Merge-and-Shrink Task Reformulation for Classical Planning

Álvaro Torralba, Silvan Sievers

HSDIP 2019

Classical Planning

Definition. A planning task is a 4-tuple $\Pi=(V, A, I, G)$ where:

- V is a set of state variables, each $v \in V$ with a finite domain D_{v}.
- A is a set of actions; each $a \in A$ is a triple (pre $_{a}$, eff f_{a}, c_{a}), of precondition and effect (partial assignments), and the action's cost $c_{a} \in \mathbb{R}_{0}^{+}$.
- Initial state I (complete assignment), goal G (partial assignment).
\rightarrow Solution ("Plan"): Action sequence mapping I into s s.t. $s \models G$.

Classical Planning

Definition. A planning task is a 4-tuple $\Pi=(V, A, I, G)$ where:

- V is a set of state variables, each $v \in V$ with a finite domain D_{v}.
- A is a set of actions; each $a \in A$ is a triple (pre $_{a}$, eff f_{a}, c_{a}), of precondition and effect (partial assignments), and the action's cost $c_{a} \in \mathbb{R}_{0}^{+}$.
- Initial state I (complete assignment), goal G (partial assignment).
\rightarrow Solution ("Plan"): Action sequence mapping I into s s.t. $s \models G$.

Running Example:

- $V=\{T, F\}$ with $D_{t}=\{A, B, C, D\}$, $D_{F}=\{0,1,2\}$.
- $A=\left\{\operatorname{drive}\left(x, x^{\prime}, f, f^{\prime}\right)\right\}$
- $I=\{T=A, F=2\}$
- $G=\{T=D\}$

Accidental Complexity

- $V=\{T, F\}$ with $D_{t}=\{A, B, C, D\}$, $D_{F}=\{0,1,2\}$.
- $A=\left\{\operatorname{drive}\left(x, x^{\prime}, f, f^{\prime}\right)\right\}$
- $I=\{T=A, F=2\}$
- $G=\{T=D\}$

Accidental complexity: when solving the problem is harder due to how it is encoded

Accidental Complexity

- $V=\{T, F\}$ with $D_{t}=\{A, B, C, D\}$, $D_{F}=\{0,1,2\}$.
- $A=\left\{\operatorname{drive}\left(x, x^{\prime}, f, f^{\prime}\right)\right\}$
- $I=\{T=A, F=2\}$
- $G=\{T=D\}$

Accidental complexity: when solving the problem is harder due to how it is encoded

- $V=\{T, F, E\}$ with $D_{t}=\{A, B, C, D\}$, $D_{F}=\{0,1,2\}, D_{E}=\{o n$, off $\}$.
- $A=\left\{\right.$ drive $\left(x, x^{\prime}, f, f^{\prime}\right)$, turnon, turnoff $\}$
- $I=\{T=A, F=2, E=o f f\}$
- $G=\{T=D\}$

Reformulation

Transform the model to get rid of "accidental" complexity

Reformulation

Transform the model to get rid of "accidental" complexity

Task Π

Reformulation

Transform the model to get rid of "accidental" complexity

$$
\text { Task } \Pi \xrightarrow{\text { reformulation }(\rho)} \text { Task } \rho(\Pi)
$$

Reformulation

Transform the model to get rid of "accidental" complexity

Reformulation

Transform the model to get rid of "accidental" complexity

Reformulation

Transform the model to get rid of "accidental" complexity

Properties:

- Polynomial: ρ and $\overleftarrow{\rho}$ run in polynomial time in the $|\Pi|$ and $\left|\overleftarrow{\rho}\left(\pi^{\rho}\right)\right|$.

