
Implementing and Evaluating Successor
Generators in the Fast Downward

Planning System
Bachelor Thesis

Faculty of Science at the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

Examiner: Prof. Dr. Malte Helmert

Supervisor: Silvan Sievers

Yannick Zutter

yannick.zutter@stud.unibas.ch

2015-052-723

September 30, 2020

Acknowledgements

I would like to thank Malte Helmert for giving me the opportunity to work in such an interesting

field of computer science. Additionally, I would like to thank my supervisor Silvan Sievers for

spending countless hours discussing details and helping with all the problems that have occured

during this time. I also want to thank my wife Florence and my son Jarek for giving me the

strength to stay cool even in the hottest phases of the thesis.

Abstract

Fast Downward is a classical planning system based on heuristic search. Its successor generator

is an efficient and intelligent tool to process state spaces and generate their successor states. In

this thesis we implement different successor generators in the Fast Downward planning system

and compare them against each other. Apart from the given fast downward successor generator

we implement four other successor generators: a naive successor generator, one based on the

marking of delete relaxed heuristics, one based on the PSVN planning system and one based

on watched literals as used in modern SAT solvers. These successor generators are tested in a

variety of different planning benchmarks to see how well they compete against each other. We

verified that there is a trade-off between precomputation and faster successor generation and

showed that all of the implemented successor generators have a use case and it is advisable to

switch to a successor generator that fits the style of the planning task.

Table of Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Background 3

3 The Successor Generators 5

3.1 Naive Successor Generator . 5

3.2 Fast Downward Successor Generator . 5

3.3 Marking Successor Generator . 6

3.3.1 Delete Relaxation . 7

3.3.2 Relaxed Planning Graph . 7

3.3.3 Converting To the Successor Generator 8

3.3.4 Implementation Notes . 8

3.4 PSVN Successor Generator . 9

3.4.1 PSVN . 10

3.4.2 Successor Generation In PSVN . 11

3.4.3 Implementation Notes . 13

3.5 Watched Literals Successor Generator . 13

3.5.1 Converting To The Successor Generator 14

3.6 Implementation Notes . 15

4 Evaluation 18

4.1 Overview . 18

4.2 Results . 18

4.3 Final Evaluation Of The Successor Generators 21

5 Conclusion & Future Work 22

5.1 Conclusion . 22

Table of Contents v

5.2 Future Work . 22

Bibliography 24

Declaration on Scientific Integrity 26

1
Introduction

Automated Planning and Acting as described by Ghallab et al. [6] is one of the oldest studies

in artificial intelligence. This Planning is all about finding operator sequences to solve a given

problem. We start with a given initial state and apply operators to generate its successor states.

From these states we carry on finding new states until we finally reach one of the desired goal

states. For example, we have the given problem of a simplified Sudoku puzzle in Figure 1.1. The

initial state is an empty field without any numbers in it. Then we generate the successor state

of the initial state by applying the following operator: we set the upper left (empty) field to 1.

Figure 1.1: simplified version of an 2x2 Sudoku puzzle

But we can not just apply any operator we want. All applications of operators are limited by

conditions. For example in Sudoku each number may only appear once in each row and column.

Beforehand the whole problem needs to be modeled in a way that all these conditions are pre-

defined. Each operator has preconditions that need to be fulfilled before it can be applied. The

operator also has effects on the state when it is applied. In this example, the effect is to write

a “1” in the upper left box. We finish our search if the current state satisfies the given goal

conditions. In this example, this would be a state where all boxes are filled with numbers and

each number only appears once in each row and each column. On our way to the goal state, we

remember all operators we applied. In the end we can return a sequence of operators that leads

from the initial state to the goal and shows how the problem is solved.

Introduction 2

Planning standardizes given problems, so we can not only solve a small set of specific problems

but all problems that can be described in the given standardization. Planners that solve prob-

lems in this way are called general planners, based on the General Problem solver of Newell et al.

[12]. In order to efficiently solve planning problems, a planner needs to have an efficient succes-

sor generator. A successor generator is a function which generates all the possible successors of

a given state. One problem solver with a unique successor generator, which has already been

proven very successful, is the Fast Downward planning system introduced by Helmert [8]. Its

successor generator generates a tree with a variable as node and a vertex for each value in the

domain of this variable. While searching for operators to apply we can traverse this tree with

the given state space and collect all operators that may be applied. This is only one possible

method to generate successor states. In this thesis we want to implement four other ideas for

successor generation and evaluate them against each other. These successor generators are the

Fast Downward successor generator, a naive generator, a generator based on the idea of delete

relaxation [1], one generator based on the PSVN planning system introduced by Holte et al. [10]

and one on the idea of Watched Literals from SAT solving described by Moskewicz et al. [11].

We start by introducing the theory that is needed to understand the concepts of the successor

generators and shtplanning in general and talk about the implementation of the successor gener-

ators. Followed by an evaluation of our experiments, we compare the successor generators to each

other. Lastly we give a conclusion of what we accomplished and discuss some potential starting

points for further work.

2
Background

In planning, a planning task is needed to define the properties of a given problem. Starting

from the initial state we want to expand new states with the given operators until we finally

satisfy a goal condition. Each operator has preconditions that need to be satisfied and effects

that transform the given state. Each operator has a cost, which indicates how expensive it is to

apply this operation. By traversing the state space we generate a sequence of operators. This

sequence of operators is also called a plan. A plan is created if we reach a goal, to show how we

get from the initial state to a goal state. We can differentiate between optimal and satisficing

planning. In optimal planning we guarantee that the plan we found is an optimal plan, which

means that it has minimal cost. Satisficing planning means that the plan satisfies our needs,

which means that the cost is beyond a certain threshold or that a solution has been found.

