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Abstract

We implemented the invariant synthesis algorithm proposed by Rintanen and
experimentally compared it against Helmert’s mutex group synthesis algorithm
as implemented in Fast Downward.

The context for the comparison is the translation of propositional STRIPS
tasks to FDR tasks, which requires the identification of mutex groups.

Because of its dominating lead in translation speed, combined with few
and marginal advantages in performance during search, Helmert’s algorithm
is clearly better for most uses. Meanwhile Rintanen’s algorithm is capable of
finding invariants other than mutexes, which Helmert’s algorithm per design
cannot do.
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1 Introduction

There are many real world tasks that benefit from being performed in an optimal
order as opposed to a random order. For example a robot in a warehouse that
has to bring objects from one location to another. While bringing them one
by one would work, the robot can save time by analysing the task at hand and
planning an optimal sequence of actions. A human is often able to find a solution
to a simple task. But the robot example described above in a warehouse with
a thousand locations and a thousand objects which each have separate targets
would make it hard for a human to find an optimal solution before the next
truck arrives and delivers new objects.

In planning we seek to find general algorithms that allow computers to find
solutions, so-called plans, to problems. These plans are sequences of actions
that change the world (which we describe as being in a state) to reach a goal
state. The task is always to start in an initial state and to find a plan from
there. We will only consider deterministic actions, where the outcome is fixed.
A program that finds plans is called a planner. The way problems are commonly
encoded for a general planner is by using propositional PDDL.

A very simple yet as powerful as any form of problem is STRIPS[5]. In
STRIPS a state is encoded as variables describing one fact as either true or
false. This binary nature hides certain concepts from the planner. In the given
robot example, the planner does not immediately know that the robot can only
be at one location. However, knowing this can be advantageous for estimating
the distance to the goal, which in turn enables a better guided search for a plan.
Such estimates are called heuristics. In a so-called finite domain representation
proposed by Helmert [9], the state is encoded as variables. Each variable has a
domain of values which describe facts that cannot be true at the same time. In
each state the variables are mapped to exactly one of these values. An example
would be a variable for the location of the robot that has as a domain all the
locations the robot could be at.

When starting from a propositional PDDL[12], we can only combine propo-
sitional variables into a finite domain variable, if of all of those propositional
variables, only ever one can be true in any state that we can reach from the
initial state. This can be expressed as looking for a formula over propositional
variables, which holds in every reachable state. A formula that holds in every
reachable state is called an invariant. Here we are especially interested in mu-
texes, invariants that are a disjunction of exactly two negative facts. A mutex
expresses that at most one of the two facts can be true. If we have a set of
propositional variables and a corresponding set of mutexes over each pair of
those propositional variables, then we call this set of propositional variables a
mutex group. A mutex group indicates a domain for a finite domain variable.

Invariants that are no mutexes can also be used to prune states that can
never reach the goal. To illustrate, let us consider a more complex problem
where the robot has a time limit. This can be modeled in STRIPS, even though
it is tedious. Then we might be able to determine an invariant, backwards from
the goal, expressing that the robot will take at least a certain amount of time
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for the last two packages. Consequently, we could prune any state where there
is do not enough time left.

In this thesis we implemented a ground algorithm for invariant synthesis on
planning tasks in STRIPS as proposed by Rintanen [14]. We experimentally
evaluated the ground algorithm against the build in mutex group synthesis al-
gorithm from Fast Downward that was proposed by Helmert [9]. To get mutexes
from a set of invariants, we implemented a greedy clique computation proposed
by Rintanen [13].

2 Background

In this thesis we will work only with planning problems, that adhere to the
restrictions of STRIPS [5]. First we establish schematic propositional tasks.
While the definitions will start with the schematic version, we will also intro-
duce ground versions within the same definition. Consequently, finite domain
representation will be defined.

We will describe invariants, a special kind of invariant, the mutex, and two
types of invariant candidates. These will be required for the definition of the
algorithms by Rintanen and Helmert for computing invariant candidates.

A problem from the gripper domain will serve as a running example through
the chapter. In gripper, there are balls, rooms and robots with arms. The balls
and the robot are always in exactly one room. A robot can pick up and drop
balls with each arm, as well as move (with the balls if carrying any) to another
room.

2.1 Planning Notation

The definitions in this chapter were heavily influenced by Rintanen [15] and
Helmert [9]. While we did not simply copy them, because of the nature of the
topic and the thoroughness of their definitions, we often ended up using them
or very similar ones, simply because those are the best ways to phrase it that
we are aware of.

Definition 1 Types[15]
Let O be a set of objects. Let there be a finite set T of types. To each type
t ∈ T a non-empty set D(t) ⊆ O of objects is associated by the domain function
D : T → O.

For the gripper example, let

O ={ball1, ball2, ball3, ball4, left, right, roomA, roomB , roomC}
T ={ball, gripper, room}

D(ball) ={ball1, ball2, ball3, ball4}
D(gripper) ={left, right}
D(room) ={roomA, roomB , roomC}
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Definition 2 Schematic Variables[15]
Let T be a set of types. A schematic variable v has a type τvar(v) ∈ T .

There can be an arbitrary, not fixed number of schematic variables with any
name. For example we could have the schematic variables x, z and hand with
the types τvar(x) = ball, τvar(z) = ball and τvar(hand) = gripper.

Definition 3 Predicates[15]
Let T be a set of types. A predicate p has arity ar(p) ∈ N and an associated
type τpre(p) ∈ T ar(p), the latter given by the typing function τpre(p).

The following four predicates appear in the gripper example:

Pexample ={at-robby, at,carry, free}
ar(at-robby) =1 τpre(at-robby) = 〈room〉

ar(at) =2 τpre(at) = 〈ball, room〉
ar(carry) =2 τpre(carry) = 〈ball, gripper〉
ar(free) =1 τpre(free) = 〈room〉

Definition 4 Schematic Atoms and Literals[15]
Let O be a set of objects, D a domain function associating to subsets of O,
V a set of variables, p ∈ P be a predicate of arity n = ar(p) and with type
τpre(p) = (t1, ..., tn). Then schematic atoms (facts) are of the form p(q1, ..., qn)
where each qi is either an object o ∈ D(ti) or a variable v ∈ V with τvar(v) = ti.

