Evaluation

Conclusion o

Automatic Instance Generation for Classical Planning

Álvaro Torralba,¹ Jendrik Seipp,^{2,3} Silvan Sievers³

¹Aalborg University, Denmark ²Linköping University, Sweden ³University of Basel, Switzerland

Automatic Instance Generation for Classical Planning

Empirical Evaluation – The ICAPS/IPC Way

The ICAPS/IPC Way

- Measure coverage
- Time limit 5 or 30 minutes
- Memory limit 2-8 GB

• Use the benchmarks from the International Planning Competition

Empirical Evaluation – The ICAPS/IPC Way

The ICAPS/IPC Way

- Measure coverage
- Time limit 5 or 30 minutes
- Memory limit 2-8 GB

• Use the benchmarks from the International Planning Competition

Having a standard evaluation setting is generally beneficial:

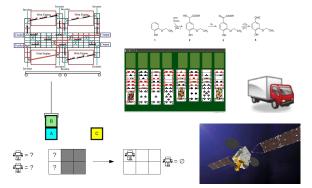
- Reproducibility
- Interpretability
- Avoids hand picking results

Empirical Evaluation – The ICAPS/IPC Way

The ICAPS/IPC Way

- Measure coverage
- Time limit 5 or 30 minutes
- Memory limit 2-8 GB

- Use the benchmarks from the International Planning Competition
- Use the Autoscale benchmark set


Having a standard evaluation setting is generally beneficial:

- Reproducibility
- Interpretability
- Avoids hand picking results

The ICAPS Way	Autoscale	Evaluation	Conclusion
○●○		00	o

The IPC Benchmark Set

A collection made in 9 editions of the IPC: from IPC'1998 until IPC'2018 (Since 2008: separated instances for Optimal and Satisficing planning)

Thank you to all IPC organizers and everyone who contributed domains!

The IC/ ○○●	APS Way			scale 0000		Evalı 00	uation			Conclu o	ision
		 			100				_		

		IPC					
	#	L	D	0			
Grid	5	5	5	5			
Driverlog	20	20	20	20			
Rovers	40	40	40	40			
Snake	20	5	15	12			
Total	85	70	80	77			

Table: Coverage of three planners: L, D, and O.

Automatic Instance Generation for Classical Planning

The IC/ ○○●	APS Way			scale 0000		Evalı 00	uation			Conclu o	ision
		 			100				_		

		IPC					
	#	L	D	0			
Grid	5	5	5	5			
Driverlog	20	20	20	20			
Rovers	40	40	40	40			
Snake	20	5	15	12			
Total	85	70	80	77			

Table: Coverage of three planners: L, D, and O.

Different number of instances per domain

The IC oo●	APS Way		Autoscale		Evaluation		Conclusion o
_		 	1.1				

		IPC					
	#	L	D	0			
Grid	5	5	5	5			
Driverlog	20	20	20	20			
Rovers	40	40	40	40			
Snake	20	5	15	12			
Total	85	70	80	77			

Table: Coverage of three planners: L, D, and O.

- Different number of instances per domain
- Instance scaling: Experiments on some domains of the IPC benchmark set may not observe any difference between planners even if it exists!

The ICAPS Way	Autoscale	Evaluation	Conclusion
○○●	0000000	oo	o
- ···· · ·			

		IPC					scale		
	#	L	D	0		#	L	D	0
Grid	5	5	5	5		30	17	14	16
Driverlog	20	20	20	20		30	15	10	25
Rovers	40	40	40	40		30	30	23	28
Snake	20	5	15	12		30	6	19	16
Total	85	70	80	77		120	68	66	85

Table: Coverage of three planners: L, D, and O.

- Different number of instances per domain
- Instance scaling: Experiments on some domains of the IPC benchmark set may not observe any difference between planners even if it exists!

The ICAPS Way	Autoscale	Evaluation	Conclusion
	●oooooo	oo	o
Contribution			

The ICAPS Way	Autoscale	Evaluation	Conclusion
	●oooooo	oo	o
Contribution			

- Autoscale: An automated tool to select instances from a given domain
- 2 Two new benchmark sets:
 - Autoscale'21 Optimal
 - Autoscale'21 Agile/Satisficing planning
 - \rightarrow Better than the IPC set to evaluate current and future planners!

