
Refinement Strategies for
Counterexample-Guided Cartesian

Abstraction Refinement
Bachelor’s thesis

Faculty of Science at the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Jendrik Seipp

Martin Zumsteg

mar.zumsteg@stud.unibas.ch

2016-056-111

July 20, 2019

Acknowledgments

I would like to thank Prof. Dr. Malte Helmert for giving me the opportunity to work on an

interesting, practical thesis, as well as access to the AI group’s Fast Downward planner[2]

and evaluation suite.

Additionally, my thanks go to Dr. Jendrik Seipp for helping me get started with the Fast

Downward suite and frequent feedback on my results.

Calculations were performed at sciCORE (http://scicore.unibas.ch/) scientific computing

center at University of Basel.

Abstract

Abstractions are a simple yet powerful method of creating a heuristic to solve classical

planning problems. In this thesis we make use of cartesian abstractions generated with

CEGAR [4]. This method refines abstractions incrementally by finding flaws and then

resolving them until the abstraction is sufficiently evolved.

The goal of this thesis is to implement and evaluate algorithms which select solutions of

such flaws, in a way which results in the best abstraction (that is, the abstraction which

causes the problem to then be solved most efficiently by the planner).

We measure the performance of a refinement strategy by running the Fast Downward planner

[2] on a problem and measuring how long it takes to generate the abstraction, as well as how

many expansions the planner requires to find a goal using the abstraction as a heuristic. We

use a suite of various benchmark problems [6] for evaluation, and we perform this experiment

on the original problem, then by adding landmarks as a subtask to the abstraction, and

finally by computing a saturated cost partitioning.

Finally we attempt to predict which refinement strategy should be used based on parameters

of the SAS+ problem, potentially allowing the planner to automatically select the best

strategy at runtime.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 2

2.1 Counterexample-guided abstraction refinement (CEGAR) 3

2.1.1 Building the abstraction on subtasks 4

2.1.2 Saturated cost partitioning . 4

2.2 Refinement strategies of the Fast Downward planner 5

2.2.1 The UNWANTED-strategies . 5

2.2.2 The REFINED-strategies . 6

2.2.3 The HADD-strategies . 6

3 New refinement strategies 7

3.1 The CG-strategies . 7

3.2 The GOAL DIST-strategies . 8

3.3 The HIGHER DIST-strategies . 8

3.4 The ACTIVE OPS-strategies . 8

3.5 Predicting the best refinement strategy . 9

4 Results 11

4.1 Running the planner . 11

4.2 Original task . 12

4.2.1 Number of distinct splits . 13

4.2.2 Progress of average goal distance . 17

4.3 Including subtasks . 18

4.3.1 Number of distinct splits . 21

4.4 Applying SCP . 22

4.5 Predicting the best refinement strategy . 24

5 Conclusions 25

5.1 Future work . 25

5.1.1 Tie-breaking strategies . 25

Table of Contents v

5.1.2 A strategy with the most freedom . 25

5.1.3 Varying split selection strategy during SCP 26

5.1.4 More complex prediction features . 26

Bibliography 27

1
Introduction

To solve a classical planning problem deterministically, the common approach involves ex-

ploring the state-space of the problem starting from the initial state until we reach a goal

state. Often we also desire a problem to be solved optimally, that is we seek a plan that

solves the problem with the least number of actions or with the lowest cost. In all cases, as

the numbers of variables and domains grow, the state space grows exponentially, meaning

for a timely solution of complex problems we require a heuristic to guide our search.

We then find two contradictory desiderata:

1. The problem solver should be general, being capable of solving any problem that can

be expressed in a format such as SAS+ or PDDL. This means we cannot use heuristics

that are well-designed for any specific problem or domain.

2. We want a heuristic which best fits the problem, allowing for the least expansion of

states and the fastest search. Because of generality, we do not have an intuition of how

to solve the problem, and must extrapolate heuristic values based only on the state

space’s description.

The goal of an abstraction is to best represent the relevant parts of a state space, while re-

maining much smaller to ensure the abstraction can be created and solved quickly. For this

thesis, we will only look at Cartesian abstractions, which form abstract states by assigning

each variable a set of values (instead of only a single value as with concrete states). The ab-

stractions are generated using counterexample-guided abstraction refinement[4] (CEGAR),

which improves abstractions by finding solutions that are not applicable in the concrete

search problem (resulting in a flaw). Specifically, we will be looking at different methods of

picking a split for a given flaw in an abstraction (called refinement strategies). These strate-

gies are similar to the common heuristics, except that their evaluation function does not

estimate the goal distance of a state, and instead assigns each split a value in R depending

on how desirable the split is, to then pick the best one during abstraction refinement. In

addition to simply using abstractions as heuristic functions for the planner, we will evaluate

our refinement strategies when generating abstractions from subtasks, as well as applied in

saturated cost partitioning.

2
Background

Definition 2.1. State spaces

A state space or transition system T = 〈S,O, cost, T, s0, S∗〉 is a tuple of a finite set of

states S, a finite set of operators O, a cost function cost : O → R+
0 , a set of transitions

T ⊆ S ×O × S, an initial state s0 ∈ S and a set of goal states S∗ ⊆ S.

In this thesis, every state space has an associated set of variables V and corresponding

domains dom(v) which it’s states are based on:

S = {〈v1 → d1, ..., vn → dn〉 | {v1, ..., vn} = V ∧ di ∈ dom(vi)}

We only consider state spaces that are deterministic, that is for a given 〈s, o〉 ∈ S×O there

exists at most one 〈s, o, s′〉 ∈ T .

Definition 2.2. Variables, domains and facts

A variable is an atomic element used to build the states of a state space.

The domain dom(v) of a variable v is the set of values this variable can be assigned.

A fact is a partial assignment f = {v → d} which assigns a value d ∈ dom(v) to a single

variable v.