The set gnd(P, τpre, D) of ground atoms consists of all p(o1, ..., on) such that
p ∈ P , ar(p) = n, and oi ∈ D(ti) where τpre = (t1, ..., tn). Similarly, with a
typing function τvar(v) for v ∈ V , the set Atoms(P, V, τvar(v), τpre, D) is the
set of all atoms over P , V and O.

Let x be an atom. Then x and ¬x are literals to x.

Both x and hand are schematic variables with τvar(x) = ball and τvar(hand) =
gripper. Meanwhile left and roomA are objects. These are examples for schematic
atoms using predicates from the previous example:

• at-robby(roomA) (which is also a ground atom)

• carry(x, left)

• free(hand)
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The complete set of ground atom for our gripper example is

gnd(Pexample, τpre, D) = {at-robby(roomA), at-robby(roomB), at-robby(roomC),

at(ball1, roomA), at(ball1, roomB), at(ball1, roomC),

at(ball2, roomA), at(ball2, roomB), at(ball2, roomC),

at(ball3, roomA), at(ball3, roomB), at(ball3, roomC),

at(ball4, roomA), at(ball4, roomB), at(ball4, roomC),

carry(ball1, left), carry(ball1, right), carry(ball2, left),

carry(ball2, right), carry(ball3, left), carry(ball3, right),

carry(ball4, left), carry(ball4, right),

free(left), free(right)}

While the literal at-robby(roomB) represents that the robot is in the room
called roomB , the literal ¬at-robby(roomB) represents that it is not there.

Definition 5 State[15]
Let P be a set of predicates with type τpre(p) for p ∈ P and D a domain function.
Then a state s is a mapping from gnd(P, τpre, D) to {0, 1}, indicating the truth-
value of every atom.

A state can only be ground. An example for a state is s0
1, where all balls

and the robot are in roomA:

s0(otrue) = 1 for otrue ∈ { at-robby(roomA), free(left), free(right)}
∪ {at(x, roomA) | x ∈ {ball1, ball2, ball3, ball4}}

s0(ofalse) = 0 for ofalse ∈ {at-robby(roomB), at-robby(roomC)}
∪ {at(x, y) | x ∈ {ball1, ball2, ball3, ball4}

and y ∈ {roomB , roomC}}
∪ {carry(x, z) | x ∈ {ball1, ball2, ball3, ball4}

and z ∈ {left, right}}

Listing the assignment to each atom can be quite exhaustive. Therefore it
is helpful to introduce a shorthand for states, where only the positive2 atoms
are mentioned, in form of a set:

s0 = 〈at-robby(roomA), free(left), free(right), at(ball1, roomA),

at(ball2, roomA), at(ball3, roomA), at(ball4, roomA)〉

Definition 6 Schematic Formulas[15]
Let O be a set of objects, V a set of variables and P a set of predicates with
arities ar(p) for every p ∈ P . The following are schematic formulas over O, P
and V :

1This state will be useful later
2Only listing all negative atoms would also be possible.
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1. schematic atoms p(s1, ..., sn) over O and V

2. φ1 ∧ φ2, if φ1 and φ2 are schematic formulas

3. φ1 ∨ φ2, if φ1 and φ2 are schematic formulas

4. ¬φ, if φ is a schematic formula

A schematic formula that is a schematic formula using only definitions 1
and 4 is called an atomic schematic formula. A schematic formula where V = ∅
is called a ground formula.

Using the atoms at(ball1, roomA), at(ball2, roomC) and free(hand), a few ex-
amples for schematic formulas are:

• at(ball1, roomA)

• at(ball2, roomC) ∨ free(hand)

• ¬at(ball1, roomA) ∧ free(hand)

Definition 7 Schematic Effect [15]
Let O be a set of objects, D a domain function associating to O, V a set of
variables, and P a set of predicates with arity ar(p) for every p ∈ P . A literal
e to an atom atom(e) ∈ Atoms(P, V, τvar(v), τpre, D) is a schematic effect over
Atoms(P, V, τvar(v), τpre, D).

If e is an effect over Atoms(P, V, τvar(v), τpre, D) with V = ∅, then e is a
ground effect.

Definition 8 Schematic Action[9]
Let O be a set of objects, V a set of variables, and P a set of predicates with
arities ar(p) for every p ∈ P . Let then Atoms(P, V, τvar(v), τpre, D) be the set
of all atoms over P , O and V . A schematic action is a 3-tuple 〈χ, e, c〉 with χ a
schematic formula over O and V called the precondition, e an schematic effect
over Atoms(P, V, τvar(v), τpre, D) and the cost c ∈ N.

If both χ and e are ground, then the action is a ground action. The set of
add effects add(a) of an action a = 〈χ, e, c〉 is defined as add(a) = {ei | ei ∈
e and ei is a positive literal}. Similarly, the set of delete effects to a is the set
of positive literals del(a) = {¬ei | ei ∈ e and ei is a negative literal}. Further
we define pre(a) = χ.

Here are a few example for schematic actions for the gripper example using
the objects and types from former examples and the variables b, g with τvar(b) =
ball and τvar(g) = gripper (Note that a1 is also a ground action):

a1 =〈at-robby(roomA), {¬at-robby(roomA), at-robby(roomB)}, 1〉
a2 =〈at-robby(roomB) ∧ at(ball3, roomB) ∧ free(right),

{¬at(ball3, roomB),¬free(right), carry(b, g)}, 1〉
a3 =〈at-robby(roomB) ∧ carry(b, left),

{¬carry(ball2, left), at(ball2, roomB), free(left)}, 1〉
del(a3) = {carry(ball2, left)}

5



Definition 9 Schematic STRIPS Task [9]
A schematic STRIPS task is a 7-tuple Π = 〈T,O,D, P, s0, χ∗, A〉 with the fol-
lowing components:

• T is a finite set of Types

• O is a finite set of objects

• D : T → O is a domain function

• P is a finite set of predicates

• s0 is a state over O and P called the initial state

• χ∗ is a ground formula over O and P called the goal formula

• A is a finite set of schematic actions over O and P

A schematic STRIPS task is a ground STRIPS task if A contains only ground
actions. We will also refer to STRIPS tasks as propositional (planning) tasks.