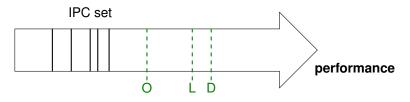
The ICAPS Way

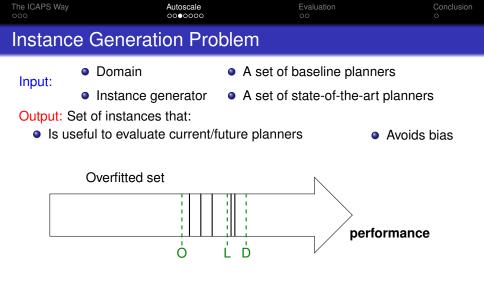
Autoscale

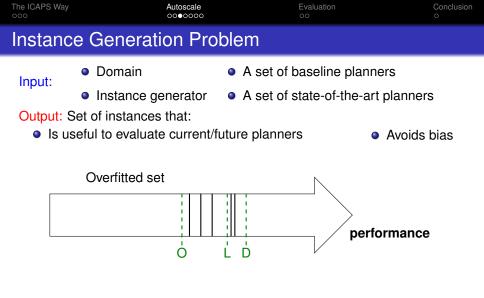
Evaluation

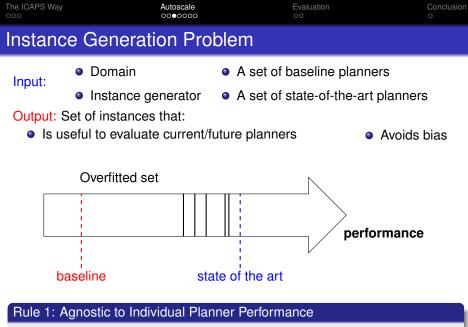
Conclusion o

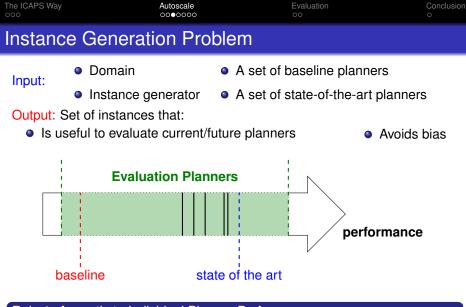
Example Domain: Barman

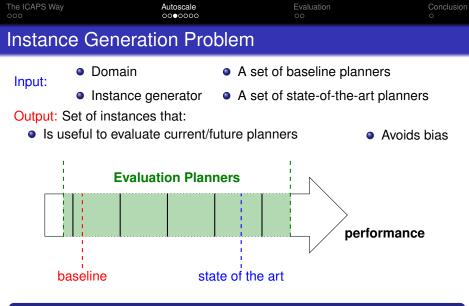

Instance Generator

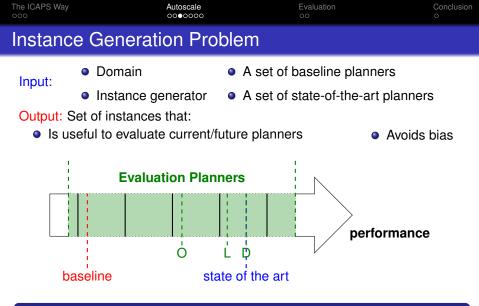

Automatic Instance Generation for Classical Planning


The ICAPS Way		oscale ●oooo	Evaluation 00	Conclusion o
Instand	ce Generation	n Problem		
Input:	Domain	 A set o 	f baseline planr	ners

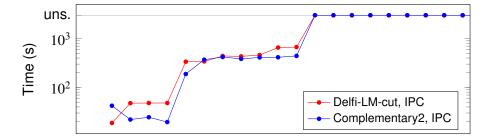

- Instance generator
- A set of state-of-the-art planners
- Output: Set of instances that:
 - Is useful to evaluate current/future planners


The ICAPS Way	Autoscale oo●oooo		Evaluation 00	Conclusion o
Instanc	e Generation Pro	blem		
Input:	Domain	A set of	baseline planne	rs
input.	Instance generator	A set of	state-of-the-art p	planners
Output: Set of instances that: Is useful to evaluate current/future planners 				





The ICAPS Way	Autoscale	Evaluation	Conclusion
	0000000	oo	o
Useful to Evaluat	te Planners		

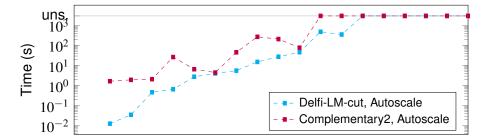

Rule 2: Smooth Scaling

The instance set should:

- Have easy instances (solvable by the baseline planners)
- Have hard instances (out of reach for the state of the art)
- Scale smoothly