Definition 2.3. States and cartesian states

A state is a total assignment over the variables of it’s state space. Concrete states are atomic

and exhaustive, meaning an agent will always be in exactly one state and transitions will

always be between two states (which need not be different).

A cartesian state is an abstract state whose variables can take a set of values:

s ∈ P(dom(v1))× ...× P(dom(vn))

Where {v1, ..., vn} = V are the variables of the concrete planning problem and P denotes the

power-set. It is possible for a cartesian state’s domain set to only contain a single value per

variable (but no less).

We denote [s] the abstract state which contains the concrete state s. Every concrete state

is always contained in exactly one abstract state, namely s ∈ [s] ∀ s ∈ S. It is valid for an

abstract state to only contain a single concrete state.

Background 3

Definition 2.4. Operators and paths

An operator or action is an abstract representation of a transition. It has an associated

set of preconditions and effects which define the transitions induced by the operator. An

operator must induce at least one transition (it’s preconditions must not be contradictory).

Every operator is assigned a cost by the state space’s cost function.

A path is a tuple of operators leading from one state into another:

π =
〈
s1

o1→ s2, ..., sn−1
on−1→ sn

〉
A path is associated with a cost based on the sequence of operators it applies:

cost(π) =

n−1∑
i=1

cost(oi)

We call a path π a solution of a planning task iff it starts in the task’s initial state s1 = s0

and ends in any of it’s goal states sn ∈ S∗. Furthermore, it is called optimal if there is no

solution π′ with a lower cost cost(π′) < cost(π).

Definition 2.5. Landmarks

A fact landmark L = {f1, ...} is a non-empty set of facts of a state space. At least one

f ∈ L must be reached (but unlike goal facts need not be retained) in every solution of the

state space at some point. While in SAS+ every goal fact constitutes a landmark we ignore

those for simplicity.

An operator landmark L = {o1, ...} is a non-empty set of operators of a state space. At

least one o ∈ L must be applied at some point in every solution of the state space.

2.1 Counterexample-guided abstraction refinement (CEGAR)
The CEGAR-algorithm works as follows:

1. Initialize the abstraction by creating a single abstract state which contains the entire

state-space: SA1 = {dom(v1)× ...× dom(vn)}

2. Compute an optimal path from the abstract initial state to an abstract goal state.

3. If no path was found (implying that the task is unsolvable), abort and use the current

abstraction to compute heuristic values.

4. Find a flaw explaining why this path is not a solution of the concrete search problem.

5. Find a split of an abstract state which prevents this flaw from happening in later

iterations. Some flaws imply multiple splits we have to pick from.

6. If the abstraction should be refined further, continue at step 2.

To refine the abstraction optimally we use a refinement strategy (also called splitting strat-

egy) which evaluates a split in the context of an abstraction and assigns it a value in R. We

then pick the split with the highest refinement value according to our strategy.

The resulting abstraction is then used as a heuristic for the planning problem by computing

the goal distances in the abstraction and assigning it to every state s as hA(s) = h∗([s]).

Background 4

2.1.1 Building the abstraction on subtasks
The simplest application of CEGAR only requires solving a single task: reaching a goal state.

Because we are solving a planning problem in SAS+ format, this means reaching a partial

assignment α. Sometimes, this single task is not enough to efficiently guide abstraction

refinement. To solve this issue, we can introduce subtasks that the abstractions are built

on, without affecting the eventual solving of the planning task (we still receive a single

admissible heuristic). This means that we now have to generate one abstraction per subtask,

which are eventually combined using saturated cost partitioning (SCP). However, we only

generate exactly one abstraction per subtask, which results in a single-order SCP (which

cannot profit from diversification beyond the combining of subtasks).

In our case, we replace the original task with two subtasks:

• A subtask for every goal fact. This is important so our abstraction keeps targeting

the goal, but allows achieving every goal fact on it’s own. Ideally this helps to detect

alternate paths and allows the abstraction to only focus on a few of them.

• A subtask for every landmark we have to pass to get to the goal. For simplicity, we

only use fact landmarks.

2.1.2 Saturated cost partitioning
The third experiment uses saturated cost partitioning (SCP), a method of combining mul-

tiple abstractions into a single, admissible heuristic. This allows capturing multiple aspects

of a problem by varying the tasks the abstractions are generated with.

For SCP, we generate a number of abstractions (as before with CEGAR) while manipulating

the costs of operators, so that the sum of a number of heuristic estimates (which we get from

multiple abstractions) remains additive. We employ subtasks for this once more, but gen-

erate multiple orders of abstractions. Normally, SCP uses a fixed number of sub-heuristics,

which it generates by distributing a cost function onto the different runs, but we instead

keep generating abstractions until a resource limit is reached (200 seconds in this case).

The important difference, why this yields better results than the previous methods, is be-

cause it generates multiple different orders of the same abstractions. There are many ways

to achieve this, for example:

• Randomly reordering variables or the items in their domain. This does not change the

planning task itself, as both the variables V and their domains dom(v) are (unordered)

sets. However, most planners (particularly the Fast Downward planner used in this

thesis) represent those as lists and then prefer variables or values of lower index to

arrive at a deterministic solution.

• The CEGAR-algorithm allows certain choices, such as which split to resolve, to be

made arbitrarily. We do not apply this in our thesis, instead we generate abstractions

using a single splitting strategy only. This is to allow comparing different strategies

over all three experiments (single task, single SCP order over subtasks, multiple SCP

orders over subtasks).

Background 5

• We can again vary the subtasks that the abstraction is guided to represent. While

before, it was important to keep all goal facts (just splitting them into subtasks) we

can now generate an abstraction whose only purpose is to reach a single such goal.

By generating an abstraction for every goal and combining them within SCP, we can

once again reach a heuristic which is aware of all goals of the original planning task.