To define planning tasks, we use a Finite Domain Representation (FDR) as defined by Helmert

[9].

Definition 2.0.1 (State Variable). A State variable in FDR is a variable with a non-empty

finite domain Dv.

If we support the use of axioms there would be additional state variables so called derived

variables, which are computed by axioms. Because we do not use axioms within our successor

generators we will not further define them.

Definition 2.0.2 (Fact). a fact f is tuple 〈v, d〉 where v is a variable from the set of state variables

v ∈ V and d a value from the variable’s domain d ∈ Dv.

Definition 2.0.3 (Partial State). A partial state is a partial variable assignment over V which

is a function s over a subset of V so that s(v) ∈ Dv. A partial state is called an extended state

if it is defined for all variables v ∈ V . A partial state is called a reduced state if it is defined for

all variables in V .

Background 4

Definition 2.0.4 (FDR Planning Task). A Finite Domain Representation is given by a 4-tuple

Π = 〈V, s0, s∗, O〉 with following components:

• V a set of state variables.

• s0 ⊆ V the initial state

• s∗ a partial state over V as the goal

• O is a finite set of operators over V with:

– pre(o) the preconditions of o as a set of facts

– eff(o) the effect of o consisting of:

∗ cond the effect condition as a partial variable assignment

∗ v the affected variable

∗ d ∈ DV the new value for v

– cost(o) the cost of the operator

Definition 2.0.5 (Applicable Operator). An operator is applicable in state s, if all preconditions

pre(o) are true in s. This means for all facts in pre(o)〈v, d〉 holds that d = s(v).

Definition 2.0.6 (Successor State). A state s’ is a successor state of s, if there is an applicable

operator o so that o applied to s leads to state s’ (notated as s
o−→ s′). For each fact in s′ holds

that s′(v) = d for all effects in o, v := d ∈ eff and s′(v) = s(v) for all other variables.

Definition 2.0.7 (FDR State Space). An FDR State Space s is a set of facts where 〈v, d〉 for

v ∈ V and d ∈ Dv.

The state space of an FDR Π = 〈V, s0, s∗, O〉, denoted as S(Π), is a directed graph. Its vertex set

is the set of states of V , and it contains an arc (s, s′) if there exists some operator 〈pre, eff〉 ∈ O

such that s
o−→ s′.

Definition 2.0.8 (Plan). A plan P of a planning task Π is a solution in form of a sequence of

operators 〈o1, . . . , on〉 where the operators lead from the initial state s0 to a goal state sn ∈ s∗.

Definition 2.0.9 (Cost Of A Plan). The cost c of a plan is the sum of all costs in the given

plan. c =
∑n

k=0 cost(ok) where ok ∈ P .

3
The Successor Generators

A successor generator is a module inside the planning system to determine the successor states

from a given state s and the given operators. In the Fast Downward planning system, a suc-

cessor generator does not calculate the successor states, but only returns a list of all applicable

operators. This is due to the fact that generating the applicable operators is the hard part of

the successor generation and getting to a successor state from an operator is trivial. So while

describing the different successor generators we do not consider the successor states, but only

the applicable operators which are generated and lead to these successor states.

We implemented the successor generators described in this chapter, apart from the already

existing Fast Downward successor generator in the Fast Downward planning system. The imple-

mentation of these successor generators can be found on this GitHub repository1.

3.1 Naive Successor Generator
As defined above, an operator is only applicable if all of its preconditions are satisfied. The easiest

method to generate the applicable operators in a successor generator is to check for each operator

if all given preconditions are satisfied under the given state. If yes, the operator is applicable. If

no, the operator is not applicable. This method is shown in Figure 3.1.

3.2 Fast Downward Successor Generator
Fast Downward is a classical planning system based on heuristic search introduced by Helmert

[8]. It uses any PDDL planning task as input and converts it to a Finite Domain Representation.

The successor generator is a tree consisting of two different nodes: selector nodes and generator

nodes. A selector node has a variable v ∈ V called the selection variable and |DV + 1| outgoing

1 https://github.com/YannickZutter/fast-downward

https://github.com/YannickZutter/fast-downward

The Successor Generators 6

Algorithm 1: generate applicable operators

Input: State s
for each Operator o do

for each Precondition p in o do
if p.val 6= s[p.var].val then

break

report o as applicable

Figure 3.1: Naive generate applicable operators

edges. These edges have a label d for each of the values d ∈ Dv and one additional edge labeled

>, the “don’t care” edge.

A generator node is a leaf node which stores a set of applicable operators O at this leaf. Each

operator o ∈ O must occur in exactly one generator node, and the set of edge labels leading from

the root to this node (excluding don’t care edges) must equal the preconditions of o.

We build the tree by first choosing a variable order v1 ≺ v2 · · · ≺ vn. Then following this order, we

set the selection variable of the root node as v1, then we classify the set of operators according to

all operators having a precondition on v1. We then split these operators according to the children,

e.g. operators with a precondition v1 = d will be represented in the child node associated with

d. Operators without a precondition on v1 follow the don’t care edge. We then carry on with the

child nodes and variable v2 in the same way as in the root node, with one exception. To avoid

the unnecessary creation of selection nodes, nodes where no operator in a certain branch has a

condition on vi, then vi is not considered as a selection variable in this branch. The construction

stops if all variables have been considered and we create a generator node as a leaf node with all

the associated operators.

For a given tree and a given state, we can compute the applicable ops by traversing tree as

follows:

• At a selector node with variable v, follow the edge v = s(v) and the don’t care edge.

• At a generator node, report the generated operators as applicable.

As mentioned above, this is the default successor generator as described by Helmert [8] and is

already implemented.