The ICAPS Way	Autoscale 0000000	Evaluation oo	Conclusion o		
Useful to Evaluate Planners					
Rule 2: Smooth Sca	ling				
The instance set sho	ould:				
 Have easy instances (solvable by the baseline planners) 					
Have hard insta	nces (out of rea	ach for the state of the a	ırt)		

• Scale smoothly



The ICAPS Way	Autoscale	Evaluation	Conclusion
	ooo●ooo	oo	o
Useful to Evaluate	e Planners		

Rule 2: Smooth Scaling

The instance set should:

- Have easy instances (solvable by the baseline planners)
- Have hard instances (out of reach for the state of the art)
- Scale smoothly

The ICAPS Way	Autoscale	Evaluation	Conclusion
	○○○○●○○	00	o
Parameter-	and Sequence-E	Based Instance S	Selection

Rule 3: Parameter-based Selection

Avoid selecting the random seed

 \rightarrow Select # cocktails, # shots and # ingredients, but not the concrete instance

The ICAPS Way	Autoscale	Evaluation	Conclusion
	0000e00	oo	o
Parameter- and	Sequence-	Based Instance S	election

Rule 3: Parameter-based Selection

Avoid selecting the random seed

 \rightarrow Select # cocktails, # shots and # ingredients, but not the concrete instance

Rule 4: Sequence-based Selection

The parameter configurations can be organized in one or more sequences

	cocktails	shots	ingredients
1		(b = 1, m = 0, +cocktails)	(<i>v</i> = 3)
_	5	6	3
	6	7	3
	7	8	3
	9	10	3
	10	11	3
	11	12	3
	1,3	. 14	3

Automatic Instance Generation for Classical Planning

The ICAPS Way	Autoscale	Evaluation	Conclusion
	oooooo●o	oo	o
Keep the Spirit of	the Domain		

Rule 5: User Constraints

The domain designer specifies guidelines on which parameters to scale

cocktails	shots	ingredients
$b \in [1, 6]$ $m \in [0.1, 5]$	$b \in [1, 6]$ $m \in [1, 5]$	$v \in \{2, 3, 4, 5\}$
	+ cocktails	

The ICAPS Way	Autoscale	Evaluation	Conclusion
	ooooooo●	00	o
Optimization P	rocess		

- Generate candidate sequences that scale smoothly
 - C
 S
 I

 5
 6
 3

 6
 7
 3

 7
 8
 3

 9
 10
 3

 10
 11
 3

 11
 12
 3

 13
 14
 3

The ICAPS Way	Autoscale ○○○○○○●	Evaluation	Conclusion o
Optimization	Process		

- Generate candidate sequences that scale smoothly
 - C S I |time(s) 5 6 3 10.1
 - 6 7 3 25.6 7 8 3 101.7 9 10 3 300
 - 10 11 3 900 11 12 3 2700
 - 13 14 3 8100

The ICAPS Way	Autoscale ooooooo●	Evaluation	Conclusion o
Optimization	Process		

Generate candidate sequences that scale smoothly

| C S I time(s) |
|---------------|---------------|---------------|---------------|
| 5 6 3 10.1 | 1 3 2 1.8 | 1 5 4 4.2 | 1 3 5 2.8 |
| 6 7 3 25.6 | 1 4 2 2.2 | 1 6 4 21 | 1 4 5 3.7 |
| 7 8 3 101.7 | 1 5 2 2.9 | 1 7 4 62 | 155 6.1 |
| 9 10 3 300 | 1 6 2 4.5 | 1 8 4 250 | 1 6 5 16 |
| 10 11 3 900 | 1 7 2 8.3 | 2 10 4 990 | 1 7 5 62 |
| 11 12 3 2700 | 182 26 | 2 11 4 4000 | 2 9 5 200 |
| 13 14 3 8100 | 1 9 2 120 | 2 12 4 16000 | 2 10 5 660 |

 \rightarrow We use SMAC, a model-based optimization procedure

The ICAPS Way	Autoscale 000000	Evaluation	Conclusion o
Ontimization	Process		

Generate candidate sequences that scale smoothly

CSI	time(s)	С	S	Ι	time(s)	C	;	S	Ι	time(s)	(2	S	I	time(s)
563	10.1	1	3	2	1.8	1		5	4	4.2		1	3	5	2.8
673	25.6	1	4	2	2.2	1		6	4	21		1	4	5	3.7
783	101.7	1	5	2	2.9	1	I	7	4	62	-	1	5	5	6.1
9 10 3	300	1	6	2	4.5	1	I	8	4	250	-	1	6	5	16
10 11 3	900	1	7	2	8.3	2	2	10	4	990	-	1	7	5	62
11 12 3	2700	1	8	2	26	2	2	11	4	4000	2	2	9	5	200
13 14 3	8100	1	9	2	120	2	2	12	4	16000	2	2	10	5	660