2.2 Refinement strategies of the Fast Downward planner
The Fast Downward implementation this thesis is based on already contains three refine-

ment strategies. It also supports randomly picking a split. It should be noted that this

is not the same as building a random abstraction, it is still guided by resolving the flaws

between the initial state and the goal states.

In the implementation, to evaluate a split we give 3 arguments: The abstraction T , the

abstract state sδ which is being split, and the split δ which is to be evaluated (consisting of

the variable v at which the state is split and the wanted values w ⊂ dom(v, sδ) which are

split off). The value for sδ is the same for all splits, and is obtained from the flaw 〈s, c〉 as

sδ = [s]. Each flaw may produce multiple splits, one for each variable, which can be obtained

by capturing all variables and their assignments from [s] ∩ c = sδ ∩ c. It is impossible for a

flaw to generate no splits, as that would imply [s] ∩ c = ∅, contradicting the existence of a

flaw at this point.

The formulae in this thesis then use modified versions of Refine and Split (based on the

definitions by Seipp and Helmert [4]) which, instead of the flaw itself, take the sδ and δ

resulting from this flaw (thus expressing the choice which would normally be part of the

splitting process). This allows a refinement strategy to judge a split based on the abstraction

it causes.

Further, all strategies except RANDOM come in two variants: MIN and MAX. Most are func-

tionally the same, except for (as the name implies) seeking a maximal or minimal value of

their base evaluation function. In this thesis, we name the MAX-variant the default, as it is

the one which seeks to maximize the quality which the strategy is named after. The two

refinement functions available to the planner (for a hypothetical X-strategy) then become

rMAX X = rX; rMIN X = −rX.

2.2.1 The UNWANTED-strategies
These refinement strategies evaluate a split based on the number of unwanted values it

implies. More specifically, if there was a flaw 〈s, c〉 in the abstraction, the set of wanted

values w for a variable v becomes w = dom(v, c) ∩ dom(v, s) (all values from the domain

of v which are in both [s] and in the desired state c) with there only being a split for v if

s[v] /∈ c[v].

The set of unwanted values is then w = dom(v, sδ) \ w and the evaluation function is:

rUNWANTED(δ = 〈v, w〉) = |dom(v, sδ)| − |w|

The strategy ignores the state which is to be split.

Background 6

2.2.2 The REFINED-strategies
The REFINED-strategies are the ones originally proposed by Seipp and Helmert [4] (more

specifically, the MAX-variant). They assign each split a value corresponding to the degree of

refinement of the variable being split on (that is, how much of its domain was split off in

the current abstract state):

rREFINED(sδ, δ = 〈v, w〉) = −|dom(v, sδ)|
|dom(v)|

The strategy ignores the wanted values which are being split off.

2.2.3 The HADD-strategies
Based on hadd by Bonet and Geffner [1], these strategies pick the split which contains a fact

with the highest or lowest hadd value in the abstract planning graph, calculated from the

initial state [s0].

This strategy is the only one where the MIN-variant and the MAX-variant differ functionally.

In this case the evaluation functions are:

rMIN HADD(sδ, δ = 〈v, w〉) = −min
f∈w

hadd([s0], 〈v, f〉)

rMAX HADD(sδ, δ = 〈v, w〉) = max
f∈w

hadd([s0], 〈v, f〉)

Where hadd(s, 〈v, f〉) is similar to the basic function hadd(s) except for two major differences:

• The value assignments are reversed. Instead of marking the cost of s with zero and

returning the value of the goal state (as hadd would) we mark the goal state with zero.

• We do not return the hadd value of the initial or goal state and instead that of the

planning fact α = {v → f}.

3
New refinement strategies

In each case, the split selector selects the split with the highest refinement value. This works

fine for the MAX-variant, and the MIN-variant simply negates the output of the evaluation

function to arrive at the split with the lowest refinement value. In the case that multiple

splits have the same refinement value, we utilize random tie-breaking by first shuffling the

list of possible splits.

Most of the refinement strategies below require the following parameters (which are the

same as those of the existing refinement strategies outlined in the previous chapter), terms

and functions:

1. The parameters, consisting of the state at which the flaw occurred sδ, the split being

evaluated δ and the current, flawed transition system

〈S,O, cost, T, [s0], S∗〉 = T

2. The transition system implied by the parameters:

〈S′,O, cost, T ′, [s0], S′∗〉 = T ′ = Refine(sδ, δ)

The operators and cost function remain unchanged from T .

3. The perfect heuristic h∗T (s) to determine the goal distance of a state s in the transition

system T (in the implementation, this value is calculated for all states, generating

additional overhead).

3.1 The CG-strategies
The CG-strategies pick a split based on the variable which is first or last in the variable

ordering Fast Downward generates based on the causal graph of the planning task. Because

each variable can only induce a single split for a given flaw, this refinement strategy does not

depend on tie-breaking. Additionally, because the causal graph is generated by the planner

beforehand, each variable’s index is already known when applying the evaluation function

(making it very fast). The goal of this strategy is to prioritize variables which appear early

or late in the causal graph, with the hope that they allow the planner to solve the starting

or finishing part of the task more effectively.

New refinement strategies 8

3.2 The GOAL DIST-strategies
The GOAL_DIST-strategies compute the average goal distance of all solvable abstract states.

The algorithm first obtains the transition system induced by the split, to then find all the

states which can reach the goal and compute the refinement value as the average over those

states’ goal distances:

R = {s ∈ S | h∗T ′(s) <∞}

hGOAL DIST =

∑
s∈R

h∗T ′(s)

|R|
The algorithm completely ignores all abstract states which cannot reach the goal to avoid

degenerate cases which depend entirely on tie-breaking. This value is always defined, because

the concrete planning task (and thus every Cartesian abstraction) must have at least one

goal state.