In former examples we already defined T , O, D, P and s0 for the grip-
per example. The goal formula is χ∗ = at(ball1, roomB) ∧ at(ball2, roomB) ∧
at(ball3, roomB) ∧ at(ball4, roomB). The set of ground actions A is best under-
stood as the union of three types of actions:

Amove ={〈at-robby(r), {¬at-robby(r), at-robby(r′)}, 1〉
| 〈r, r′〉 ∈ D(room)×D(room) and r 6= r′}

Apick-up ={〈at-robby(r) ∧ at(b, r) ∧ free(g), {¬at(b, r),¬free(g), carry(b, g)}, 1〉
| r ∈ D(room) and b ∈ D(ball) and g ∈ D(gripper)}

Adrop ={〈at-robby(r) ∧ carry(b, g), {¬carry(b, g), at(b, r), free(g)}, 1〉
| r ∈ D(room) and b ∈ D(ball) and g ∈ D(gripper)}

A = Amove ∪Apick-up ∪Adrop

For brevity we introduce the following short hands:

move(rJ , rk) for actions from the set Amove

pick-up(r, b, g) for actions from the set Apick-up

drop(r, b, g) for actions from the set Adrop

For example move(roomA, roomB) represents the action:

〈at-robby(roomA), {¬at-robby(roomA), at-robby(roomB)}, 1〉

In the following we use the general term FDR[9]. However, considering that
we restricted ourselves to STRIPS, these definitions represent and only hold for
SAS+[2].
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Definition 10 Ground FDR Task[9]
Let T be a set of types, O a set of objects, D : T → O a domain function and
P a set of predicates.

An FDR atom domain function d is a mapping from FDR variables to a set of
values (its domain). An FDR state s maps variables to values in their domain.
We define these domains as subsets of the union of literals to gnd(P, τpre, D)
and {none-of-those}.

An FDR formula is a schematic formula where, instead of a schematic atom,
an assignment atom 7→ label is an (atomic) FDR formula. The remaining re-
cursive definitions are the same as with schematic formulas. An atomic FDR
formula atom 7→ label holds in a state, if that state maps the atom to the value
label.

An FDR effect is an atomic FDR state, meaning it only maps one atom
one of the values in its domain. We write them short as just the assignment
e = atomi 7→ d(atomi). FDR actions are schematic actions where instead of
schematic effects there are FDR effects and instead of a schematic formula there
is an FDR formula as precondition.

Then Π = 〈T,O,D, P, si, χ∗, d, A〉 is a ground FDR planning task with d an
FDR atom domain function, si a FDR state, χ∗ an FDR formula and A a set
of FDR actions. We only consider ground FDR tasks in this thesis.

Each propositional ground task can be expressed in an FDR task where
d(atom) = {atom,¬atom} for all atoms over O and P .

Definition 11 Successor State
Let s be a state and a = 〈χ, e, c〉 a ground action. The action a is applicable
in s if s |= χ. Then the successor state to s when applying action a is s′. The
state s′ is created from s by replacing all mappings of variables that appear in an
effect of a to the value that the effect indicates. This can be written as s

a−→ s′.

Let a successor state to the initial state in the gripper example be given by
s0

a0−→ s′. Furthermore, let a0 be defined as a0 = move(roomA, roomB). Then
the successor state looks as follows:

s′ = 〈at-robby(roomB), free(left), free(right), at(ball1, roomA),

at(ball2, roomA), at(ball3, roomA), at(ball4, roomA)〉

Definition 12 Path, Solution and optimal Solution
Let Π be a propositional planning task Π = 〈T,O,D, P, s0, χ∗, A〉 or an FDR
planning task Π = 〈T,O,D, P, s0, χ∗, d, A〉 and S the set of all states over D and

P . A path for Π is a sequence of actions π = 〈a1, ...am〉 with s
a1−→ s1

a2−→ ...
am−−→

sm with ai ∈ A and si ∈ S (as well as s ∈ S). If s = s0 and sm |= χ∗ then the
path is a solution (or plan) to Π. The cost of a plan with ai = 〈χi, ei, ci〉 is:

c(π) =
∑

i∈{1,...,m}

ci

An optimal solution π∗ for Π is a solution with c(π∗) ≤ c(πi) for all possible
solutions πi to Π.
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An optimal solution to our example planning task Π would be the action
sequence

π∗ = 〈pick-up(roomA, ball1, left), pick-up(roomA, ball2, right),

move(roomA, roomB), drop(roomB , ball1, left), drop(roomB , ball2, right),

move(roomB , roomA),

pick-up(roomA, ball3, left), pick-up(roomA, ball4, right),

move(roomA, roomB), drop(roomB , ball3, left), drop(roomB , ball4, right)〉

The cost of π∗ is c(π∗) = 11

Definition 13 Reachable State
Let Π be a propositional planning task Π = 〈T,O,D, P, s0, χ∗, A〉 or an FDR
planning task Π = 〈T,O,D, P, s0, χ∗, d, A〉 and s∗ a state over D and P . If

there exists a plan π = 〈a1, ..., am〉 so that s
a1−→ s1

a2−→ ...
am−−→ s∗, then the state

s∗ is reachable (from the initial state).

Definition 14 Heuristic
Let S be a set of all states to a propositional task or FDR states to an FDR
task. A heuristic h is a function h : S → N.

Definition 15 Regression of a propositional State [14]
Let a = 〈χ, e, c〉 be an action and s a state to a propositional planning task
Π. The formula ϕ to a state is the conjunction of literals where all ground
atoms appear in exactly one literal with negation determined by the mapping of
the state. Then the regression of s through a, written rga(s), is the following
formula:
rga(s = χ ∧ ψ with ψ =

∧
ψi where ψi ∈ ϕ and ψi 6∈ e

2.2 Invariants

Definition 16 Invariant[9]
Let Π = 〈T,O,D, P, si, χ∗, A〉 be a schematic propositional planning task with
atoms Atoms(P, V, τvar(v), τpre, D) and states S over O and V . An invariant
for Π is a schematic formula φ over literals over O and V such that s |= φ for
all states reachable from the intial state. Note that it is also possible that both
the invariant and Π are ground.