Reformulation

Transform the model to get rid of "accidental" complexity

Properties:

- Polynomial: ρ and $\overleftarrow{\rho}$ run in polynomial time in the $|\Pi|$ and $\left|\overleftarrow{\rho}\left(\pi^{\rho}\right)\right|$.
- Optimal: π^{ρ} is optimal for $\rho(\Pi) \Rightarrow \overleftarrow{\rho}\left(\pi^{\rho}\right)$

Abstraction Heuristics

Θ

Abstraction Heuristics

Θ

Abstraction Heuristics

Abstraction Heuristics

Abstraction Heuristics

Abstraction Heuristics

$\rightarrow \mathrm{An}$ abstraction is refinable if a solution for the abstract task can be transformed in polynomial time in a solution for the original

FDR Reformulation

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away

FDR Reformulation

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away
\rightarrow In our example: gets rid of variable E

$$
\begin{aligned}
\text { Abstract plan } & =\left\langle\text { Dra-B,2-1 }, \text { Dr }_{\mathrm{B}-\mathrm{D}, 1-0}\right\rangle \\
\text { Original plan } & =\langle
\end{aligned}
$$

FDR Reformulation

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away
\rightarrow In our example: gets rid of variable E

$$
\begin{aligned}
\text { Abstract plan } & =\left\langle\mathrm{DR}_{\mathrm{A}}-\mathrm{B}, 2-1, \mathrm{DR}_{\mathrm{B}-\mathrm{D}, 1-0}\right\rangle \\
\text { Original plan } & =\left\langle\text { turnon, }^{2} \mathrm{DR}_{\mathrm{A}}-\mathrm{B}, 2-1, \mathrm{DR}_{\mathrm{B}} \mathrm{D}, 1-0\right\rangle
\end{aligned}
$$

FDR Reformulation

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away
\rightarrow In our example: gets rid of variable E

$$
\begin{aligned}
& \text { Abstract plan }=\left\langle\text { Ren-B,2-1 }, \text { Dr }_{\text {B-D,1-0 }}\right\rangle \\
& \text { Original plan }=\left\langle\text { turnon, } \mathrm{DR}_{\mathrm{A}-\mathrm{B}, 2-1}, \mathrm{DR}_{\mathrm{B}-\mathrm{D}, 1-0}\right\rangle
\end{aligned}
$$

\rightarrow In Logistics: solves the problem without doing any search

FDR Reformulation

Free DTG: The domain transition graph of a variable only considering actions without preconditions or effects on other variables.

Variable Abstraction (Helmert, 2006)

Any variable whose free DTG is strongly connected can be abstracted away
\rightarrow In our example: gets rid of variable E

$$
\begin{aligned}
\text { Abstract plan } & =\left\langle\text { Dra }_{\mathrm{A}} \mathrm{~B}, 2-1, \mathrm{DR}_{\mathrm{B}}-\mathrm{D}, 1-0\right\rangle \\
\text { Original plan } & =\left\langle\text { turnon, DR } \mathrm{A}-\mathrm{B}, 2-1, \mathrm{DR}_{\mathrm{B}}-\mathrm{D}, 1-0\right\rangle
\end{aligned}
$$

\rightarrow In Logistics: solves the problem without doing any search
Extensions:

- Haslum (2007) gave a stronger criteria
- Tozicka et al. (2016) use this to merge values of a variable

Running Example with Accidental Complexity

- $V=\{T, F, E\}$ with $D_{t}=\{A, B, C, D\}$, $D_{F}=\{0,1,2\}, D_{E}=\{o f f, r d, o n\}$.
- $A=$
$\left\{\right.$ drive $\left(x, x^{\prime}, f, f^{\prime}\right)$, turnon, checkfuel $\}$
- $I=\{T=A, F=2, E=o f f\}$
- $G=\{T=D\}$

\rightarrow Before turning on the engine, we need to check that we have 2 units of fuel with the check-fuel action

Running Example with Accidental Complexity

- $V=\{T, F, E\}$ with $D_{t}=\{A, B, C, D\}$, $D_{F}=\{0,1,2\}, D_{E}=\{o f f, r d, o n\}$.
- $A=$
$\left\{\right.$ drive $\left(x, x^{\prime}, f, f^{\prime}\right)$, turnon, checkfuel $\}$
- $I=\{T=A, F=2, E=o f f\}$
- $G=\{T=D\}$

\rightarrow Before turning on the engine, we need to check that we have 2 units of fuel with the check-fuel action
- check-fuel:
pre: E=off, F=2
eff: E=rd
- turn-on:
pre: $\mathrm{E}=\mathrm{rd}$
eff: $\mathrm{E}=0 \mathrm{n}$