The goal of this strategy is to create an abstraction where most states have a high goal

distance, and assuming that this results in a heuristic which is most informed. It is easy

to see why an abstraction with the least possible average goal distance of zero can only be

achieved if every abstract state contains at least on concrete goal state, and is reasonable to

assume that the inverse will then result in a good abstraction. Because the algorithm does

not consider states which cannot reach the goal, it is possible for the average goal distance

to become smaller, even though this can never be the case for any single abstract state.

3.3 The HIGHER DIST-strategies
The HIGHER_DIST-strategies count the abstract states which have a higher goal distance

after a split. Again, the algorithm obtains the transition system induced by the split, to

then directly count the states whose goal distance increases:

hHIGHER DIST = |{s ∈ S | h∗T ′(s) > h∗T (S(s))}|

Where S(s), given s ∈ S′, is the state’s equivalent in T :

S′ = (S \ sδ) ∪ Split(sδ, δ)⇒ S(s ∈ S′) =

sδ if s ∈ Split(sδ, δ)

s otherwise

The abstract state which gets split is considered twice, once for each state it splits into.

However, it is impossible for both resulting states to have a goal distance different from the

initial abstract state.

It should be noted that, while similar to the above strategy, MAX HIGHER DIST prefers

splits which increase the goal distance of many nodes slightly (such as landmarks close to

the goal) as opposed to increasing the average (which yields a diminishing effect as the

abstraction grows).

3.4 The ACTIVE OPS-strategies
The ACTIVE_OPS-strategies count the operators which are active in the abstraction result-

ing from a split. An operator is considered active if it induces at least one transition between

New refinement strategies 9

two abstract states, instead of only inducing self-loops. Again, we obtain the induced tran-

sition system, and count the active operators from the transitions:

hACTIVE OPS = |{o ∈ O | ∃ (s, o, s′) ∈ T ∧ s 6= s′}|

The MAX-variant of this strategy attempts to create a most diverse abstraction without re-

quiring the use of subtasks and SCP. It’s inverse attempts to keep the abstraction narrow,

which partially contradicts the purpose of abstraction refinement. As the refinement con-

tinues, it becomes increasingly less likely for a split to activate any operators. Additionally,

it is not possible for operators to become inactive during refinement, meaning that this

refinement strategy will degenerate to tie-breaking as refinement advances. The refinement

value cannot decrease after a split, but it can increase arbitrarily fast because multiple (or

all) operators can induce a transition between two given states.

3.5 Predicting the best refinement strategy
To obtain the most suited abstraction for a problem, the ideal refinement strategy must be

chosen in advance based on certain characteristics of the planning problem. Because Fast

Downward converts a PDDL-problem into SAS+ before solving it, we only have access to

characteristics of the converted problem. Specifically, we attempt to predict the number

of expansions caused by an abstraction generated from a refinement strategy or how many

problems of a domain it solves best using the number of operators, variables and facts in

the planning problem.

We attempt such a prediction in the following ways:

1. The first method attempts to find a linear correlation via matrix operations.

Expansions = Parameters ∗M

M = Parameters−1 ∗ Expansions

Where Expansions and Parameters are each a matrix of sample rows.

We solve this equation using the singular value decomposition of Parameters to

construct its pseudo-inverse. With the resulting matrix M we predict the number of

expansions of each strategy, selecting the one which has the lowest result. Because

there may be multiple strategies which result in the least number of expansions, we

measure performance of the algorithm only in how many expansions it causes, and not

how many it predicts or the exact error of this prediction.

2. The second method uses a multivariate normal distribution (MVND) for every refine-

ment strategy, which should model the domain of problems in which it performs best.

The parameters are again the variables of the problem, and the MVND is conditioned

to include all problems where the corresponding strategy has achieved the best results

(the least number of expansions). We then predict the probability that a problem with

a given set of parameters is solved with the least number of expansions by a specific

strategy:

P (p | r) =
1

(2π)k ∗ detC
exp

(
−1

2
(x− µ)TC−1(x− µ)

)

New refinement strategies 10

The parameters are calculated assuming optimality for different strategies is indepen-

dent, then applying maximum-likelihood estimation [3]:

µ =
1

n

n∑
i=1

~xn; C =
1

n

n∑
i=1

(xi − µ)T (xi − µ)

Where ~xi is the i-th parameter sample expressed as a row vector. Then the posterior

probability is used to pick the best refinement strategy:

arg max
r
P (r | p) = arg max

r
P (p | r) ∗ P (r)

Again, we do not make use of the true predicted value or its error and measure only

the outcome of our predictor function.

3. An additional method which is used as a baseline for the performance of the other

methods is to pick the strategy which causes the least number of total expansions:

BestGuess = arg min
r
{
∑
p∈P

Expansions(p, r)}

Where Expansions(p, r) is the expansions measured in problem p of the set of all

problems tested P when using strategy r to build the abstraction. In other words, the

best guess is the strategy which, if used exclusively, would have resulted in the least

amount of expansions.

We also compare these numbers to the least or most possible expansions, if we had a

perfect predictor:

Best =
∑
p∈P

min
r

Expansions(p, r)

Worst =
∑
p∈P

max
r

Expansions(p, r)

Like the best guess, these values are not known before solving the problem with all

strategies, thus serving as evaluation context only.

We conduct this analysis over the entire set of problems by splitting off a random 10% into

a test set and exclusively using the remaining 90% as training data. While this introduces

some randomness into the results, it outweighs the issues of testing the algorithm on the

training set and avoids accidentally training on test data after a number of iterations.

4
Results

To evaluate the refinement strategies we have used two indicators of search performance:

1. The number of expansions before the last jump of the heuristic value during planning.

This criterion is similar to the total number of expansions, but does not depend on

the tie-breaking strategy of A*. The resources used to find the optimal path typically

correspond linearly to this value.