In the gripper example, the following formulas are invariants:

φ1 =at-robby(roomA) ∨ at-robby(roomB)

φ2 =¬free(left) ∨ ¬carry(ball1, left) ∨ ¬carry(ball2, left)

∨ ¬carry(ball3, left) ∨ ¬carry(ball4, left)

φ3 =¬carry(ball4, left) ∨ ¬carry(ball4, right)
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Definition 17 Mutex and Mutex Group[9]
A mutex is a special case of an invariant. An invariant is a mutex if it is a
disjunction of exactly 2 negative literals.

Let Γ be the set of all invariants to a propositional task Π. The set of literals
M is a mutex group if there is a set of mutexes ΓM ⊆ Γ so that ¬φ ∧ ¬φ′ ∈ Γ
for all φ, φ′ ∈M with φ 6= φ′.

An example for a mutex is φ3. A mutex group for a propositional planning
task denotes a set of atoms of which there is at most one occurring as a positive
literal in any reachable state.

Mutexe groups are helpful, as they allow the transformation from a STRIPS
task to a SAS+ task. As only ever one atom of a mutex group can be true in
any reachable state, they can be represented by one SAS+ variable with the
domain equal to all the atoms in the mutex, possibly combined with a default
“none” value.

Definition 18 Reachability Invariant Candidates (RIC)[15]
Let O be a set of objects and V be a set of variables with D(τvar(v)) ⊆ O for all
v ∈ V . Reachability invariant candidates (RIC) are tuples γ = 〈ψ, φ〉 where φ is
a disjunction of literals and ψ is a (possibly empty) conjunction of inequalities
x 6= x′ where x and x′ are objects or variables occurring in literals in φ. An RIC
with ψ empty and gournd literals, is a ground reachability invariant candidate3.
We write the RICs γJ = 〈ψJ , φJ〉 with φ0,2 = l1 ∨ l2, φ1,3 = l1 and ψ2,3 = ∅ as
follows:

γ0 =ψ0 → (l1 ∨ l2)

γ1 =ψ1 → l1

γ2 =(l1 ∨ l2)

γ3 =l1

The set of ground RIC to a schematic RIC γs = 〈ψs, φs〉 is the set of RIC’s
Γ where all γJ = 〈ψJ , φJ〉 fulfill γJ ∈ Γ, ψJ = ∅ and when applying the mapping
α : V → O, that is implied by φs and φJ , to ψs, no object occurs twice in the
same tuple (no inequality is violated).

Definition 19 Monotonicity Invariant Candidates (MIC)[9]
A monotonicity invariant candidate (MIC) for a task Π is a pair θ = 〈H,φ〉
where H is a set of variables and φ is a set of literals. Variables hi 6∈ H in the
atom p(q1, ..., qm) from the literal lJ ∈ φ are called counted variables. We write
an MIC 〈{v0, v1, ..., vm}, {l0, l1, ..., lk}〉 as follows:

∀v0v1...vm(l0 + l1 + ...+ lk) ↓

The weight w = weight(θ, s) of a ground MIC 〈H,φ〉 in a state s is the sum
over ground atoms ai ∈ φ that are true in s.

3For example a ∨ b with a, b ∈ O
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A MIC θ = 〈H,φ〉 with weight(θ, s0)=1 that is proven invariant represents
a mutex group that can be constructed, in form of a set of atoms, using the
following procedure:

for each qi ∈ counted-variables(φ) :

φ = {p(q0, ..., o, ..., qm) | o ∈ τvar(qi)} ∪ φ \ {p(q0, ..., qi, ..., qm)}

An example serves to explain the case where two counted variables occur
in a MIC: Let p be a predicate and a, b, c, d variables. Let the MIC θ =
∀ab(p(a, b, c, d)) ↓ be proven invariant for the propositional planning task Π.
Then θ using the domain function D from Π represents the mutex group M :

D(τpre(a)) = {1, 2} D(τpre(c)) = {5, 6}
D(τpre(b)) = {3, 4} D(τpre(d)) = {7, 8}
M = {p(a, b, 5, 7), p(a, b, 5, 8), p(a, b, 6, 7), p(a, b, 6, 8)}

A way to generate invariants is with a generate-test-repair algorithm[9], in-
variant candidates could be RICs, MICs or others:

• Generate: Suggest some invariant candidates, e.g., by enumerating all
possible formulas φ of a certain size.

• Test: Try to prove that φ is indeed a invariant. Usually done inductively:

– Test that initial state satisfies φ.

– Test that if φ is true in the current state, it remains true after ap-
plying a sinlge action.

• Repair: If invariant test fails, replace invariant candidate φ by a weaker4

formula, ideally exploiting why the proof failed.

2.3 Ground Iterative Reachability Invariant Synthesis (G-
IRIS)

Rintanen [14] suggested an invariant synthesis method based on the use of the
regression of actions for the check part in a guess-check-repair approach for
propositional ground planning tasks. We will call this method Ground Iterative
Reachability Invariant Synsthesis (G-IRIS).

Let Π = 〈T,O,D, P, s0, χ∗, A〉 be a propositional ground planning task and
G = gnd(P, τpre, D) the set of all atoms in Π. The algorithm is presented in

4It is also possible to construct a generate-test-repair algorithm for invariants where the
formulas are made stronger in the repair step.
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Algorithm 11. The goal of the algorithm is to find the set of strongest ground
RICs up to the size n to Π.

Algorithm 1: Algorithm for Invariant computation by Rintanen [14].
The function lits(c) returns the number of atoms in the formula.

Input: A finite set of ground atoms G, the initial state si a finite set of
grounded actions A and n ∈ N.

