S Reformulati	on Experiments	Conclusion o
NA /1	 	D'44	• •		

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00			

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	0•			

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	0•			

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	0•			

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	0•			

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects

Clavial	00	●0000	0000	0
Shrink				

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	●0000	0000	O
Shrink				

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	●○○○○	0000	o
Shrink				

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	●○○○○	0000	o
Shrink				

 $Plan = \langle \rangle$

Álvaro Torralba, Silvan Sievers

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	●○○○○	0000	o
Shrink				

Plan = $\langle \rangle \Rightarrow$ Only "refinable" abstractions are suitable for reformulation

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

 $\mathsf{Plan} = \langle \mathsf{CF}, \mathsf{ON}, \mathsf{DR}(\underline{\mathit{BC}}), \mathsf{DR}(D) \rangle \rightarrow$

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

 $\mathsf{Plan} = \langle \mathsf{CF}, \mathsf{ON}, \mathsf{DR}(\underline{\mathit{BC}}), \mathsf{DR}(D) \rangle \rightarrow \langle \mathsf{CF}, \mathsf{ON}, \mathsf{DR}(\underline{\mathit{B}}), \mathsf{DR}(D) \rangle$

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

 Accidental Complexity
 FTS
 M&S Reformulation
 Experiments
 Conclusion

 0000000
 00
 00
 000
 000
 000

Weak Bisimulation Shrinking

1 Identify τ labels that are internal to a TS (self-loop everywhere)

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	00●00	0000	o

Weak Bisimulation Shrinking

- Identify τ labels that are internal to a TS (self-loop everywhere)
- 2 Bisimulation allowing free-use of τ labels

Maak Diaim	Jation C	brinking		
0000000	00	00000	0000	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

Weak Bisimulation Shrinking

- Identify τ labels that are internal to a TS (self-loop everywhere)
- 2 Bisimulation allowing free-use of τ labels

Weak Bisimu	lation S	hrinking		
Accidental Complexity	FTS 00	M&S Reformulation 00●00	Experiments	Conclusion o

- Identify τ labels that are internal to a TS (self-loop everywhere)
- **2** Bisimulation allowing free-use of τ labels

Wook Risim	ulation C	brinking		
Accidental Complexity	FTS oo	M&S Reformulation	Experiments	Conclusion o

Weak Bisimulation Shrinking

- Identify τ labels that are internal to a TS (self-loop everywhere)
- 2 Bisimulation allowing free-use of au labels

 $\mathsf{Plan} = \langle \mathsf{CF}, \mathsf{DR}(BC), \mathsf{DR}(D) \rangle \rightarrow$

Álvaro Torralba, Silvan Sievers

Weak Bisimu	Weak Bisimulation Shrinking							
Accidental Complexity	FTS 00	M&S Reformulation 00●00	Experiments	Conclusion o				

- Identify τ labels that are internal to a TS (self-loop everywhere)
- 2 Bisimulation allowing free-use of au labels

 $\mathsf{Plan} = \langle \mathsf{CF}, \mathsf{DR}(BC), \mathsf{DR}(D) \rangle \rightarrow \langle \mathsf{CF}, \mathsf{ON}, \mathsf{DR}(BC), \mathsf{DR}(D) \rangle$

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

Merge				
Accidental Complexity	FTS oo	M&S Reformulation	Experiments	Conclusion o

Merge				
Accidental Complexity	FTS oo	M&S Reformulation	Experiments	Conclusion o

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	○○○●○	0000	o
Merge				

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	○○○●○	0000	o
Merge				

Merge				
Accidental Complexity	FTS 00	M&S Reformulation 000●0	Experiments	Conclusion o

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
	00	000●0	0000	o
Merge				

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
		00000		

Relation to FDR Reformulation Methods

An FTS reformulation method dominates an FDR reformulation method if it can do the same reformulations:

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
		00000		

Relation to FDR Reformulation Methods

An FTS reformulation method dominates an FDR reformulation method if it can do the same reformulations:

Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion
		00000		

Relation to FDR Reformulation Methods

An FTS reformulation method dominates an FDR reformulation method if it can do the same reformulations:

- Variable abstraction and merge values are dominated by weak bisimulation shrinking (plus removing TSs with a core state)
- Generalize actions is dominated by label reduction

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

Accidental Complexity FTS M&S Reformulation Conclusion

Search Space Reduction: Optimal

Accidenta	I Complexity	FTS oo	M&S Reformulation	Experiments 0000	Conclusion O
•		i			

Search Space Reduction: Satisficing

Álvaro Torralba, Silvan Sievers

Merge-and-Shrink Task Reformulation for Classical Planning

Accidental Complexity	FTS 00	M&S Reformulation	Experiments 0000	Conclusion o
Optimal Plan	ning			

	FDR	а	a-ls	d-ls	m-ls	tot	orcl
FDR a						797 770	801
a-ls d-ls					600	780	_h max _: 801
m-ls					632		щų
FDR						822	10
а						826	ō
a-ls						831	. .
d-ls					815		_h M&S _d : 910
m-ls					849		Δ_{η}