2. The amount of time necessary to create the abstraction. Because the abstraction is

only created once, before solving the problem, the former criterion is more important.

In most cases, abstraction refinement will not terminate early because no concrete

solution (or lack thereof) was found. Instead, the time to construct the abstraction

strongly depends on the resource limits in place.

4.1 Running the planner
The evaluation of our refinement strategies is performed by running the Fast Downward

planner [2] on a set of various planning problems[6] in PDDL format. The invocation of the

planner and the handling of most parameters, as well as the later parsing and processing of

the results is performed using Downward Lab [5].

To run the planner, we supply two additional arguments to Lab:

1. The search function, which differs by experiment.

Basic search function:

astar(cegar(subtasks=[original()], max_states=10K,

max_transitions=infinity, max_time=infinity, pick=<pick>))

This invocation results in generating a single abstraction based on the original task.

Refinement will only stop when either a concrete solution (or lack thereof) was found

or the abstraction has reached 10’000 states.

Search function using subtasks:

astar(cegar(subtasks=[landmarks(random_seed=0),

goals(random_seed=0)], max_states=10K,

max_transitions=infinity, max_time=infinity, pick=<pick>))

Results 12

Search function using saturated cost partitioning:

astar(saturated_cost_partitioning(

[cartesian([landmarks(order=random, random_seed=0),

goals(order=random, random_seed=0)], pick=<pick>)],

max_time=200, max_orders=infinity,

diversify=true, max_optimization_time=0))

2. The algorithm used in the search function (denoted by the ’pick’ parameter in the

above formulae) which is changed to ensure every refinement strategy is tested on

every problem.

One of: [RANDOM, MIN_UNWANTED, MAX_UNWANTED, MIN_REFINED,

MAX_REFINED, MIN_HADD, MAX_HADD, MIN_CG, MAX_CG,

MIN_GOAL_DIST, MAX_GOAL_DIST, MIN_HIGHER_DIST,

MAX_HIGHER_DIST, MIN_ACTIVE_OPS, MAX_ACTIVE_OPS]

4.2 Original task
First we examine the time used by the strategies to generate abstractions. Because the

GOAL DIST, HIGHER DIST and ACTIVE OPS strategies require a rewiring of the abstraction

per split evaluation, they are noticeably slower than all other strategies (Figure 4.1). The

remaining strategies show little difference as the time required by the refinement process

overshadows the time to pick a split. The noticeable variance is because, for simple problems,

one strategy sometimes completes refinement before reaching a state or transition limit. An

additional source is the varying number of average splits during refinement (the planner

does not invoke the refinement function if there is only one split to pick).

Next we compare the MAX-variants of our refinement strategies to the MIN-variants. In

Figure 4.2 we can see that the existing strategies’ MAX-variant generally performs better

than the inverse. For the new strategies (Figure 4.3) we get a mostly similar picture, with

the performance difference between MAX CG and MIN CG being only very small (in spite

of them preferring opposite splits), and for the ACTIVE OPS strategies we see the inverse,

where the MIN-variant performs significantly better. This is likely because refinement forces

operators to become active, while the MIN-variant avoids the degenerate case when all

operators are active.

In Figure 4.4 we, again, compare a specific refinement strategy to RANDOM, this time con-

sidering expansions. Unfortunately, none of the new strategies managed to perform better

than the previous best strategy, MAX HADD. We can also observe that the strategies which

performed badly have a more narrow distribution, indicating that they might be constrained

in some way. Another interesting observation is that the strategies performing well do so

more likely for difficult problems (closer to the right) while the strategies performing badly

appear to have a higher tendency to do so for easy problems (closer to the left).

Finally, we put the performance of all algorithms into perspective in Figure 4.5. It can

be seen how MAX HADD is the best strategy, immediately followed by MAX CG and MIN CG.

After a small gap we find the other strategies by Seipp and Helmert [4] (MAX REFINED and

MAX UNWANTED), followed by the remaining strategies. We can also observe a trend in most

Results 13

(a) MAX HADD (b) MAX CG

(c) MIN HIGHER DIST (d) MIN ACTIVE OPS

Figure 4.1: Scatter plots comparing the time to construct the abstraction for some
strategies, compared to RANDOM. For most abstractions, the split selection requires
minimal effort, as can be seen in the top row. The plots for variants of the same strategy
vary little as they require the same effort.

strategies, where the MAX-variant is better, except for MAX CG (which is only very slightly

better than MIN CG) and MAX ACTIVE OPS, which is considerably worse than its inverse.

4.2.1 Number of distinct splits
Next, to measure the impact of our refinement strategy we also analyse 2 additional param-

eters:

1. options: The average number of possible splits to choose from. This value indicates

the freedom of the evaluation function to pick a split. One might expect this value to

not depend on the refinement strategy because it is already fixed before the strategy

decides which split to use. However, empirically this value varies based on the strategy,

Results 14

(a) UNWANTED (b) REFINED

(c) HADD

Figure 4.2: Comparison between variants of the existing refinement strategies. Points
below 1 indicate that the MAX-variant is better. We can see that this is the case for all
strategies, especially so for HADD.

though not as much as the number of distinctly valued splits.

2. distinct: The average number of distinct splits (distinct in the sense that the

evaluation function assigns them different values). This indicates how much the split

selection depends on the tie-breaking strategy. If the value reaches one, this means

that the strategy is mostly random (the tie-breaking strategy used in all experiments).

To simplify calculations, the implementation reports these attributes, which it measures

once for every flaw found, via the arithmetic mean. A more accurate measure of the entropy

of the decision would be given by the geometric mean, as it more closely represents the

number of possible abstractions that could have been constructed assuming no two distinct

sequences of splits result in the same abstraction.