3.3 Marking Successor Generator
The Marking successor generator is based on the idea of delete relaxation and the relaxation

heuristics as introduced by Bonet and Geffner [1].

The Successor Generators 7

3.3.1 Delete Relaxation
If we consider a special case of our Finite Domain Representation where we only have binary

variables (D = {True, False}), we get a propositional planning task instead of a FDR planning

task. In this propositional planning task, operators can be written with add and delete effects.

An operator o consists of the triple 〈pre(o), add(o), del(o)〉 where pre(o) are the preconditions

for o, add(o) the set of add effects and del(o) the set of delete effects for o. All of these three sets

are represented as a set of variables. pre(o) is the set of preconditions that shows which variables

need to be True in order for the operator to be applicable. add(o) is the set which represents

which variables are set to True. del(o) is the set which represents which variables are set to False.

The delete relaxation o+ of a propositional operator o is the operator with pre(o+) = pre(o),

add(o+) = add(o), cost(o+) = cost(o) and del(o+) = ∅. A planning task without any delete

effects is called a delete-free planning task or a relaxed planning task. We can use the solution

of a relaxed planning task as a heuristic for solution costs for the original planning task or as

we will see to create a successor generator which uses a modified idea of the computation of the

delete relaxation and its heuristics.

3.3.2 Relaxed Planning Graph
A relaxed planning graph represents which variables in Π+ can be reached and how. We build a

graph with variable layers V i and action layers Ai.

• variable layer V 0 contains the variable vertex v0 for all v ∈ I.

• action layer Ai+1 contains the action vertex ai+1 for action a if V i contains the vertex vi

for all v ∈ pre(a).

• variable layer V i+1 contains the variable vertex vi+1 if previous variable layer contains vi,

or previous action layer contains ai+1 with v ∈ add(a).

• goal vertices Gi if vi ∈ V i for all v ∈ G.

• graph can be constructed for arbitrary many layers but stabilizes after a bounded number

of layers (V i+1 = V i and Ai+1 = Ai).

• directed edges:

– from vi to ai+1 if v ∈ pre(a) (precondition edges)

– from ai to vi if v ∈ add(a) (effect edges)

– from vi to Gi if v ∈ G (goal edges)

– from vi to vi+1 (no-op edges)

Using the notation introduced in the “Foundations of Artificial Intelligence” lecture held by Prof.

Dr. Helmert and Dr. Keller at the University of Basel we depicted a relaxed planning graph for

The Successor Generators 8

following propositional planning task.

Π = 〈V, s0, s∗, O〉 with V = {a, b, c, d, e, f}, s0 = {a}, s∗ = {g, f} and O = {a1, a2, a3, a4, a5}
with cost = {a1 −→ 2, a2 −→ 4, a3 −→ 1, a4 −→ 1, a5 −→ 5} and

pre(a1) = {a} add(a1) = {b, c} del(a1) = {}
pre(a2) = {a} add(a2) = {c, d} del(a2) = {}
pre(a3) = {b, c} add(a3) = {d} del(a3) = {c}
pre(a4) = {c} add(a4) = {e} del(a4) = {c}
pre(a5) = {e} add(a5) = {f} del(a5) = {a, b}

Figure 3.2: relaxed planning graph

3.3.3 Converting To the Successor Generator
To generate our successors we do not need to calculate the whole relaxed graph. Because we

only need the next step and not the solution of the problem, it suffices if we only expand one

layer of the graph. For this we copy the idea of the delete relaxation heuristic implementations

from Geißler et al. [5]. For each operator we count the number of preconditions and store them

as a precondition counter. Then we check all the variables in the layer before. Each time a

precondition is satisfied, we decrease the precondition counter by one. If one of the counters

reaches zero, all the preconditions for the corresponding operator are satisfied and therefore the

operator is applicable.

3.3.4 Implementation Notes
To make the successor generator more efficient we do not want to reset the counter list in each

function call. Instead we only want to reset all the entries we actually want to look up. For this

we have two different ideas.

The Successor Generators 9

The initialize method looks similar for both algorithms and is shown in Figure 3.3.

Algorithm 2: Initialize

list counter = new list(size of(operators))
int var size = size of(all variable domains)
preconditions of = new list(new list(var size))
list first visit = new boolean list(size of(operators)) (for boolean algorithm)
int current timestamp = 0 (for timestamps algorithm)
list timestamps = new list(size of(operators)) (for timestamps algorithm)
for each Operator o do

counter[o] = size of(o.preconditions)
for each Fact f in o.preconditions do

preconditions of[p].push back(o)
end

end

Figure 3.3: Initialize Algorithm for the marking successor generator

To generate the applicable ops we differentiate between the two methods. The boolean method

uses a list of booleans to indicate if we visit the counter for the first time. If yes, we reset it to

the initial value. This algorithm is shown in Figure 3.4.

Algorithm 3: generate applicable operators, boolean approach

Input: State s
list first visit = new boolean list(size of(operators, True))
for each Fact f in s do

for each Operator o in preconditions of(f) do
if first visit[o] = True then

counter[o].reset to initial value

counter[o] = counter[o]-1

for each operator where counter = 0 do
report o as applicable

Figure 3.4: Algorithm for the boolean approach

The second approach uses timestamps to determine whether to update the counter or not. If the

counter is smaller than the current timestamp, we need to update the counter. This algorithm

is shown in Figure 3.5.

3.4 PSVN Successor Generator
The PSVN successor generator is based on the planning formalism introduced by Holte et al.

[10]. We first discuss the PSVN planning formalism and then switch to the implementation of

the successor generator.