Output: Γ (set of ground RIC proven invariant)
1 function invariants(G, s0, A, n):
2 Γ := {g ∈ G | s0 |= g} ∪ {¬g | g ∈ G; s0 2 g}
3 while Γ 6= Γ′ do
4 Γ′ := Γ
5 foreach a ∈ A and γ ∈ Γ s.t. Γ′ ∪ {rga(¬γ)} ∈ SAT do
6 Γ := Γ\{γ}
7 if |lits (γ)| < n then
8 Γ := Γ ∪ {γ ∨ g | g ∈ G} ∪ {γ ∨ ¬g | g ∈ G}
9 return Γ

On line 1 we create the RICs from the literals in the initial state. Then there
is a search for a fix point. This fix point is reached when the set of RICs has not
changed after an iteration. In the iteration, it checks which of the candidates
can be falsified by testing satisfiability of the current set of invariant candidates
with the regression of the negation of that candidate. If the candidate can be
falsified, then it is discarded. If a candidate is discarded this way and not yet
weaker than we want to consider (consisting of a disjunction of more than n
atoms, usually n = 2 or n = 3), the candidate is weakened. The weakening on
line 7 builds the set of all disjunctions with the discarded candidate and every
atomic literal over G.

For the satisfiability test, it is possible to use an incomplete test which does
not falsely indicate unsatisfiable for a set of satisfiable formulas. For STRIPS
the test can be done using unit resolution.

In the following, we will show some of the interesting steps on the running
example. Let us first recap the initial state:

s0 = 〈at-robby(roomA), free(left), free(right), at(ball1, roomA),

at(ball2, roomA), at(ball3, roomA), at(ball4, roomA)〉

The initial set of candidates C0 contains the following RICs:

C0 = {at-robby(roomA),¬at-robby(roomB),¬at-robby(roomC), free(left),

free(right)}
∪ {at(ball’, roomA) | ball′ ∈ D(ball)}
∪ {¬at(ball′, room′) | ball′ ∈ D(ball) and room′ ∈ D(room)}
∪ {¬carry(ball′, gripper′) | ball′ ∈ D(ball) and gripper′ ∈ D(gripper)}
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Let the following c be the first candidate and a the first action considered:

c = at-robby(roomA)

a = 〈at-robby(roomA), {¬at-robby(roomA), at-robby(roomB)}, 1〉

The regression of ¬c with a is then at-robby(roomA). As this is again c which
we know is in C’, we also know {c} ∪ C ′ is satisfiable. Therefore, we remove c
from C and attempt to weaken it. Because c has fewer than n = 2 literals, we
may weaken it. The weakening set contains all disjunctions of the form c ∨ l
where l is a literal to gnd(Pexample, τpre, D. The candidate at-robby(roomA) ∨
at-robby(roomA) could be discarded, because it simplifies to c which we just
discarded. Meanwhile, the candidate at-robby(roomA) ∨ ¬at-robby(roomA) is
actually a bit more interesting. Of course, it is a trivial candidate, but its
presents contains at least a small bit of information. Namely, that neither
at-robby(roomA) nor ¬at-robby(roomA) are invariants for the planning task.

A key insight for understanding the algorithm is, that the ground RIC
γ1 = ¬at(ball1, roomB) can only be discarded in the second iteration. Because
in the first, the satisfiable test runs against the initial C and there we have
¬carry(ball1, left) as well as ¬carry(ball1, right). While we find out during the
first iteration, that these two are indeed not invariants, we cannot discard γ1.

After reaching the fix point set, there are two kinds of invariants for our
example. First 25 of the form x∨¬x. Secondly, there are 63 mutexes which can
be split in six sets:

Γ1 ={¬free(g) ∨ ¬carry(b, g) | b, g ∈ D(ball)×D(gripper)}(size 8)

Γ2 ={¬carry(b, g) ∨ ¬carry(b′, g)

| b, b′ ∈ D(ball)×D(ball) and b 6= b′ and g ∈ D(gripper)}(size 12)

Γ3 ={¬carry(b, g) ∨ ¬carry(b, g′)

| b ∈ D(ball) and g, g′ ∈ D(gripper)×D(gripper) and g 6= g′}(size 4)

Γ4 ={¬at-robby(r) ∨ ¬at-robby(r′)

| r, r′ ∈ D(room)×D(room) and r 6= r′}(size 3)

Γ5 ={¬at(b, r) ∨ ¬at(b, r′)

| b ∈ D(ball) and r, r′ ∈ D(room)×D(room)}(size 12)

Γ6 ={¬at(b, r) ∨ ¬carry(b, g)

| b ∈ D(ball) and r ∈ D(room) and g ∈ D(gripper)}(size 24)

Our example run is performed with n = 2. For n = 3, the algorithm would
weaken candidates further and also find for example this invariant:

at-robby(roomA) ∨ at-robby(roomB) ∨ at-robby(roomC)

2.4 Schematic Monotonicity Invariant Synthesis (S-MIS)

Helmerts porposed an algorithm[9] for proving that an MIC is invariant. This
can be proven by examining the schematic actions of the planning task.
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Definition 20 Threatened Monotonicity Invariant Candidates [9]
A monotonicity invariant canditate θ is threatened by a schematic action a iff
one of the following two contitions holds:

• The schematic action a has an add effect that can increase the weight of
an instance of θ in some state, but no delete effect that is guaranteed to
decrease the weight of the same instance in the same state. In this case,
we say that the schematic action a is unbalanced with regard to θ.

• When ignoring delete effects, the schematic action a can increase the
weight of some instance of θ in some state by at least 2. In this
case, we say that the schematic action a is too heavy for θ.

If a is unbalanced with regards to the MIC θ, meaning it has more add
than delete effects corresponding to θ, then a refinement is attempted. This
refinement works by finding an atom which gets deleted by a, which when added
to the θ results in a MIC for which a is balanced.

Invariant candidates are discarded if there is a schematic action that is too
heavy for them. This essentially means that the schematic action has more than
one add effect corresponding to the candidate. This avoids non-trivial checks for
cases where a schematic action could be balanced if predicates are over different
objects, but is not so if they are over the same object.

The schematic monotonicity invariant synthesis S-MIS uses a guided guess-
check-repair approach which is depicted in Algorithm 2. The function prove-
invariant is applied to every MIC which are hold in a list. All refined MICs
are added to this list. The initial list consist of all MICs θ = 〈H,φ〉 with φ a
formula over exactly one atom and at most one counted variable.