Table 4.1 shows the means and standard deviations over all problems, for each refinement

Results 15

(a) CG (b) GOAL DIST

(c) HIGHER DIST (d) ACTIVE OPS

Figure 4.3: Comparison between variants of the existing refinement strategies. Points
below 1 indicate that the MAX-variant is better. Unlike the existing strategies, both
CG-variants perform similarly well while for ACTIVE OPS the MIN-variant is better.

strategy and measure. While they do vary by strategy, they vary little (except for occasional

outliers) by problem domain. Ideally the values on the left should match those on the right

for the refinement strategy to have the most influence. Note that this is always the case

for RANDOM, MAX CG and MIN CG as they are unable to value different splits equally. The

last four strategies instead show the opposite, indicating that they degenerate to RANDOM

because of tie-breaking.

It is interesting to see how MAX HADD achieves less freedom than MAX CG (and certainly less

distinct results) yet performs better. A possible explanation for this is that the splits, which

cause the abstraction to ultimately be more useful, are made only during a short period of

refinement, while the average number of distinct values is low at other times.

In Figure 4.6 we can see the histogram of both attributes. The distribution appears linear

Results 16

(a) MAX HADD (b) MAX CG

(c) MIN GOAL DIST (d) MAX ACTIVE OPS

Figure 4.4: Scatter plots comparing the expansions for a selection of refinement strategies
performing best (top) and worst (bottom), compared to RANDOM. Values below 1 indicate
that the strategy is better than RANDOM.

in a logarithmic plot, starting at x = 1. The exponential distribution is:

p(x) =

{
λeλ(x−1) if x ≥ 1

0 otherwise

Where we can obtain λ given µ from Table 4.1 via λ =
1

µ− 1
.

However, although the general trend follows an exponential distribution, the distributions

obtained from only a single refinement strategy each sometimes do not. Especially the

distribution of the number of split options available tends to peak between 1.05 and 1.15,

but still decays linearly in log-space.

Results 17

r
a
n
d
o
m

m
i
n
u
n
w
a
n
t
e
d

m
a
x
u
n
w
a
n
t
e
d

m
i
n
r
e
f
i
n
e
d

m
a
x
r
e
f
i
n
e
d

m
i
n
h
a
d
d

m
a
x
h
a
d
d

m
i
n
c
g

m
a
x
c
g

m
i
n
g
o
a
l
d
i
s
t

m
a
x
g
o
a
l
d
i
s
t

m
i
n
h
i
g
h
e
r
d
i
s
t

m
a
x
h
i
g
h
e
r
d
i
s
t

m
i
n
a
c
t
i
v
e
o
p
s

m
a
x
a
c
t
i
v
e
o
p
s

0 %

5 %

10 %

15 %

20 %

25 %

Figure 4.5: Percentage of optimal results (by refinement strategy) for the original task. In
most cases, the MAX-variant is significantly better than the inverse, which matches the
observations in Figure 4.2 and Figure 4.3.

4.2.2 Progress of average goal distance
To gain more insight into the progress of the average goal distance during abstraction re-

finement, specifically for the GOAL DIST-strategy, we track the progress of the average goal

distance during refinement. As expected, the average goal distance follows a logarithmic

curve, stagnating near the end. We get this same picture, even when examining problems

µdistinct σdistinct µoptions σoptions

RANDOM 1.18 0.167 1.18 0.167
MIN UNWANTED 1.10 0.119 1.18 0.180
MAX UNWANTED 1.12 0.154 1.21 0.238
MIN REFINED 1.11 0.143 1.20 0.188
MAX REFINED 1.10 0.148 1.20 0.198
MIN HADD 1.14 0.171 1.21 0.249
MAX HADD 1.14 0.150 1.22 0.215
MIN CG 1.19 0.191 1.19 0.191
MAX CG 1.24 0.256 1.24 0.256
MIN GOAL DIST 1.06 0.059 1.19 0.177
MAX GOAL DIST 1.06 0.058 1.18 0.160
MIN HIGHER DIST 1.02 0.032 1.19 0.176
MAX HIGHER DIST 1.02 0.021 1.18 0.163
MIN ACTIVE OPS 1.00 0.022 1.18 0.168
MAX ACTIVE OPS 1.01 0.069 1.18 0.169

Table 4.1: Statistics on the number of distinctly rated splits and total available splis to
pick from, showing the achieved freedom of the splitting strategies in the original task.

Results 18

1 2 3 4 5

100

101

102

103

104

(a) distinct (all)

1 2 3 4 5

100

101

102

103

(b) options (all)

1 2 3 4 5

100

101

102

103

(c) distinct (openstacks)

1 2 3 4 5

100

101

102

(d) options (openstacks)

Figure 4.6: Histograms showing the distribution of the number of distinct and available
splits to choose from each refinement. As the vertical scale is logarithmic, the distribution
can be recognized as exponential in D = [1,∞[.

that are solved badly by an abstraction built using this refinement strategy. Surprisingly

enough, the same can be observed for MAX GOAL DIST as well as MIN GOAL DIST. Fig-

ure 4.7 shows the progress of the refinement value for the two tested strategies, selecting

two problems from different domains in which the strategy was best or worst. This does

not necessarily imply that these problems weren’t solved well or badly (respectively) by any

other strategy.

4.3 Including subtasks
In Figure 4.8 we compare the expansions caused by the strategies (relative to RANDOM) when

using subtasks. We can see that the distribution of the comparison has become significantly

wider. This correlates with an increase in the degree of freedom seen from Table 4.1 to

Table 4.2, which means that the impact of the refinement strategy has increased. The results

also start off lower, corresponding to a general increase in search performance resulting from

the use of subtasks and SCP. As before, the plots imply that more difficult problems are

more likely to show improvement compared to using the RANDOM refinement strategy, but

simpler problems are not noticeably more likely to show deterioration.

