

Refinement Strategies for Counterexample-Guided Cartesian Abstraction Refinement

Martin Zumsteg <mar.zumsteg@stud.unibas.ch>

Faculty of Science at the University of Basel

July 26, 2019

Contents

Background

- > Definitions
- > SCP
- > CEGAR
- > Methods
 - > Refinement Strategies
 - > Experiments
 - > Evaluation
- Results
- > Conclusion

Transition Systems

Definition

A transition system is a 6-tuple

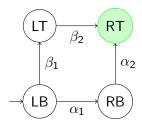
$$\mathcal{T} = \langle S, \mathcal{O}, \mathsf{cost}, \, T, \textit{s}_0, \textit{S}_* \rangle$$

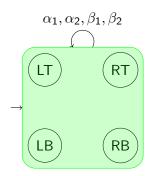
With associated variables $\mathcal{V} = \{v_1, ..., v_n\}$ generating states

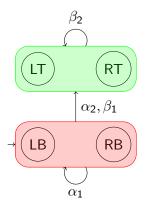
$$S = \{\{v_1 \rightarrow d_1, ..., v_n \rightarrow d_n\} \mid d_i \in \operatorname{dom}(v_i)\}$$

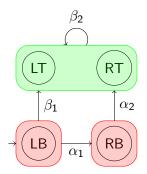
Abstractions are themselves transition systems Each abstract state contains at least one concrete state which is itself contained in exactly one abstract state:

 $s \in S \Rightarrow s \in [s]$ where [s] is the abstract lookup


For cartesian abstractions the states become:


$$S \subset \{\{v_1 \rightarrow d_1, ..., v_n \rightarrow d_n\} \mid d_i \in \mathcal{P}(\mathsf{dom}(v_i))\}$$


Method of incrementally refining abstractions


- 1. Initialize with trivial abstraction
- 2. Find a solution for the current abstraction If there is none, end refinement (unsolvable)
- Apply solution to concrete planning problem If a goal is reached, end refinement (trivially solvable)
- 4. Otherwise, find a flaw in the abstraction
- 5. Apply some split to avoid this flaw
- 6. Optionally continue refinement with step 2

$$\mathcal{V} = \{X, Y\}$$

Generate multiple abstractions using subtasks

- > One subtask per goal fact
- > One subtask per fact landmark

Each abstraction only solves one subtask

Generate multiple abstractions using subtasks

- > One subtask per goal fact
- > One subtask per fact landmark

Each abstraction only solves one subtask Compute a saturated cost partitioning over abstractions

- > Distributes operator costs to enforce additivity
- > Diverse abstractions result in better heuristic estimates

Refinement Strategies

Extending Fast Downward with **new refinement strategies**: For each base strategy: MAX and MIN variants

CG: Based on the causal graph index computed by the planner.

- CG: Based on the causal graph index computed by the planner.
- GOAL_DIST: Computes the average goal distance over all states where the goal can be reached.
 Aims for abstractions with few heuristic collisions

- CG: Based on the causal graph index computed by the planner.
- > GOAL_DIST: Computes the average goal distance over all states where the goal can be reached.

Aims for abstractions with few heuristic collisions. Counts the number of abstract states which have

> HIGHER_DIST:

an increased goal distance.

Highly similar to GOAL_DIST

> CG :	Based on the causal graph index computed by the
	planner.

> GOAL_DIST:	Computes the average goal distance over all states
	where the goal can be reached.

Aims for abstractions with few heuristic collisions.

HIGHER_DIST: Counts the number of abstract states which have

an increased goal distance.

Highly similar to GOAL_DIST

> ACTIVE_OPS:

OPS: Counts the number of operators which induce non-looping transitions.

Evaluate strategies in different contexts:

Based on the original planning task
 One abstraction, used as heuristic

Evaluate strategies in different contexts:

- > Based on the original planning task One abstraction, used as heuristic
- Using subtasks (single-order SCP)
 Combination of abstractions (one per subtask)

Evaluate strategies in different contexts:

- > Based on the original planning task One abstraction, used as heuristic
- Using subtasks (single-order SCP)
 Combination of abstractions (one per subtask)
- Saturated cost partitioning Multiple orders over subtasks

Evaluation

Measure performance of each strategy via

- > Time to construct abstraction
- > Number of expansions during planning

Measure performance of each strategy via

- > Time to construct abstraction
- > Number of expansions during planning

Estimate of the freedom of the strategy

- > Average number of splits to pick from
- > Average number of distinctly valued splits

Measure performance of each strategy via

- > Time to construct abstraction
- > Number of expansions during planning

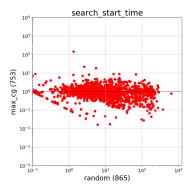
Estimate of the freedom of the strategy

- > Average number of splits to pick from
- > Average number of distinctly valued splits

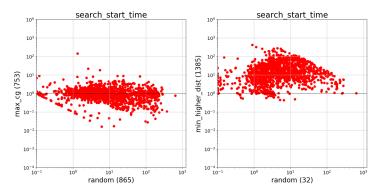
Progress of average goal distance (GOAL_DIST)

Measure performance of each strategy via

- > Time to construct abstraction
- > Number of expansions during planning

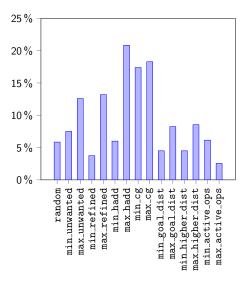

Estimate of the freedom of the strategy

- > Average number of splits to pick from
- > Average number of distinctly valued splits