Algorithm 2: Algorithm for proving that an MIC 〈H,φ〉 is an invariant
and possibly refining it if it is rejected.

Input: A finite set of variables H and a set of predicates Φ over those
variables.

Output: Boolean describing if (H,Φ) is an invariant.
1 function prove-invariant(H,φ):
2 foreach schematic action a do
3 if is-action-too-heavy(a,H, φ) then
4 return false {Reject the candidate.}
5 foreach effect e of add(a) that affects a predicate in φ do
6 if is-add-effect-unbalanced(a, e,H, φ) then
7 return false {Reject the candidate and try to refine it.}
8 return true {Accept the candidate.}

The order in Algorithm 2 is important, as we want to reject every MIC
for which there exists a too heavy action5. Helmert explains that while this is
technically stricter than necessary, it is suitable for the computation of mutex
groups which will be used for the construction of a finite domain representation.

5No refinement could lower the heaviness of the action towards the new candidate.
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We could imagine an action that has weight 2 and does not violate an MIC.
However, this would mean that when we translate this action using the mutex
group derived from the MIC, the action could have two different effects for
the same variable. This is not allowed because a successor state cannot map
the same variable to two values at once. The heaviness test is described in
Algorithm 3.

Algorithm 3: Function determining if the action is to heavy with
regard to the MIC 〈H,φ〉.
1 function is-action-too-heavy(a,H, φ):
2 Let a′ be a copy of a.
3 Duplicate all (non-trivially) quantified effects of a′.
4 Assign unique names to all quantified variables in effects of a′.
5 foreach pair(e, e′) of add effects of a′ that affect a predicate in φ do
6 if the parameters of action a′ can be renamed so that (atom(e) 6=

atom(e′) and covers(H,φ, atom(e)) and covers(H,φ, atom(e′))
and pre(a′) ∧ ¬atom(e) ∧ ¬atom(e′) is satisfiable) then

7 return true {The action is to heavy.}
8 return false {The action is not to heavy.}

The heaviness test informally described checks if two different effects appear
in the sum of the MIC and whether the action can actually cause both effects at
once. The function covers is defined in Algorithm 4 and needs to be understood
in the context where it is used. Note how there is a renaming of the parameters
of a′ before the call to covers. Inside covers, the counted variables are renamed.
So at that point we renamed all variables in order to it at all possible enable
ϕ = ψ. The function covers, again informally phrased, tells if an atom appears
in the sum of the MIC.

Algorithm 4: covers

Input: A finite set of variables H, a set of predicates Φ over those
variables and a formula ψ

Output: Boolean describing whether φ covers ψ.
1 function covers (H,φ, ψ):
2 foreach ϕ ∈ φ do
3 if the counted variables in ϕ (those not in H) can be renamed

so that ϕ = ψ then
4 return false

5 return false

Finally, in the unbalanced check in Algorithm 5 we look for a delete effect
who’s variables can be renamed so that it appears in the MIC and which can be
applied in a state where it is not already deleted. The renaming of the quantified

14



variables for covers is this time done for the effect.

Algorithm 5: Function determining if the action is unbalanced for the
MIC 〈H,φ〉 in regard of the specific add effect.

1 function is-add-effect-unbalanced(a, e,H, φ):
2 Let a′ be a copy of a where the parameters are minimally renamed

so that covers(H,φ, atom(e)) is true.
3 foreach delete effect e′ of a′ that affects a predicate in F do
4 if the quantified variables of e′ can be renamed so that

(atom(e) 6= atom(e′) and covers(H,φ, atom(e′)) and pre(a′) ∧
¬atom(e) |= atom(e′)) then

5 return false {e’ balances e}
6 return true {the add effect is unbalanced}

If a candidate is rejected because it is unbalanced, we attempt to refine it
with Algorithm 6.

Algorithm 6: Refinement of a candidate 〈H,φ〉 that is unbalanced
with respect to the action a and add effect e

1 function refine-candidate(a, e,H, φ):
2 Select some schematic action a and add effect e such that

is-add-effect-unbalanced(a, e,H, φ) returns true.
3 foreach atom ψ′ over variables from H and at most one other

variable for which covers (H,φ, ψ′) is not true do
4 φ′ = φ ∪ {ψ′}
5 Simplify φ′ by removing atoms from φ that are covered by ψ′.
6 Simplify φ′ by removing unused parameters.
7 if if not is-add-effect-unbalanced(a, e,H, φ′) then
8 Add 〈H,φ〉 to the set of MIC

Moving to our example, the set of initial MICs is the following:

θ1 =∀(at-robby(r)) ↓ θ2 = ∀r(at-robby(r)) ↓
θ3 =∀r(at(b, r)) ↓ θ4 = ∀b(at(b, r)) ↓
θ5 =∀b, r(at(b, r)) ↓ θ6 = ∀b(carry(b, g)) ↓
θ7 =∀g(carry(b, g)) ↓ θ8 = ∀b, g(carry(b, g)) ↓
θ9 =∀(free(g)) ↓ θ10 =∀g(free(g)) ↓

The first MIC θ1 = ∀(at-robby(r)) ↓ can be proven invariant. There is
only one shematic action affecting the predicate at-robby, namely amove =
move(rJ , rk). It is clearly not to heavy, as it only has one add effect. In-
deed it is balanced with regard to the add effect at-robby(r), because of the
delete effect ¬at-robby(r′). Therefore θ1 is proven invariant. Now the difference
of what happens in both test when examining θ2 reveals much about how they
work. The test both fail at their respective ”if“ condition, because it is not
possible to rename the quantitative variables in θ2 to enable both effects to be
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covered by the MIC while being not the same atom. Note however, that we
discuss the balance test here only in theory, because the θ2 is already discarded
after being found to heavy. To show the refinement, let us look at θ4. It is un-
balanced with regards to the add effect at(b, r) in adrop(r, b, g). The schematic
action has no delete effect with predicate at and can therefore not balance the
add effect. The only delete effect in adrop is ¬carry(b, g). We can create a new
MIC θ11 = ∀b(at(b, r) + carry(b, g)) ↓. This new candidate is not only balanced
with regards to adrop(r, b, g), but also with regards to apick-up(r, b, g). As no
other schematic action affects these predicates and neither schematic action is
to heavy with regards to θ11, it is proven invariant.