Results 19

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6

8

miconic, s8-3.pddl
sokoban-opt08-strips, p03.pddl

(a) MIN GOAL DIST (best)

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6

8

snake-opt18-strips, p15.pddl
pipesworld-tankage, p11-net2-b10-g2-t30.pddl

(b) MIN GOAL DIST (worst)

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6

tidybot-opt11-strips, p11.pddl
sokoban-opt08-strips, p03.pddl

(c) MAX GOAL DIST (best)

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6

hiking-opt14-strips, ptesting-1-2-7.pddl
trucks-strips, p08.pddl

(d) MAX GOAL DIST (worst)

Figure 4.7: Plot showing the progress of average goal distance during refinement using
GOAL DIST, showing little correlation to the overall performance of the strategy. Instead,
it appears that achieving the desired (least or highest) average goal distance results in a
worse performance. Each plot shows the average goal distance for two problems which
were solved best (or worst) according to expansions.

Figure 4.9 shows the fraction of problems which were optimally solved by each refinement

strategy. When compared to the original task (rescaled so that RANDOM yields the same

results for both experiments) we notice a sharp decline in the performance of the previous

best strategies MAX HADD, MIN CG and MAX CG. There is an additional, small decline for

the MAX UNWANTED-strategy which is compensated for by an increase of the MAX REFINED-

strategy (making it the new best refinement strategy by a fair margin). Incidentally, this is

also the strategy which is outlined in the paper[4] (Section 4.3.2).

Results 20

(a) MAX REFINED (b) MAX HADD

(c) MAX CG (d) MIN GOAL DIST

(e) MIN HIGHER DIST (f) MIN ACTIVE OPS

Figure 4.8: Scatter plots comparing the expansions for a selection of refinement strategies,
compared to RANDOM, when using subtasks. Values below 1 indicate that the strategy is
better than RANDOM.

Results 21

r
a
n
d
o
m

m
i
n
u
n
w
a
n
t
e
d

m
a
x
u
n
w
a
n
t
e
d

m
i
n
r
e
f
i
n
e
d

m
a
x
r
e
f
i
n
e
d

m
i
n
h
a
d
d

m
a
x
h
a
d
d

m
i
n
c
g

m
a
x
c
g

m
i
n
g
o
a
l
d
i
s
t

m
a
x
g
o
a
l
d
i
s
t

m
i
n
h
i
g
h
e
r
d
i
s
t

m
a
x
h
i
g
h
e
r
d
i
s
t

m
i
n
a
c
t
i
v
e
o
p
s

m
a
x
a
c
t
i
v
e
o
p
s

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

Original (rescaled) Subtasks

Figure 4.9: Percentage of optimal results for subtasks compared to the original task (the
original results are rescaled to have the same value for RANDOM). We notice a sharp decline
in the performance of the previous best strategies MAX HADD and CG (both variants).

4.3.1 Number of distinct splits
The analysis results in Table 4.2, performed on the problems solved using subtasks shows

an increase in the degree of freedom available to all algorithms, from roughly 1.2 to roughly

1.3, and a comparatively large increase in the standard deviation. Because there is always at

least one split available, this implies that the chance for an unusually high degree of freedom

in a single problem has increased.

At the same time, the number of distinct splits has risen by a small factor, except for

MAX ACTIVE OPS which shows a large jump, placing it above most of the other new refine-

ment strategies (GOAL DIST, HIGHER DIST and MIN ACTIVE OPS). When using subtasks,

we generate one abstraction per subtask and reduce the size of each abstraction accordingly.

If all operators are active, it is impossible for MAX ACTIVE OPS to produce distinct ratings

for splits, because operators cannot become inactive again. This period of stagnation al-

ways appears at the end of refinement, and is thus cut off first when reducing the size of the

abstraction. When combining this result with Figure 4.9, we again fail to see a correlation,

except that the improvement of MAX ACTIVE OPS appears in both figures.

Results 22

µdistinct σdistinct µoptions σoptions

RANDOM 1.30 0.520 1.30 0.520
MIN UNWANTED 1.19 0.241 1.29 0.527
MAX UNWANTED 1.21 0.287 1.33 0.546
MIN REFINED 1.19 0.271 1.32 0.532
MAX REFINED 1.16 0.236 1.30 0.531
MIN HADD 1.21 0.261 1.30 0.526
MAX HADD 1.23 0.298 1.35 0.573
MIN CG 1.32 0.565 1.32 0.565
MAX CG 1.33 0.546 1.33 0.546
MIN GOAL DIST 1.12 0.173 1.32 0.536
MAX GOAL DIST 1.09 0.129 1.28 0.514
MIN HIGHER DIST 1.05 0.095 1.31 0.528
MAX HIGHER DIST 1.02 0.047 1.28 0.513
MIN ACTIVE OPS 1.03 0.107 1.30 0.535
MAX ACTIVE OPS 1.16 0.262 1.31 0.531

Table 4.2: Statistics on the number of available splits and splits which are valued
differently by a refinement strategy, showing the achieved freedom of the strategies when
using subtasks.

4.4 Applying SCP

(a) MAX UNWANTED (b) MAX ACTIVE OPS

Figure 4.10: Scatter plots comparing the expansions for a selection of refinement
strategies, compared to RANDOM, when using SCP. Values below 1 indicate that the
strategy is better than RANDOM.

In the final experiment, involving SCP, we notice little difference in the distribution com-

pared to when using subtasks (Figure 4.10). This makes sense, because we combine the

subtasks in the same way, the change being that we generate different orders of abstrac-

tions. The tendency for difficult problems to be solved better than RANDOM (or simple

problems being solved worse) has also increased again.

