Generating and Evaluating Unsolvable STRIPS Planning Instances for Classical Planning Bachelor's Thesis

Dietrich Zerr

05.08.2014

U N I B A S E L

Introduction

Sokoban

NoMystery					

Conclusion

Contents

- 1. Introduction
 - Goals of this thesis
 - Planning
 - Heuristics
- 2. Sokoban
 - What is Sokoban?
 - Unsolvable Instances
 - Experimental Results

- 3. NoMystery
 - What is NoMystery?
 - Unsolvable Instances
 - Experimental Results
- 4. Conclusion

Introduction

Sokoban

NoMystery							

Conclusion

Goals of this thesis

Investigating unsolvability for classical planning

Recent work "Distance"? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability by Hoffmann et al. (ECAI'14)

- Finding suitable problem domains for unsolvable problems
- Constructing unsolvable problem instances
- Implementing a problem generator
- Evaluating different heuristics on generated unsolvable problems

Planning

Solving formalized problems we meet in real life

- set of variables
- initial state
- goal states
- set of actions
 - precondition --> effect
 - cost
- plan = sequence of actions from the initial state to a goal state

Either find a plan or prove that there is no such plan

Introduction	Sokoban	NoMystery	Conclusion

Heuristics

Approximate the distance to a goal state

- as close as possible to real distance, as cheap as possible

Domain specific vs. domain independent

Admissible = never overestimate the distance

- Heuristic says $\infty \rightarrow$ real distance is $\infty \rightarrow$ cut off

Introduction

Sokoban

NoMystery

Conclusion

Sokoban

P = Player, G = Goal field

Sokoban

Conclusion

P = Player, G = Goal field

Sokoban

- <u>Goal</u>: push all boxes on goal fields
 - order does not matter
 - a box can be moved on any goal
- Player can...
 - move horizontally and vertically
 - push only one box at a time
- Player cannot...
 - pull boxes
 - walk over walls or boxes
 - push boxes over wall or other boxes
- <u>Difficulty</u>:

boxes can easily get into a dead end

Different kinds of unsolvability possible \rightarrow 'groups'

1. group 'one box can never reach any goal'

Mode 1

2. group 'one goal cannot be reached'

3. group 'two boxes block each other'

3. group 'two boxes block each other'

Mode 9

4. group 'goal blocks player'

Mode 10

Sokoban Experiments

Limits: 3072 MB and 30 minutes

Used heuristics:

- blind heuristic (or blind search)
- maximum heuristic (h^{max})
- Pattern Database (PDB)
- Incremental Pattern Database (iPDB)
- Merge-and-Shrink (M&S)

merge_strategy = merge_dfp

shrink_strategy = shrink_bisimulation(max_states = 50000)

h² (or generally h^m)

Sokoban Experiments

Not too easy, not too hard

How to find a suitable complexity? (field size, number of boxes)

 \rightarrow by trying around

Note: problems from the first group 'one box can never reach any goal' are solved by the pre-processing step

2. group 'one goal cannot be reached'

Mode 3

2. group 'one goal cannot be reached'

3. group 'two boxes block each other'

Mode 8

3. group 'two boxes block each other

Conclusion for Sokoban

• iPDB and PDB

- always a better than blind search

- M&S
 - slow but scales well
- h^{max}
 - always good in terms of memory
 - fast on certain instances but slow on all others
 - group 'two boxes block each other' problems good for delete relaxation heuristics

- Vehicles...
 - can load packages up to their capacity limit
 - need one unit fuel to leave a location
- <u>Difficulty</u>: delivering all packages with the given amount of fuel

Unsolvable NoMystery Instances

Only one kind of non-trivial unsolvability: lack of fuel

Structure: two subgraphs

unsolvable solvable a b а С Fuel: 6 Fuel: 6 D Fuel: 6 В b d Fuel: 6 Fuel: 6 Fuel: 6 c II a l Α а Fuel: 6 Fuel: 5 С CD | B || C В D **V1** Capacity: 1 Capacity: 1

Unsolvable NoMystery Instances

Only one kind of non-trivial unsolvability: lack of fuel

Structure: two subgraphs

NoMystery Experiments

Same limits and heuristics used as for Sokoban

Complexity comes from:

- number of nodes
- number of packages
- connecting subgraphs
- structure of the unsolvable subgraph (star vs. clique)

Introduction Sokoban NoMystery

Conclusion

NoMystery Experiments

unsolvable	solvable	2						
(B)(D)	(b)(d)		Blind	M&S	PDB	iPDB	h^max	
		4	5.14	0.1	2.54	3.54	7.83	
(\mathbf{A})	a		2 185 021	0	896 463	551 109	895 257	
		5	38.23	0.52	31.87	23.81	61.66	
			13 924 406	0	9 662 215	4 602 906	6 153 606	
	packages in the		→ 3					
			Blind	M&S	PDB	iPDB	h^max	
packages in the		3	5.86	0.1	3.11	4.01	8.73	
			2 380 287	0	998 764	451 576	941 492	
	5 dpin	4	53.90	0.1	45.84	29.02	88.26	
			19 666 149	0	13 489 572	5 009 911	8 958 822	
			4					
	time (sec)		Blind	M&S	PDB	iPDB	h^max	
	expansions	2	3.32	0.16	0.1	0.84	4.48	
		_	1 421 283	0	0	64 604	440 475	
		3	50.63	0.18	46.19	23.34	76.15	
			17 058 074	0	12 964 993	3 944 435	7 267 801	

Introduction

Sokoban

NoMystery

Conclusion

NoMystery Experiments

unsolvable

А

	2									
	Blind	M&S	PDB	iPDB	h^max	h^2				
2	0.12	0.46	0.19	0.73	0.1	307.95				
	59 866	0	59 866	1 121	6 665	458				
3	3.99	3.54	4.48	2.00	2.07					
	1 617 191	345 740	1 617 191	124 493	136 435					
4	55.19	28.43	62.18	14.60	39.47					
	18 925 914	4 772 500	18 925 914	2 170 003	1 980 173					
	3									
	Blind	M&S	PDB	iPDB	h^max					
2	1.39	2.16	1.69	1.01	0.96					
_	618 529	188 171	618 529	13 544	58 571					
3	71.37	47.97	80.50	10.94	50.49					
	23 146 257	8 311 707	23 146 257	1 416 266	2 350 471					

Conclusion for NoMystery

- PDB
 - usually bad choice
 - only good for unconnected subgraphs with few packages
- M&S
 - very efficient on unconnected subgraphs
 - not bad connected subgraphs
- iPDB
 - best choice for connected subgraphs
 - good on unconnected subgraphs
- h^{max}
 - not bad in terms of memory
 - usually slower than other heuristics

Conclusion Overall

- Heuristics can be more efficient than blind search
- Sometimes a trade-off between time and memory
- Blind search requires a lot of memory but is often fast
- iPDB is never a bad choice for Sokoban and NoMystery
- h^{max} is good for certain Sokoban instances
- M&S is good for unconnected NoMystery instances