In the end, we will find three MICs that are proven invariant:

θ1 =∀(at-robby(r)) ↓
θ11 =∀b(at(b, r) + carry(b, g)) ↓
θ12 =∀g(free(g) + carry(b, g)) ↓

3 Implementation

This chapter will go into details of the implementation. There are aspects of
the algorithms discussed which where not definitively described by the author.
The implementation was written in Python 3. However, this thesis will only use
pseudo code.

3.1 G-IRIS implemenation

Our implementation is presented in Algorithm 7. We do compute a map from
literals to clauses where the literals appear negated in each outer iteration. This
can be done once for every C ′ and can then be used for every 2-SAT test in
this iteration. We also added a douplicate detection mechanism with the set
canidates-conisdered. This serves to compensate the relative naive weakening
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which due to its definition is bound to create many douplicates.

Algorithm 7: G-IRIS proposed by Rintanen [14] as implemented for
this thesis.

Input: G: a finite set of grounded atoms; s0: the initial state; A: a
finite set of ground actions; n ∈ N

Output: C: set of ground RICs
1 function invariants(G, s0, A, n):
2 remove-trivial-actions(A)
3 Gaffected = affected-atoms(A)
4 C := {g ∈ Gaffected | s0 |= g} ∪ {¬g | g ∈ Gaffected and s0 2 g}
5 Ctrivial = {g ∈ G \Gaffected | s0 |= g} ∪ {¬g | g ∈

G \Gaffected and s0 2 g}
6 while True do
7 C ′ := C.copy()
8 literal to clauses where negated(C’)

9 foreach c ∈ C do
10 candidates-considered = candidates-considered ∪{c}
11 foreach a ∈ A do
12 if 2-SAT({STRIPS-regress(a,¬c)}, C ′, G) then
13 C := C \ {c}
14 if |lits (c)| < n then
15 weakened-c = {c ∨ g | g ∈ G} ∪ {c ∨ ¬g | g ∈ G}
16 weakened-c = weakened-c \ candidates-considered
17 foreach weak-c ∈ weakened-c do
18 if 2-SAT

({STRIPS-regress(a,¬weak-c)}, C ′, G) then
19 C := C ∪ {weak-c} (extends loop at 7, but

no restart)

20 if C != C’ then
21 break

22 return C

Another optimization we added is to check all new candidates with the same
action. We already know, that this action affects at least one of the disjuncts.
It would not make any sense to add an action, that does not resolve the reason
of the rejection, this being the action in this context.
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The regression depicted in Algorithm 8 is fairly straight forward.

Algorithm 8: Regression for a conjunction in STRIPS.

Input: c: a Conjunction of literals (handled as set of literals); a: a
propositional ground action

Output: The regression of c by a in the form of a conjunction of literals
1 function STRIPS-regress (o, c):
2 foreach e ∈ del(a) do
3 if e ∈ c then return false
4 c := c \ e
5 foreach e ∈ add(a) do
6 if ¬ e ∈ c then return False
7 c := c \ e
8 return c

Our first implementation used a incomplete unsatisfiability test by resolution
for Line 12 in Algorithm 7, which would have allowed for invariants of greater
size. However, the performance of resolution on the scale we observed already on
a simple gripper problem was poor. As we are primarily interested in using this
implementation for generating mutex groups, we can restrict the algorithm to
n = 2 without losing any mutexes and thereby enabling us to use an algorithm
for 2-SAT. The 2-SAT test in Algorithm 9 lead to a significant performance
increase.

Algorithm 9: 2-SAT

Input: Set of disjunctions C, and a set of unit clauses C ′

Output: true if C ∪ C ′ is satisfiable and false it is not
1 function 2-SAT (C, c):
2 unforced-binary-disjunctions,unsolvable = unit-resolution(C,c)

3 if unsolvable then
4 return false
5 if unforced-binary-disjunctions is empty then
6 return true
7 edges= {〈¬a, b〉, 〈a,¬b〉 | 〈a, b〉 ∈ unforced-binary-disjunctions}
8 sccs = tarjan-get-sccs(edges)

9 foreach scc ∈ sccs do
10 foreach l ∈ scc do
11 if ¬l ∈ scc then
12 return false

13 return true

We will first talk about the second part of the 2-SAT algorithm. There we
construct a graph using all literals as nodes. We add two directed edges for each
disjunction in our list. This represents the implication that if one side of the
disjunction is not fulfilled, the only way to fulfill it is if the other side is fulfilled.
In this graph, we can now do a test for satisfiability by testing whether any literal
can reach its negation as well as its negation reaching it. A way to compute
this for all literals at once is by using strongly connected component (SCC).
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SCCs are defined as a set of vertices, where every vertices can reach every other
vertices. When we have the SCCs of a graph, we can simply test if any literal
appears in a SCC together with its negation. For computing SCCs of a graph,
we implemented the algorithm proposed by tarjan[18]. Our implementation
closely follows the pseudo code that can be found on Wikipedia6.

Our implementation of the unit-resolution is depicted in Algorithm 10. The
idea that optimizes the computation here is, that we do not actually need to
produce a resolvent to test for unsatisfiability. If we remember which literals
we have looked at, we can simply count how many of the literals in each claus
are not yet in conflict with what we saw up till now. As soon as there is only
one literal left, we know that this one either holds or C ∪ c is unsatisfiable.
At this point we use the mapping from literals to clauses that we computed in
Algorithm 7.