Progress of average goal distance (GOAL_DIST) Attempt to predict the best strategy by problem

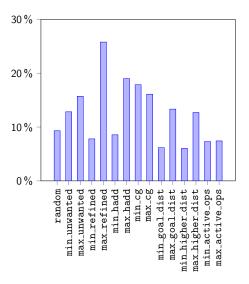
- $^{>}$ Based on attributes of the SAS+ problem
- > Using linear algebra or Gaussian estimators

Simple strategies: time requirement similar to RANDOM

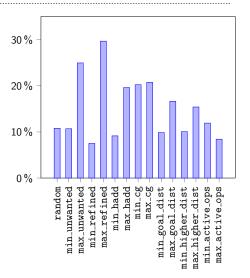

Simple strategies: time requirement similar to RANDOM Complex strategies: increasingly slower than RANDOM Cutoff at 1800 seconds (overall time limit)

Results (Expansions)

Original Task


- Generally MAX is better, except for ACTIVE_OPS
- > Best strategy is MAX_HADD, followed closely by CG

Results (Expansions)


Using subtasks

- Medium improvements to most strategies
- New best strategy is MAX_REFINED
- Previous best strategies become worse

Using SCP

- > Small improvements overall
- > Large improvement of MAX_UNWANTED

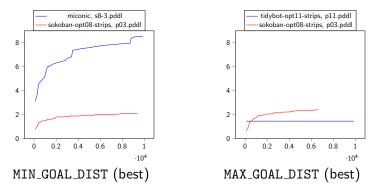
Results (Strategy Freedom)

- > options is the upper bound for distinct
- > Ratings for **options** only vary slightly overall
- > No apparent correlation to performance
- > MAX_HADD has lower **distinct** rating than CG
- > Low **distinct** rating indicates use of the tie-breaker

	$\mu_{ extsf{distinct}}$	$\sigma_{\rm distinct}$	$\mu_{ extsf{options}}$	$\sigma_{ m options}$
RANDOM	1.18	0.167	1.18	0.167
MAX_HADD	1.14	0.150	1.22	0.215
MAX_CG	1.24	0.256	1.24	0.256
MAX_GOAL_DIST	1.06	0.058	1.18	0.160
MAX_HIGHER_DIST	1.02	0.021	1.18	0.163
MIN_ACTIVE_OPS	1.00	0.022	1.18	0.168
MAX_ACTIVE_OPS	1.01	0.069	1.18	0.169

Results (Strategy Freedom)

- > options is the upper bound for distinct
- > Ratings for **options** only vary slightly overall
- > No apparent correlation to performance
- > MAX_HADD has lower **distinct** rating than CG
- > Low distinct rating indicates use of the tie-breaker


	$\mu_{ extsf{distinct}}$	$\sigma_{\rm distinct}$	$\mu_{ extsf{options}}$	$\sigma_{\mathrm{options}}$
RANDOM	1.18	0.167	1.18	0.167
MAX_HADD	1.14	0.150	1.22	0.215
MAX_CG	1.24	0.256	1.24	0.256
MAX_GOAL_DIST	1.06	0.058	1.18	0.160
MAX_HIGHER_DIST	1.02	0.021	1.18	0.163
MIN_ACTIVE_OPS	1.00	0.022	1.18	0.168
MAX_ACTIVE_OPS	1.01	0.069	1.18	0.169

Results (Strategy Freedom)

- > options is the upper bound for distinct
- > Ratings for **options** only vary slightly overall
- > No apparent correlation to performance
- > MAX_HADD has lower **distinct** rating than CG
- > Low distinct rating indicates use of the tie-breaker

	$\mu_{ extsf{distinct}}$	$\sigma_{\rm distinct}$	$\mu_{ extsf{options}}$	$\sigma_{\rm options}$
RANDOM	1.18	0.167	1.18	0.167
MAX_HADD	1.14	0.150	1.22	0.215
MAX_CG	1.24	0.256	1.24	0.256
MAX_GOAL_DIST	1.06	0.058	1.18	0.160
MAX_HIGHER_DIST	1.02	0.021	1.18	0.163
MIN_ACTIVE_OPS	1.00	0.022	1.18	0.168
MAX_ACTIVE_OPS	1.01	0.069	1.18	0.169

Follows a logarithmic curve, stagnating near the end Strategies perform best if they miss their goal

Results (Prediction)

- Compare expansions caused by a prediction method Influenced by selection of test set
- > Neither prediction method consistently beats the best strategy
- > Gaussian is almost always better than linear

	least exp.	most exp.	best strategy	MVND	linear
original task	46038868	131558133	64292474	70275225	116803152
	1	2.858	1.396	1.526	2.537
			1	1.093	1.817
subtasks	30570863	64358053	36005074	60324594	61799436
	1	2.105	1.178	1.973	2.022
			1	1.675	1.716
SCP	67968544	85726053	71164310	77393698	74462557
	1	1.261	1.047	1.139	1.096
			1	1.088	1.046

Conclusion

- No new heuristic significantly better
 Effective only in specific domains
 Best heuristic strongly depends on experiment
- > Freedom during refinement does not predict performance
- > Prediction approaches picking best strategy overall

- Make use of tie-breaking strategy
 Combining multiple refinement strategies
- > Use multiple refinement strategies for SCP
- > More parameters to predict the best strategy

Questions?