The Successor Generators 10

Algorithm 4: generate applicable operators, timestamp approach

Input: state s
current timestamp = current timestamp +1
for each Fact f in s do

for each Operator o in preconditions of(f) do
if timestamps[o] < current timestamp then

counter[o].reset to initial value

counter[o] = counter[o]-1

for each Operator where counter = 0 do
report o as applicable

Figure 3.5: Algorithm for the timestamp approach

3.4.1 PSVN
PSVN is a planning formalism introduced by Holte et al. [10] for describing state space problems

using variables with a finite domain “that lends itself to efficient calculation of a state’s successor

and predecessor without having to fully ground the operators” [10]. A state in PSVN is a vector

of fixed length n. Each entry i is drawn from the domain Di. Transitions between states are

specified by operators. Operators have a left-hand side (LHS) specifying the preconditions of the

operator and a right-hand side (RHS) specifying the effects of the operator. LHS and RHS are

both a vector of size n and each entry in the vector is either a constant from the domain D or

a variable symbol. A state s = 〈s1, . . . , sn〉 matches the LHS = 〈L1, . . . , Ln〉 if si = Li for every

L that is constant and si = sj for every i and j where Li and Lj are the same variable symbol.

An operator is deterministic if every variable symbol in its RHS is also in its LHS. An operator

is non-deterministic if one or more of the variable symbols in its RHS do not occur in its LHS.

We call such variable symbols unbound. The effect of a deterministic operator applied to a state

s = 〈s1, . . . , sn〉 with a matching LHS is to create a state s′ = 〈s′1, . . . , s′n〉 such that:

• if position j of the RHS is a constant c ∈ Dj then s′j = c

• if position j of the RHS is a variable symbol that occurs in position i of the LHS then

s′j = si

The effect of applying non-deterministic operators on a state s = 〈s1, . . . , sn〉 is to create a

set of successor states. We create one successor for every possible combination of values of

the unbound variable. For example if n = 4 and all positions have domain {1,2} then the

rule 〈1, A,B,C〉 −→ 〈E, 1, D,E〉 would create four successors when applied to state 〈1, 2, 1, 2〉:
〈1, 1, 1, 1〉, 〈2, 1, 1, 2〉, 〈1, 1, 2, 1〉 and 〈2, 1, 2, 2〉. For the sake of readability, PSVN allows one ad-

ditional symbol, the dash(“-”) on the LHS and RHS. A dash in position i on the LHS means,

there is no precondition on the value in position i. A dash in position i on the RHS means that

the value in position i does not change, when the operator is applied. Each operator can be in

one of three categories:

The Successor Generators 11

• An operator is unsatisfiable, if one of the preconditions is unsatisfiable given a state. If we

know v1 = 2 and have the rule 〈1, X〉 −→ 〈X, 0〉, then this operator is unsatisfiable.

• An operator is satisfiable if all preconditions are satisfied given a state. If we have the same

example from above with v1 = 1, then the operator is satisfiable.

• An operator is plausible, if it is neither satisfiable nor unsatisfiable. For the same example

if we have v2 = 3, then the operator is plausible.

Before applying an operator o we check if the LHS of the operator matches the given state s.

If yes, we can start building the successor state s′ with the RHS of o. Each variable in s is

transformed according to its corresponding value in the RHS of o and changes its value to the

value in the RHS which produces s′.

Definition 3.4.1 (Goals). goals are defined by special goal conditions. These goal condition are

operators where the condition takes the same form as the LHS of a normal operator. Each goal

state must be defined in the planning task and each goal condition is interpreted on its own.

Definition 3.4.2 (Directed Acyclic Graph). A Directed Acyclic Graph is a graph consisting of

vertices which are connected by directed edges. If none of the edges form a cycle inside the graph,

we call it acyclic. Vertices with outgoing edges are called inner vertices, vertices without any

outgoing edges are called leaf vertices.

3.4.2 Successor Generation In PSVN
In PSVN we precompute a Directed Acyclic Graph similarly to the causal graph in Fast Down-

ward. A vertex in the PSVN DAG contains a set of plausible operators, a set of all variable

assignments, a set of all satisfied operators and a choice for the next variable to test. An edge

contains a set of variable assignments and a set of satisfied operators. We build the DAG starting

from the root recursively in the following way:

1. We first set aside any operators which are satisfied without any knowledge (operators

without preconditions) that can immediately be applied.

2. At the beginning, all operators are plausible because no state variable has been assigned

any value yet. We create the graph with a single entry containing a set of plausible operators

containing all operators, an empty set of satisfied rules and the choice for the first variable

we want to test.

3. We chose a variable to test that has not yet been assigned. For the root this means that

we can choose any variable, because none has been assigned yet.

4. We create |Dv| many outgoing edges from the vertex where |Dv| is the domain of the chosen

variable in the outgoing vertex. Each edge represents an assignment d of v where d ∈ Dv.

The Successor Generators 12

5. We then add the newly chosen variable assignment to the set of variable assignments from

the outgoing vertex and update the set of plausible operators. Any operator that is now

satisfied is removed from the set of plausible operators and added to the set of satisfied

operators. Any operator that is now unsatisfiable is discarded. All other operators stay in

the set of plausible operators.

6. We simplify the two new lists in the vertex. We remove all preconditions from the set of

plausible operators that have been satisfied. Also we discard any variable assignments that

are no longer referenced by any of the plausible operators (e.g. we keep only the variable

assignments that are used by any of the preconditions).

7. We then check if a vertex with these sets of plausible operators, satisfied operators and

variable assignments already exists.

• If there is a vertex with the given features, the edge leads to this vertex and the

recursion stops.

• If not, we create a new vertex with these features and let the edge lead to this new

vertex.

8. If we were to create a new vertex in the step above and it still has any plausible rules left,

we continue processing the vertex beginning again from step 3. If there are no plausible

rules left we stop the recursion.