Merge-and-Shrink

Atomic: One TS per variable such that $\Theta_{1} \otimes \Theta_{2} \otimes \Theta_{3}=\Theta$

Merge-and-Shrink

Atomic: One TS per variable such that $\Theta_{1} \otimes \Theta_{2} \otimes \Theta_{3}=\Theta$

Merge-and-Shrink

Atomic: One TS per variable such that $\Theta_{1} \otimes \Theta_{2} \otimes \Theta_{3}=\Theta$

Merge-and-Shrink

Atomic: One TS per variable such that $\Theta_{1} \otimes \Theta_{2} \otimes \Theta_{3}=\Theta$

Merge-and-Shrink

Atomic: One TS per variable such that $\Theta_{1} \otimes \Theta_{2} \otimes \Theta_{3}=\Theta$

Merge-and-Shrink

\rightarrow Aoff) $\xrightarrow{C F} \rightarrow$ Aon $\xrightarrow{\mathrm{DR}} \xrightarrow{\mathrm{DCon}}$
Atomic: One TS per variable such that $\Theta_{1} \otimes \Theta_{2} \otimes \Theta_{3}=\Theta$

M\&S as Reformulation Framework

M\&S as Reformulation Framework

M\&S as Reformulation Framework

M\&S as Reformulation Framework

FTS Representation and Successor Generation

FTS Representation and Successor Generation

State: $\langle T=A, F=2, E=o f f\rangle$

FTS Representation and Successor Generation

State: $\langle T=A, F=2, E=o f f\rangle$ Applicable labels:

FTS Representation and Successor Generation

State: $\langle\mathrm{T}=\mathrm{A}, \mathrm{F}=2, \mathrm{E}=\mathrm{off}\rangle$ Applicable labels: $\{C F\}$

FTS Representation and Successor Generation

State: $\langle\mathrm{T}=\mathrm{A}, \mathrm{F}=2, \mathrm{E}=\mathrm{off}\rangle$
Applicable labels: $\{C F\}$
Successor: $\langle\mathrm{T}=\mathrm{A}, \mathrm{F}=2, \mathrm{E}=\mathrm{rd}\rangle$

FTS Representation and Successor Generation

State: $\langle T=A, F=2, E=o n\rangle$

FTS Representation and Successor Generation

State: $\langle T=A, F=2, E=o n\rangle$
Applicable labels: $\left\{\right.$ Dren-B,2-1, $\left.\mathrm{DR}_{\mathrm{A}-\mathrm{C}, 2-1}\right\}$

FTS Representation and Successor Generation

State: $\langle\mathrm{T}=\mathrm{A}, \mathrm{F}=2, \mathrm{E}=\mathrm{on}\rangle$
Applicable labels: $\left\{\mathrm{DR}_{\mathrm{A}-\mathrm{B}, 2-1}, \mathrm{DR}_{\mathrm{A}-\mathrm{C}, 2-1}\right\}$ Successor ($\mathrm{Dr}_{\mathrm{A}-\mathrm{B}, 2-1}$): $\langle\mathrm{T}=\mathrm{B}, \mathrm{F}=1, \mathrm{E}=\mathrm{on}\rangle$
Successor ($\mathrm{DR}_{\mathrm{A}-\mathrm{C}, 2-1}$): $\langle\mathrm{T}=\mathrm{C}, \mathrm{F}=1, \mathrm{E}=\mathrm{on}\rangle$

FTS Representation and Successor Generation

FTS Representation and Successor Generation

State: $\langle\mathrm{T}=\mathrm{A}, \mathrm{F}=2, \mathrm{E}=\mathrm{on}\rangle$ Applicable labels: $\{\mathrm{DR}\}$
Successor (Dr): $\langle T=B, F=1, E=o n\rangle$
Successor (Dr): $\langle\mathrm{T}=\mathrm{C}, \mathrm{F}=1, \mathrm{E}=\mathrm{on}\rangle$
Álvaro Torralba, Silvan Sievers
Merge-and-Shrink Task Reformulation for Classical Planning

What's the Difference Anyway?

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects

What's the Difference Anyway?