 \rightarrow We use SMAC, a model-based optimization procedure

Choose selected (sub-)sequences to include easy and hard instances

 ${\rightarrow}\mbox{We}$ use CPLEX to solve a MIP problem

The ICAPS Way	Autoscale	Evaluation	Conclusion
	0000000	●○	o
Experiments			

Compare our new benchmark sets against the IPC

- 26 domains
- Agile/Satisficing and Optimal track
- Autoscale'14: using 6 planners up to IPC'14
- Evaluation based on 8 planners from IPC'18

The ICAPS Way	Autoscale	Evaluation	Conclusion
	0000000	●○	o
Experiments			

Compare our new benchmark sets against the IPC

- 26 domains
- Agile/Satisficing and Optimal track
- Autoscale'14: using 6 planners up to IPC'14
- Evaluation based on 8 planners from IPC'18

How to evaluate the quality of a benchmark set?

 \rightarrow Comparisons: number of pairs (X, Y) of planners, such that coverage(X) \neq coverage(Y)

The ICAPS Way	Autoscale	Evaluation	Conclusion
	0000000	⊙●	o
Results			

Out of 28 pairs of planners, in how many Autoscale observed a difference in coverage that is not observed with the IPC set?

Domain	#IPC	OPT	AGL	Domain	#IPC	OPT	AGL
Barman	34/40	+12	+19	Nomystery	20	+10	+4
Blocksworld	35	+6	+26	Openstacks	70	-17	+25
Childsnack	20	+8	+1	Parking	40	-2	+5
Data-Network	20	-2	+2	Rovers	40	-4	+20
Depots	22	0	+25	Satellite	36	+5	+2
Driverlog	20	+5	+25	Scanalyzer	50	0	+8
Elevators	50	-3	+11	Snake	20	-1	0
Floortile	40	-3	+7	Storage	30	+6	+1
Grid	5	+7	+21	TPP	30	+2	+11
Gripper	20	0	+7	Transport	70	-8	+14
Hiking	20	+4	+3	Visitall	40	0	+17
Logistics	63	-3	+4	Woodworking	50	+5	+14
Miconic	150	0	0	Zenotravel	20	+4	+22

The ICAPS Way	Autoscale	Evaluation	Conclusion
	0000000	⊙●	o
Results			

Out of 28 pairs of planners, in how many Autoscale observed a difference in coverage that is not observed with the IPC set?

Domain	#IPC	OPT	AGL	Domain	#IPC	OPT	AGL
Barman	34/40	+12	+19	Nomystery	20	+10	+4
Blocksworld	35	+6	+26	Openstacks	70	-17	+25
Childsnack	20	+8	+1	Parking	40	-2	+5
Data-Network	20	-2	+2	Rovers	40	-4	+20
Depots	22	0	+25	Satellite	36	+5	+2
Driverlog	20	+5	+25	Scanalyzer	50	0	+8
Elevators	50	-3	+11	Snake	20	-1	0
Floortile	40	-3	+7	Storage	30	+6	+1
Grid	5	+7	+21	TPP	30	+2	+11
Gripper	20	0	+7	Transport	70	-8	+14
Hiking	20	+4	+3	Visitall	40	0	+17
Logistics	63	-3	+4	Woodworking	50	+5	+14
Miconic	150	0	0	Zenotravel	20	+4	+22

The ICAPS Way	Autoscale ooooooo	Evaluation oo	Conclusion
Conclusion			

Autoscale: New tool to automatically select instances

- Useful to Evaluate Current Planners
- Avoid Bias
- Keep the Spirit of the Domain
- New benchmark set: Autoscale'21
 - Used IPC'18 planners as state-of-the-art planners
 - \rightarrow Useful for the next years!
 - ightarrowAfterwards we can use Autoscale to update the benchmark set
 - Includes almost all IPC STRIPS domains!
 - \rightarrow Also domains without an instance generator

Autoscale tool and benchmarks are ready to be used, try them out! https://github.com/AI-Planning/autoscale

https://github.com/AI-Planning/autoscale-benchmarks