To decrease the size of DAG, it is advised to split the DAG if it gets too big. In this thesis we

begin to split the operators in two groups and build a separate DAG for each of them if the

number of vertices in the DAG succeeded 500’000. This can be done recursively if splitting in

half still does not reduce the DAG enough.

When we finish building the DAG or the multiple splitted DAGs, we create a function for every

vertex, every operator in an edge and every operator with empty precondition we set aside in the

beginning. A vertex function performs the test specified for the chosen variable at the vertex.

For each result, it performs some action which depends on the DAG structure. If there are any

satisfied operators in the edge which is labeled with the test result, it returns the result of calling

the first edge rule function of that edge. Otherwise, if the child vertex has any plausible rules

it returns the result of calling the child vertex function. Lastly, if there are no rules in the edge

and the child vertex has no rules the function returns failure to indicate that there are no more

children left to generate.

The edge rule function returns the rule which is to be applied and the next edge rule function if

there are more rules on the edge on the vertex function for the child vertex otherwise.

The root rule functions return the rule and the next root rule function if there are more rules

with empty precondition or the vertex function for the root of the DAG otherwise.

We can iterate through the children by calling the first root rule (or vertex function if there are

The Successor Generators 13

no rules without preconditions) applying the returned rule and continue with the function which

is returned.

3.4.3 Implementation Notes
We abandoned the original PSVN notation with the LHS and RHS and use the notation intro-

duced by Helmert [8] because we are implementing the successor generator in Fast Downward and

want to use the existing structures without translating back and forth. Because of this change

of notation, we do not have any operators without preconditions anymore and can start creating

the DAG at the root directly. Also the original PSVN successor generator follows a compiled

approach, which produces programming code promptly. We did not follow this approach and

took a different route instead. The DAG is created as a list of vertices with its root as the first

entry. Each newly created vertex is appended to this vertex list. The edges are represented inside

the vertices as a pointer to the children’s position inside the vertex list. To efficiently determine if

we have already created a vertex, we store all vertices in a hash map and can check for existence

in constant time where we map from the vertex’ hash value to its position in the vertex list.

We traverse the DAG in the following manner: For each vertex we store all of its children in

a list. We recall a vertex has |Dv| many edges, one for each possible variable assignment in v.

If Dv = {d1, . . . , dn} then the first stored children is d1, the second d2 and so on. We can now

easily follow variable assignment di by following child number i. In each vertex we visit we can

collect all the operators that are applicable at that point. Each applicable operator appears once

on the way through the DAG. An implementation can be seen in Figure 3.6 for the initialization

and in Figure 3.7 for the generation of applicable operators.

3.5 Watched Literals Successor Generator
The idea of this successor generator is based on the boolean satisfiability problem (SAT). The

boolean satisfiability problem tries to solve the question: “given a boolean formula, is it sat-

isfiable?”, which was the first problem to be proven NP-complete by Cook [2]. We solve the

satisfiability question with an backtracking algorithm that works in the following way:

We chose an unassigned literal and assign one of its values (True or False) to it. We then sim-

plify the formula by applying the assignment to it and recursively check if the formula has been

satisfied. If it has not yet been satisfied we swap the literal to the other value and check again.

With this we create two subproblems, one for each assignment of True and False. Each of the sub

problems can then again be divided in smaller sub problems by assigning other literals a value.

Typically we work on a standardized input in conjunctive normal form (CNF) to exploit prop-

erties of it. The CNF is a conjunction of one or more clauses, where each clause is a disjunction

of literals. A boolean formula in CNF might look like this: (a) ∧ (¬b ∨ a) ∧ (¬a ∨ c ∨ d). We can

exploit the fact that we need to satisfy all clauses and a clause is only satisfied if one of its literals

is satisfied. Additionally, the formula is unsatisfiable if one of its clauses is unsatisfiable, which is

The Successor Generators 14

the case when all literals in the clause are unsatisfiable. For solving problems in CNF, we can use

a more efficient backtracking algorithm introduced by Davis and Putnam [3], and later redefined

by Davis et al. [4], the DPLL algorithm. DPLL works similarly to the backtracking algorithm

described above with a few additions:

If a clause only contains one unassigned variable, we can apply unit propagation to it. This

means we can trivially assign the unassigned variable to satisfy the clause. The second addition

is that if one variable in a clause is satisfied, the clause is satisfied no matter what we assign to

the other variables in the clause. So while checking the formula for satisfiability we can discard

any clauses that have been satisfied which will give us a smaller sub problem to compute. If a

variable is unsatisfied in a clause, we can remove this variable as it will stay unsatisfied. If this

would lead to an empty clause (a clause without any variables in it), the clause is unsatisfiable

and therefore the whole formula is unsatisfiable.

The Two Watched Literals technique as described by Moskewicz et al. [11] tries to exploit the

fact that we only have four different cases in a clause:

• A literal in the clause has been satisfied and we can delete the clause from the formula.

• All literals in the clause are unsatisfiable and we can report the formula as unsatisfiable.

• Only one unassigned literal is left in the clause and we can apply unit propagation.

• More than one unassigned literal are left in the clause and we need to further apply back-

tracking to the formula.

For each clause we only want to know if we can apply unit propagation or if all literals are

unsatisfiable. For this we want to know for each clause when it changes from “more than one

literal unassigned” to “only one literal unassigned”. We do this by watching two literals for each

clause. If one of the two watched literals becomes satisfied, we can remove the clause because

it has been satisfied now. If one of the two literals becomes unsatisfiable we search for a new

unassigned literal. If we can not find another unassigned literal we have only one unassigned

literal left and can apply unit propagation to the clause. With this technique we do not need

to check each literal in a clause again and against. We only need to check two literals for each

clause which makes the backtracking algorithm a lot faster.