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects
[1]2blue1 [1]2green1 [1]2lightgray1 [1]2dkgreen1 [1]2orange1

What's the Difference Anyway?

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects
[1]2blue1 [1]2green1 [1]2lightgray1 [1]2dkgreen1 [1]2orange1

What's the Difference Anyway?

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects
[1]2blue1 [1]2green1 [1]2lightgray1 [1]2dkgreen1 [1]2orange1

What's the Difference Anyway?

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects
[1]2blue1 [1]2green1 [1]2lightgray1 [1]2dkgreen1 [1]2orange1

What's the Difference Anyway?

Advantage of FTS over FDR:

- Limited form of disjunctive preconditions
- Limited form of conditional effects
- Limited form of non-deterministic effects
[1]2blue1 [1]2green1 [1]2lightgray1 [1]2dkgreen1 [1]2orange1

Shrink

Replaces a TS Θ_{i} by an abstraction thereof $\left(\alpha\left(\Theta_{i}\right)\right)$ The state space of the new task is an abstraction of the original

Shrink

Replaces a TS Θ_{i} by an abstraction thereof $\left(\alpha\left(\Theta_{i}\right)\right)$
The state space of the new task is an abstraction of the original

Shrink

Replaces a TS Θ_{i} by an abstraction thereof $\left(\alpha\left(\Theta_{i}\right)\right)$
The state space of the new task is an abstraction of the original

Shrink

Replaces a TS Θ_{i} by an abstraction thereof $\left(\alpha\left(\Theta_{i}\right)\right)$
The state space of the new task is an abstraction of the original

Plan $=\langle \rangle$

Shrink

Replaces a TS Θ_{i} by an abstraction thereof $\left(\alpha\left(\Theta_{i}\right)\right)$
The state space of the new task is an abstraction of the original

Plan $=\langle \rangle \Rightarrow$ Only "refinable" abstractions are suitable for reformulation

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

Plan $=\langle\mathrm{CF}, \mathrm{ON}, \operatorname{DR}(B C), \operatorname{DR}(D)\rangle \rightarrow$

(Strong) Bisimulation Shrinking

Two states are equivalent if they have the same outgoing transitions

Plan $=\langle\mathrm{CF}, \mathrm{On}, \mathrm{Dr}(B C), \operatorname{Dr}(D)\rangle \rightarrow\langle\mathrm{CF}, \mathrm{On}, \operatorname{Dr}(B), \mathrm{Dr}(D)\rangle$

Weak Bisimulation Shrinking

(1) Identify τ labels that are internal to a TS (self-loop everywhere)

Weak Bisimulation Shrinking

(1) Identify τ labels that are internal to a TS (self-loop everywhere)
(2) Bisimulation allowing free-use of τ labels

Weak Bisimulation Shrinking

(1) Identify τ labels that are internal to a TS (self-loop everywhere)
(2) Bisimulation allowing free-use of τ labels

Weak Bisimulation Shrinking

(1) Identify τ labels that are internal to a TS (self-loop everywhere)
(2) Bisimulation allowing free-use of τ labels

Weak Bisimulation Shrinking

(1) Identify τ labels that are internal to a TS (self-loop everywhere)
(2) Bisimulation allowing free-use of τ labels

Plan $=\langle\mathrm{CF}, \operatorname{DR}(B C), \operatorname{DR}(D)\rangle \rightarrow$

Weak Bisimulation Shrinking

(1) Identify τ labels that are internal to a TS (self-loop everywhere)
(2) Bisimulation allowing free-use of τ labels

Plan $=\langle\mathrm{CF}, \operatorname{DR}(B C), \operatorname{DR}(D)\rangle \rightarrow\langle\mathrm{CF}, \mathrm{ON}, \operatorname{DR}(B C), \operatorname{DR}(D)\rangle$