Accidental Complexity	FTS oo	M&S Reformulation	Experiments 0000	Conclusion o
Optimal Plan	ning			

	FDR	а	a-ls	d-ls	m-ls	tot	orcl
FDR						797	_
а						770	_h max _: 801
a-ls		4				780	×
d-ls		2	1			600	ma
m-ls		4	4			632	Ч
FDR						822	0
а						826	91
a-ls		4				831	_h M&S _{d:} 910
d-ls		11	10			815	18.0
m-ls		15	15			849	Δ_{η}

Accidental Complexity	FTS 00	M&S Reformulation	Experiments oo●o	Conclusion o
Optimal Plan	nning			

	FDR	а	a-ls	d-ls	m-ls	tot	orcl
FDR	_	12	13	37	36	797	
а	1	_	1	36	36	770	801
a-ls	3	4	_	36	35	780	hmax: 8
d-ls	2	2	1	_	7	600	na
m-ls	4	4	4	19	_	632	Ч
FDR	_	2	3	12	14	822	0
а	4	_	1	13	16	826	910
a-ls	7	4	_	13	16	831	h ^{M&Sd: g}
d-ls	13	11	10	_	11	815	1&0
m-ls	16	15	15	16	_	849	Δ_{η}

Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion o
Satisficing Pl	lanning			

	FDR	а	a-ls	d-ls	m-ls	tot	orcl
FDR a a-ls					1000	1326 1272 1368	h ^{FE} : 1413
d-ls m-ls					1208 1224		ЧЧ
FDR						1502	39
а						1461	152
a-ls						1471	
d-ls					1357		_и FF _{р.:} 1589
m-ls					1322		Ч ^µ Е

Álvaro Torralba, Silvan Sievers

0000000	00	00000		0
0000000	00	00000	000●	0
Accidental Complexity	FTS	M&S Reformulation	Experiments	Conclusion

	FDR	а	a-ls	d-ls	m-ls	tot	orcl
FDR						1326	~~~~
а						1272	4
a-ls		15				1368	÷
d-ls		10	4			1208	_h FF _{: 1413}
m-ls		15	7			1224	Ч
FDR						1502	6
а						1461	158
a-ls		8				1471	
d-ls		6	2			1357	_ћ FF _{р.:} 1589
m-ls		7	3			1322	Ч ^µ Е

Accidental Complexity	FTS 00	M&S Reformulation	Experiments	Conclusion O
Satisficing P	lanning			

	FDR	а	a-ls	d-ls	m-ls	tot	orcl
FDR	_	18	15	27	22	1326	~~~~
а	6	_	13	28	22	1272	_h FF: 1413
a-ls	18	15	_	31	24	1368	÷
d-ls	10	10	4	_	11	1208	LL LL
m-ls	13	15	7	21	-	1224	Ч
FDR	_	17	15	24	23	1502	6
а	8	_	11	25	24	1461	1589
a-ls	13	8	_	26	26	1471	p.:1
d-ls	9	6	2	_	15	1357	ц
m-ls	9	7	3	16	_	1322	hFF

Accidental Complexity	FTS oo	M&S Reformulation	Experiments 0000	Conclusion •
Conclusion				

- Task reformulation is an important tool to solve planning tasks
- Merge-and-Shrink is a powerful reformulation framework
 - $\rightarrow \,$ dominates similar methods in FDR

Accidental Complexity	FTS 00	M&S Reformulation	Experiments 0000	Conclusion •
Conclusion				

- Task reformulation is an important tool to solve planning tasks
- Merge-and-Shrink is a powerful reformulation framework
 - ightarrow dominates similar methods in FDR
- Adapt search algorithms and heuristics for FTS
 - Successor Generation
 - Delete-relaxation heuristics (*h*^{FF})
 - $\rightarrow\,$ More abstraction heuristics for cost-optimal planning
 - $\rightarrow~$ Landmarks and Novelty for satisficing planning

Accidental Complexity	FTS 00	M&S Reformulation	Experiments 0000	Conclusion •
Conclusion				

- Task reformulation is an important tool to solve planning tasks
- Merge-and-Shrink is a powerful reformulation framework
 - ightarrow dominates similar methods in FDR
- Adapt search algorithms and heuristics for FTS
 - Successor Generation
 - Delete-relaxation heuristics (*h*^{FF})
 - $\rightarrow\,$ More abstraction heuristics for cost-optimal planning
 - $\rightarrow~$ Landmarks and Novelty for satisficing planning
- Provide a plan reconstruction for M&S transformations
 - $\bullet\,$ Merge, LR, Pruning, Bisimulation \rightarrow optimal reformulation
 - $\bullet \ \ \ Weak \ bisimulation \rightarrow satisficing \ reformulation$
 - \rightarrow Dominance-based pruning
 - \rightarrow Tunnel macros