In general, we notice slight improvements to all refinement strategies compared to only using

subtasks. In Figure 4.11 we can see that the MAX UNWANTED-strategy now performs much

Results 23

r
a
n
d
o
m

m
i
n
u
n
w
a
n
t
e
d

m
a
x
u
n
w
a
n
t
e
d

m
i
n
r
e
f
i
n
e
d

m
a
x
r
e
f
i
n
e
d

m
i
n
h
a
d
d

m
a
x
h
a
d
d

m
i
n
c
g

m
a
x
c
g

m
i
n
g
o
a
l
d
i
s
t

m
a
x
g
o
a
l
d
i
s
t

m
i
n
h
i
g
h
e
r
d
i
s
t

m
a
x
h
i
g
h
e
r
d
i
s
t

m
i
n
a
c
t
i
v
e
o
p
s

m
a
x
a
c
t
i
v
e
o
p
s

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

Subtasks (rescaled) SCP

Figure 4.11: Percentage of optimal results for SCP compared to subtasks (the subtasks’
results are rescaled to have the same value for RANDOM). The new strategies’ MIN-variants
see some improvements again.

better than before (with a corresponding but smaller drop in it’s inverse variant). While it

too is now better than MAX HADD and the CG-strategies, MAX REFINED is still superior.

Results 24

4.5 Predicting the best refinement strategy

least exp. most exp. best strategy MVND linear
original task 46038868 131558133 64292474 70275225 116803152

1 2.858 1.396 1.526 2.537
1 1.093 1.817

subtasks 30570863 64358053 36005074 60324594 61799436
1 2.105 1.178 1.973 2.022

1 1.675 1.716
SCP 67968544 85726053 71164310 77393698 74462557

1 1.261 1.047 1.139 1.096
1 1.088 1.046

Table 4.3: Prediction accuracy for MVND and matrix approximation for all three
experiments.

Unfortunately, prediction of the best refinement strategy a-priori was only moderately suc-

cessful. Both prediction methods have a chance of outperforming the best guess (typically

MAX HADD) but cannot consistently do so. However, the MVND-predictor is frequently supe-

rior to the linear predictor. Table 4.3 shows the results for all problems, split by experiment.

Note that these values depend on the random pick of the test set. This table was generated

using a seed of zero. Additionally, to make the numbers more readable, every block of 3

lines contains the same data, but with different scaling.

5
Conclusions

As a part of this thesis we have extended the Fast Downward planner[2] with eight new

refinement strategies. We have evaluated how well they perform compared to the existing

implementations in three different circumstances (original tasks, with subtasks and saturated

cost partitioning). Unfortunately we have not managed to create a refinement strategy

which consistently performs better than the existing ones. We have attempted to find

an explanation by examining the freedom of the decision process, and while it does not

seem well suited to predict how often a strategy performs well, it might still be possible

to enhance search behaviour of other strategies. Finally, we have attempted to use these

results to predict which strategy should be employed to solve a problem. This was partially

successful, showing a partial improvement over the ”best guess” which is otherwise not

known a-priori. We expect that these results can be further improved using more parameters

or more advanced classifiers.

5.1 Future work
In addition to the refinement strategies examined in this thesis, there are some different

approaches that could show improvement to both the new and old refinement strategies.

5.1.1 Tie-breaking strategies
A subject touched on in this thesis but which was not applied is a variation of tie-breaking

strategies. The original implementation of Fast Downward simply picked the first split with

the same lowest refinement value (which generally ends up having the lowest causal graph

index) while we employed random picks among the set of best splits. More generally, it is

possible to use multiple strategies, one which picks first and combined with a second one

which breaks ties.

5.1.2 A strategy with the most freedom
We have seen that some strategies have a tendency to end up with an abstraction which does

not allow them to make meaningful decisions any more, because they are only presented with

Conclusions 26

a single remaining split to ”choose” from. Perhaps it is possible to produce a strategy which

aims to maximize the number of splits it can pick from during refinement. Such a strategy

might not directly produce good abstractions (as can be seen by the lack of correlation

between optimality and achieved freedom), but when combined with others (perhaps as a

tie-breaker itself) it might improve the generated abstraction.

5.1.3 Varying split selection strategy during SCP
One of the major advantages of SCP is the fact that it can combine multiple heuristics,

each unsuitable to efficiently solve the problem, into a single heuristic which captures the

dependencies between all its parts. This requires a diverse set of abstractions. Currently,

we only use a single split selection strategy during a run of SCP. Ideally, we would be

using multiple to get a most diverse abstraction. Selecting which refinement strategies to

use, and how often compared to the others, is a big problem itself. A possible start is to

use a predictor for the best split strategy, and then use strategies in fractions equal to the

probability of them solving the problem optimally on their own.

5.1.4 More complex prediction features
To predict which split selection strategy yields the best abstraction we have only used three

parameters: variable count, fact count (the number of possible partial assignments with

only one variable) and operator count. While these may give an overview of the size of

the state space, they offer little information about the connectivity of the state space. It is

possible that, when using additional parameters, the accuracy of these predictions could be

increased. Examination of how a strategy builds it’s abstraction, and consequently which

features a planning problem requires to have an ideal abstraction generated, could provide

a better first set of parameters.

Bibliography

[1] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence, 129

(1-2):5–33, 2001.

[2] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[3] Alvin C Rencher. Methods of multivariate analysis, volume 492. John Wiley & Sons,

2003.

[4] Jendrik Seipp and Malte Helmert. Counterexample-guided Cartesian abstraction re-

finement for classical planning. Journal of Artificial Intelligence Research, 62:535–577,

2018.

[5] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward Lab.

https://doi.org/10.5281/zenodo.790461, 2017. URL https://doi.org/10.5281/zenodo.

790461.

[6] Various. STRIPS PDDL benchmarks from sequential optimization tracks of IPC 1998-

2018, March 2019. URL https://doi.org/10.5281/zenodo.2616479.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.2616479