3.5.1 Converting To The Successor Generator
We want to apply the idea of the Two Watched Literals to the operator preconditions, so we

do not need to check all preconditions over and over again. Because SAT works differently than

generating applicable operators, we first need to define how we can exploit Two Watched Literals

for successor generation. Because Fast Downward lives in a finite domain world, we do not have

boolean variables anymore. Variables can have an arbitrary big domain. Also if we look at the

The Successor Generators 15

operators, we do not have CNF anymore, but its counterpart the Disjunctive Normal Form

(DNF). We have a disjunction of operators and each operator is a conjunction of preconditions.

This means each operator needs to be satisfied for itself and an operator is only applicable if all of

its preconditions are satisfied. This means we want to know for each operator if all preconditions

have been satisfied or not. Additionally, an operator is not applicable if one of its preconditions

is unsatisfiable. We only need to watch one precondition for each operator while generating the

applicable operators. Accordingly, we individually check each fact in the given state individually.

For all operators that are watching this fact we check if they have an unsatisfied precondition. If

they do not, we can report the operator as applicable. If they have an unsatisfied fact we make

the fact of this precondition the new watcher for this operator.

3.6 Implementation Notes
In order to access the watched operators in constant time, we need efficient data structures

that support this kind of access. Either we implement the watcher list as a hash map or we use

the same data structure as used in the Marking successor generator where we stored a list of

operators for each possible variable assignment.

In order to not switch watching between the same two variables back and forth because we always

look at them in the same order, it is important to watch them in cycles. We do not always watch

the preconditions from start to beginning but remember which precondition we checked last and

start with this one. If we reach the end of the preconditions list we start again from the beginning

until we checked all preconditions of the operator.

The Successor Generators 16

Algorithm 5: Vertex Object

list plausible operators
list variable assignments
list satisfied operators
list children
int choice
int hash

Algorithm 6: PSVN Initialization

Vertex v
v.plausible operators = all operators
v.satisfied operators = new list()
v.variable assignments = new list(size of(variables), -1)
vertex list.push back(v)
hashmap.insert(v.hash, vertex list.end)
create DAG recursive(vertex list.end)

Algorithm 7: create DAG recursive

Input: int pos
if !vertex list[pos].plausible operators.empty() then

vertex list[pos].choose unassigned variable()
for each value v in vertex list[pos].choice do

plaus ops = list(empty)
sat ops = list(empty)
vars = vertex list[pos].variable assignments
vars[vertex list[pos].choice] = v
split and simplify(vertex list[pos], plaus ops, vertex list[pos].choice, v, sat ops)
Vertex v = new Vertex(plaus ops, sat ops, vars)
if v.hash not in hashmap then

vertex list.push back(v)
hashmap.insert(v.hash, vertex list.end)
vertex list[pos].children.push back(vertex list.end)
create dag recursive(vertex list.end)

else
vertex list[pos].children.push back(hashmap.find(v.hash))

Algorithm 8: split and simplify

Input: Vertex v, list plausible ops, int var, int val, list satisfied ops
for each operator o in v.plausible ops do

list temp preconditions
bool unsatisfied = false
for each Precondition p in o do

if var = p.var then
if val 6= p.val then

unsatisfied = true
break

else
temp preconditions.push back(p)

if !unsatisfied then
if p.empty then

sat.push back(o)

else
plaus.push back(new Operator(o.id, temp preconditions))

Figure 3.6: PSVN Initialization

The Successor Generators 17

Algorithm 9: generate applicable operators

Input: State s
traverse DAG(vertex list[0], s)

Algorithm 10: traverse DAG

Input: Vertex v, State s
for each Operator o in v.satisfied operators do

report o as applicable

if !v.children.empty() then
var = v.choice
val = s[var]
Vertex next vertex = vertex list(v.children[val])
traverse DAG(next vertex, s)

Figure 3.7: PSVN generate applicable operators

Algorithm 11: Watched Literals Successor Generator

Input: state s
for each Fact f in s do

for each Operator o watching f do
if if any o.precondition = unsatisfied then

watcher[o].remove()
watcher[o] = unsatisfied precondition

else
report o as applicable

Figure 3.8: Watched Literals Successor Generator

4
Evaluation

4.1 Overview
To evaluate the successor generators we used a benchmark collection from the International

Planning Competitions, years 1998 to 2018. The benchmark collection can be found on GitHub2.

We used all optimal benchmark instances to evaluate, which is a collection of 65 different domains

with a total of 1827 different planning tasks. The search algorithm we use is a blind A* algorithm

Hart et al. [7]. All instances have a time limit of 30 minutes and a memory limit of 3.5GiB. When

exceeding this limit, the search will stop.

We run two different big experiments with all successor generators, once without any limitation

on state expansion to see how they perform solving the whole planning task and a second one

where we limited state expansion to 10’000. Additionally, we performed two smaller experiments,

one on the two implementations of the Marking successor generator and one on the PSVN

successor generator with and without the DAG splitting. All tests were performed at sciCORE3,

the scientific computing center at the University of Basel. The experiments were run on an Intel

Xeon E5-2660 2.2 GHz processor with 16 cores using the Downward Lab testing environment

created by Seipp et al. [13].