Merge

Replace Θ_{i} and Θ_{j} by their product: $\Theta_{i} \otimes \Theta_{j}$

Merge

Replace Θ_{i} and Θ_{j} by their product: $\Theta_{i} \otimes \Theta_{j}$

Θ_{T}

$\Theta_{F} \otimes \Theta_{E}$

Merge

Replace Θ_{i} and Θ_{j} by their product: $\Theta_{i} \otimes \Theta_{j}$

Merge

Replace Θ_{i} and Θ_{j} by their product: $\Theta_{i} \otimes \Theta_{j}$

Merge

Replace Θ_{i} and Θ_{j} by their product: $\Theta_{i} \otimes \Theta_{j}$

Merge

Replace Θ_{i} and Θ_{j} by their product: $\Theta_{i} \otimes \Theta_{j}$

Relation to FDR Reformulation Methods

An FTS reformulation method dominates an FDR reformulation method if it can do the same reformulations:

Relation to FDR Reformulation Methods

An FTS reformulation method dominates an FDR reformulation method if it can do the same reformulations:

Relation to FDR Reformulation Methods

An FTS reformulation method dominates an FDR reformulation method if it can do the same reformulations:

- Variable abstraction and merge values are dominated by weak bisimulation shrinking (plus removing TSs with a core state)
- Generalize actions is dominated by label reduction

Search Space Reduction: Optimal

Bisimulation + LR

Merge (DFP) + LR + Bisimulation

Search Space Reduction: Satisficing

Weak Bisimulation + LR

Merge (DFP) + LR + Weak Bisimulation

Optimal Planning

FDR		797	
a		770	$\stackrel{\square}{\infty}$
a-ls		780	*
d-ls	600		$\stackrel{\text { ® }}{\text { ® }}$
m-ls	632		=
FDR		822	
a		826	\%
a-ls		831	00°
d-ls	815		$\stackrel{\infty}{\infty}$
m-ls	849		Σ

Optimal Planning

Optimal Planning

	FDR	a	a-ls	d-ls	m-ls	tot	orcl
FDR	-	12	13	37	36	797	
a	1	-	1	36	36	770	\bigcirc
a-ls	3	4	-	36	35	780	¢
d-Is	2	2	1	-	7	600	®
m-ls	4	4	4	19	-	632	다N
FDR	-	2	3	12	14	822	응
a	4	-	1	13	16	826	の
a-ls	7	4	-	13	16	831	$\dot{0}$
d-Is	13	11	10	-	11	815	$\stackrel{\infty}{\infty}$
m-ls	16	15	15	16	-	849	Σ

Satisficing Planning

Satisficing Planning

Satisficing Planning

FDR a a-ls d-ls m-ls tot orcl

FDR	-	18	15	27	22	1326	
a	6	-	13	28	22	1272	
a-ls	18	15	-	31	24	1368	
d-ls	10	10	4	-	11	1208	
m-Is	13	15	7	21	-	1224	
FDR	-	17	15	24	23	1502	
a	8	-	11	25	24	1461	
a-ls	13	8	-	26	26	1471	
d-ls	9	6	2	-	15	1357	
m-ls	9	7	3	16	-	1322	

Conclusion

- Task reformulation is an important tool to solve planning tasks
- Merge-and-Shrink is a powerful reformulation framework
\rightarrow dominates similar methods in FDR

Conclusion

- Task reformulation is an important tool to solve planning tasks
- Merge-and-Shrink is a powerful reformulation framework
\rightarrow dominates similar methods in FDR
- Adapt search algorithms and heuristics for FTS
- Successor Generation
- Delete-relaxation heuristics $\left(h^{F F}\right)$
\rightarrow More abstraction heuristics for cost-optimal planning
\rightarrow Landmarks and Novelty for satisficing planning

Conclusion

- Task reformulation is an important tool to solve planning tasks
- Merge-and-Shrink is a powerful reformulation framework
\rightarrow dominates similar methods in FDR
- Adapt search algorithms and heuristics for FTS
- Successor Generation
- Delete-relaxation heuristics $\left(h^{F F}\right)$
\rightarrow More abstraction heuristics for cost-optimal planning
\rightarrow Landmarks and Novelty for satisficing planning
- Provide a plan reconstruction for M\&S transformations
- Merge, LR, Pruning, Bisimulation \rightarrow optimal reformulation
- Weak bisimulation \rightarrow satisficing reformulation
\rightarrow Dominance-based pruning
\rightarrow Tunnel macros