4.2 Results
In this section we will discuss all the results from Tables 4.1 and 4.2. These tables are a summary

of the experiments we described above. The complete experiment reports are two documents

with over 700 pages which would be too much to fit in this thesis. Still they are available on

the GitHub repository.4 We start analyzing the experiments by first discussing some general

observations and then comparing the successor generators against each other for each of the

2 https://github.com/aibasel/lab
3 https://scicore.unibas.ch/
4 https://github.com/YannickZutter/fast-downward/tree/yannick02/lab test results

https://github.com/aibasel/lab
https://scicore.unibas.ch/
https://github.com/YannickZutter/fast-downward/tree/yannick02/lab_test_results

Evaluation 19

attributes of the tables. Let us shortly introduce these attributes:

• Coverage: Number of solved problems.

• Out Of Memory: Number of problems which exceeded the memory limit.

• Out Of Time: Number of problems which exceeded the time limit.

• SG Init Time: Time to initialize the successor generators in seconds summed up.

• GAO Time: Total duration of the generate applicable ops function calls summed up in

milliseconds.

• GAO Mean: Total duration of the generate applicable ops function calls as geometric

mean.

• Total time Total run time in seconds as geometric mean.

Summary Boolean Timestamps

Coverage 680 679

Out Of Memory 1’007 997

Out Of Time 93 104

SG Init Time 1’227.23 1’182.48

GAO Time 31’872.11 35’313.44

GAO Mean 0.0103 0.0144

Total Time 2.15 2.20

Figure 4.1: Marking successor generator com-

parison

Before we start discussing the experiments, let us

first have a look at the Marking successor gen-

erator and the comparison of its two implemen-

tations in Table 4.1. As we can see it does not

make a big difference if we run the algorithm

with a boolean list or with timestamps. The dif-

ferences are rather small and for the overall eval-

uation we only consider the boolean implementa-

tion as the Marking successor generator because

it performed a little bit better than its counter-

part. We also tested the PSVN successor genera-

tor with and without splitting the DAG. We will

talk about this later in this chapter.

As a general observation we can say that both experiments showed similar results, which shows

that the implemented successor generators are consistent and work in the same way on smaller

test runs which are limited to fewer state expansions as they run on planning tasks with up to

millions of state expansions.

Let us start evaluating the different successor generators by looking at the coverage. All suc-

cessor generators solved around the same number of problems, which shows that there is not a

successor generator that can solve planning tasks with a better consistency. If we look at the Out

Of Memory attribute, we can see that the Fast Downward, the Marking and the PSVN succes-

sor generator reached the memory limit far more often than the Naive or the Watched Literals

successor generator. This is due to the fact that these successor generators need to precompute a

Evaluation 20

lot more than the Naive or the Watched Literals successor generator. This can also be supported

if we look at the initialization time of these algorithms which is significantly higher than the one

of the Naive or the Watched Literals successor generator which do not have to initialize a lot of

data or structures. Additionally, we can see that the Naive and the Watched Literals successor

generator reached far more often the time limit than the other three successor generators. This

is also shown in the GAO time and GAO mean. While having almost no time to initialize, the

Naive and Watched Literals take significantly longer to generate the applicable operators. In the

total time we can see that overall the Fast Downward successor generator works the fastest in

all of the experiments.

Summary PSVN Split

Coverage 253 405

Out Of Memory 1’522 818

Out Of Time 0 278

SG Init Time 335.54 167.82

GAO Time 873.75 1’242.73

GAO Mean 0.0014 0.0020

Total Time 0.51 0.49

Figure 4.2: Comparison PSVN and

Split DAG

In figure 4.2 we run an experiment with two versions of

the PSVN algorithm. The normal version with only one

DAG and an implementation where we split the DAG if

it has more than 500’000 vertices as discussed in Chapter

3.4.2. We can see that while having a slightly slower gen-

eration time for the applicable operators, the split version

had overall a way better performance than the default

version. We reduced the memory usage for the algorithm

by a lot. This is shown in the fact that we brought down

the instances that reached the memory limit from over

1’500 to a bit more than 800. Also the initialization time

has been cut in half with the addition of the split tree.

On one hand, the split version has a longer to generate the applicable operators because it has

to traverse multiple DAG to collect the applicable operators. On the other hand, the DAGs get

a lot smaller if we can split them. Instances where the DAG has over 3 million vertices can be

cut down to two DAGs with a total of more or less 100’000 vertices.

Summary Fast Downward PSVN Marking Watched Literals Naive

Coverage 712 253 680 658 689
Out Of Memory 1’098 1’522 1’006 866 773
Out Of Time 0 0 94 256 348
SG Init Time 0.08 335.54 0.59 0.02 0.01
GAO Time 841.53 873.75 1’592.82 3’079.83 3’735.03
GAO Mean 0.0014 0.0014 0.0026 0.0050 0.0061
Total Time - Mean 0.09 0.51 0.10 0.11 0.12

Table 4.1: Results without any bound

Evaluation 21

Summary Fast Downward PSVN Marking Watched Literals Naive

Coverage 254 161 225 227 255
Out Of Memory 0 1’393 0 0 0
SG Init Time 0.08 325.98 0.58 0.02 0.01
GAO Time 3.27 3.67 10.77 35.86 30.55
GAO Mean 0.0014 0.0015 0.0045 0.0148 0.0126
Total Time - Mean 0.03 0.34 0.04 0.04 0.04

Table 4.2: Results with bounds at 10’000 expanded states

4.3 Final Evaluation Of The Successor Generators
As shown in the results, we can see a trend for the successor generator implementations. There

is a clear trade-off between precomputing and applicable operator generation. The more precom-

putation we perform, the faster the generation of applicable operators. On one side we have the

implementations with a lot of precomputation like the PSVN successor generator with its DAG or

the Fast Downward with the tree. In the middle we have The Marking successor generator which

does some precomputation and has a decent run time in the successor generator. On the other

side, we have the Watched Literals successor generation which only has a little precomputation

but needs to calculate much more during the successor generation. Lastly, the Naive successor

generator which does not precompute anything at all and does all the work in the generation of

the applicable operator. If we set up a list from fastest applicable operators generation to fastest

initialization we would get following:

1. PSVN/ Fast Downward

2. Marking

3. Watched Literals

4. Naive

All successor generators can be used in a specific scenario. If we have huge planning tasks where

we probably need millions of steps to find a goal, we are better off choosing a successor generator

with a higher precomputation time like PSVN or Fast Downward. Besides, if we have a lot of

small planning tasks that will be solved quickly we do not need a huge precomputation and can

accept that we do not have a fast generation of applicable operators because we only need a few

steps to find the goal.

5
Conclusion & Future Work

5.1 Conclusion
As we have seen in the evaluation of the successor generators we have a use case for all of

them. Depending on what kind of planning task we want to solve, it is advisable to switch to a

successor generator that is suited best for the experiment. Although the implemented successor

generators give an estimate on how well they perform, we also need to take into account that

all of these successor generators were implemented in rather short time except for the already

existing Fast Downward successor generator. These successor generators have been optimized in

the time given, but there might still be a lot of potential to optimize so that their performance

could be much better. For example the PSVN successor generator was made twice as fast with

one tweak on how the operators and variables to test were stored and compared. As seen in the

comparison of the PSVN successor generator it is also advisably for successor generators that

precompute a tree or graph to split up the operators on different trees.

5.2 Future Work
Due to the limited time for this thesis, there are still some topics left that have not been worked

on. Having tested the DAG splitting in the PSVN successor generator we found that it is advisable

to split the operators and generate multiple DAGs for bigger planning tasks that have a lot of

operators. This approach can also be implemented and tested for the Fast Downward successor

generator whose precomputed tree can be split in the same manner as with the PSVN DAG.

It would also be interesting to see how the trade off between splitting the DAG and having to

traverse multiple DAGs to generate the applicable operators would look like and at which point

it would be optimal to split a DAG before it is too big.

As we said above, all of the successor generators can be optimized. Especially for the PSVN

successor generator, there might be a lot of potential to improve the performance of the algorithm.

If we consider the A* algorithm we might be in a situation where we are currently at a promising

Conclusion & Future Work 23

path while expanding states. We expand one state after another without switching to a different

state in the algorithm’s open list because expanding “here” still gives us a more optimal path

than jumping to another state in the open list. We assume that expanding states in the same

“area”, they do not differ that much from another. Therefore we always store the state and

the applicable operators in each function call to generate the applicable operators. We can then

check the previous state and copy all operators that have preconditions on variables that have

not been changed. This has the potential that we do not have to calculate all the operators but

we could copy some of them. This would only have a meaningful impact if we test it with a

heuristic search instead of a blind one, because in blind search we only expand layer after layer

without following any promising paths.

Bibliography

[1] Blai Bonet and Hector Geffner. Planning as heuristic search. Artificial Intelligence, 129:

5–33, 2001.

[2] Stephen A. Cook. The complexity of theorem-proving procedures. 3rd Annual ACM Sym-

posium on Theory of Computing.

[3] Martin Davis and Hilary Putnam. A computing procedure for quantification theory share

on. Journal of the ACM, 7:201–215, 1960.

[4] Martin Davis, George Logemann, and Donald Loveland. A machine programm for theorem

proving. Communications of the ACM, 5:394–397, 1962.

[5] Florian Geißler, Thomas Keller, and Robert Mattmüller. Delete relaxations for planning

with state-dependent action costs. International Conference on Artificial Intelligence, pages

1573–1579, 2015.

[6] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and Acting. Cambridge

University Press, 2016. ISBN 978–1–107–03727–1.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of

minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107,

1968.

[8] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[9] Malte Helmert. Concise finite-domain representations for pddl planning tasks. Artificial

Intelligence, 173:503–535, 2009.

[10] Robert C. Holte, Broderick Arneson, and Neil Burch. PSVN Manual (June 20, 2014), 2014.

[11] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: engineering an efficient sat solver. 38th annual Design Automation Conference, pages

530–535, 2001.

[12] Allen Newell, John Clifford Shaw, and Herbert Alexander Simon. Report on a general

problem-solving program, 1959.

Bibliography 25

[13] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.790461, 2017. URL https://doi.org/10.5281/zenodo.

790461.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Yannick Zutter

Matriculation number — Matrikelnummer

2015-052-723

Title of work — Titel der Arbeit

Implementing and Evaluating Successor Generators in the Fast Downward Planning System

Type of work — Typ der Arbeit

Bachelor Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged the

assistance received in completing this work and that it contains no material that has not been

formally acknowledged. I have mentioned all source materials used and have cited these in ac-

cordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene Hilfe

zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln verfasst habe.

Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten wissenschaftlichen

Regeln zitiert.

Basel, September 30, 2020

Signature — Unterschrift

	Acknowledgements
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	3 The Successor Generators
	3.1 Naive Successor Generator
	3.2 Fast Downward Successor Generator
	3.3 Marking Successor Generator
	3.3.1 Delete Relaxation
	3.3.2 Relaxed Planning Graph
	3.3.3 Converting To the Successor Generator
	3.3.4 Implementation Notes

	3.4 PSVN Successor Generator
	3.4.1 PSVN
	3.4.2 Successor Generation In PSVN
	3.4.3 Implementation Notes

	3.5 Watched Literals Successor Generator
	3.5.1 Converting To The Successor Generator

	3.6 Implementation Notes

	4 Evaluation
	4.1 Overview
	4.2 Results
	4.3 Final Evaluation Of The Successor Generators

	5 Conclusion & Future Work
	5.1 Conclusion
	5.2 Future Work

	Bibliography
	Declaration on Scientific Integrity