Algorithm 10: unit-resolution

Input: A set of disjunctions with length at most 2 C, and a set of unit
clauses c

Output: binary disjunctions that are not forced true or false if C ∧ c is
unsatisfiable by unit-resolution

1 function unit-resolution(C,c):
2 forced-literals = {l | l ∈ c}
3 literal-marked-forced = {l | l ∈ c} ∪ {claus ∈ C | length(claus) = 1}
4 if l ∈ literal-marked-forced and ¬l ∈ literal-marked-forced for some l

then
5 return false
6 unmarked-literal-per-claus = claus → length(claus)
7 while l ∈ forced-iterals do
8 forced-iterals = forced-iterals \ l
9 foreach claus ∈ C with ¬l ∈ claus do

10 unmarked-literal-per-claus[claus] =
unmarked-literal-per-claus[claus]−1

11 if unmarked-literal-per-claus[claus] = 1 then
12 forced-literal = {lit | lit ∈ claus and lit 6∈

literal-marked-forced} (at most one)
13 if not forced-literal then
14 return false
15 forced-literals.add( forced-literal)
16 literal-marked-forced.add( forced-literal)

17 foreach claus, nmb-unmarked ∈ unmarked-literal-per-claus do
18 if nmb-unmarked > 1 then
19 if l ∈ literal-marked-forced for each l ∈ claus then
20 binary-clauses.add(claus)

21 return binary-clauses

6wikipedia.org/wiki/Tarjan’s_strongly_connected_components_algorithm last ac-
cessed 11:00 4.10.2020
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The unit resolution alone can however not determine if a set of disjunctive
clauses, where we can not force all but one literal, is satisfiable. Therefore, this
set is handled by the aforementioned testing using SCCs.

Let Γ be a set of RIC that was proven invariant using Rintanens invariant
synthesis method using n = 2. In order to get mutex groups from this set, we
first filter out all invariants that are no mutexes. Then we use a greedy clique
partitioning algorithm by Rintanen [13] to get a set of disjunct mutex groups
from our set of mutexes. This partitioning into cliques starts by assigning all
vertices to the same clique candidate. It then iteratively identifies literals in a
clique candidate that have no edge between them and creates a new clique from
one of the two and every other vertices that has an edge to it. It terminates
when the clique candidate is a clique, as then all the sets of vertices we have
are cliques. The use of a greedy algorithm is due to the problem of finding max
cliques being NP-complete[11].

Considering that we throw away everything but the mutexes, the question
arises why we did not simply limite our candidates in Algorithm 7 to canidates
that are mutexes. The reason is, that the fewer candidates there are in Γ′, the
easier it is to find an operator s.t. Γ′ ∪ {STRIPS-regress(¬γ)} ∈ SAT , thereby
discarding the candidate, even though it might be a mutex for the task.

4 Evaluation

We evaluated the implementation on 35 STRIPS domains from past IPCs7.
There are 1119 problems in our optimal track and 1133 in our satisficing track.

4.1 Translation Results

Let us first examine how many tasks can actually be translated. The default im-
plementation of the translator for Fast Downward sets a time limit of 5 minutes.
As can be seen in Table 1, G-IRIS can only solve about 13 % of the tasks in
this time. Therefore we also report the results for higher time limits for G-IRIS.
However, it was unable to translate even half of the problems in time.

Table 1: instances
opt sat

algorithm limit done out of time done out of time
S-MIS 5m 1133 0 1119 0
G-IRIS 5m 151 982 140 979
G-IRIS 3h 295 838 261 858

Next we take a look at how the algorithms compare on the task that could
be translated by both. As can be seen in Figure 1, S-MIS is always faster than

7https://github.com/aibasel/downward-benchmarks (last accessed 22.June 2020, commit:
d6febbba6012806ec92214a00b7f842fe3dacd34)
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G-IRIS. For all problems that are not solved within a tenth of a second by
S-MIS, G-IRIS is about 2 or more magnitudes slower.
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Figure 1: Time each algorithm required to find invariants to problems for opti-
mal domains. Measurement resolution of 0.01 seconds. Defaulted 0.0 to 0.008
for logarithmic visualisation.

To find out why G-IRIS is slow, we only have to look at the number of tests
that are performed. While there is some variation due to the fact, that not
every test is equally difficult. However, there is a linear trend that can be seen
in Figure 2. The behaviour below 0.01 can be explained with the measurement
resolution which rounded everything between 0.000 and 0.010.
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Figure 2: Time plotted against the total number of 2-SAT tests for each trans-
lated problem.

4.2 Search Results

We used A*[7] with the following heuristics: blind, hmax[6], ipdb[8], lm-cut[10]
and merge-and-shrink[16] using the merge strategy SCC-DFP [17]. We run A*
with those heuristics on all problems that both algorithms could translate. The
memory was limited to 3.5 GB and the time to 30 min.

In Table 2 we see the number of problems from the optimal track that
could be solved when translated using G-IRIS and S-MIS. We observe, that
the translation from S-MIS can be solved more often. Indeed independent of
the heuristic, the translation by S-MIS can be solved at least as often as the
translation by G-IRIS. There are a few problems, where A* on either translation
runs into time or memory limits.

solved by blind hmax ipdb lmcut m&s
only S-MIS 0 2 23 25 4
both 267 269 264 259 285
only G-IRIS 0 0 0 0 0

Table 2: Problems that where translated by both algorithms and how often the
translation could be solved for the optimal track.

For the satisficing track we report the results in Table 3. Here similar to the
optimal track, the translation from S-MIS can be solved at least as often as the
one by G-IRIS.

Besides the search time, another interesting measure is the number of states
that were evaluated before reaching the final f-layer. We will refer to evaluations
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solved by blind hmax ipdb lmcut m&s
only S-MIS 0 0 16 19 1
both 237 237 235 234 253
only G-IRIS 0 0 0 0 0

Table 3: Problems that where translated by both algorithms and how often the
translation could be solved for the satisficing track.

until the final f-layer with the shorthand f-evaluations. For the heuristics blind,
hmax and lmcut we can observe mostly similar search times and number of f-
evaluations. We report all those in Appendix A. Meanwhile, the same attributes
for A* with ipdb or merge and shrink are less regular as can be seen in the
example on f-evaluations in Figure 3. All four plots can be found in Appendix
A. On all of them we see the following things:

• Most pairs of translations of problems are solved with similar number of
f-evaluations and in similar time.

• There are a few problems where one of the two translations is solved
more or less instantly, while the other takes significantly more time or
f-evaluations.

• There are a few problems, where both take some time or f-evaluations.
However, one translation performs significantly better than the other.

We used the ratio of the absolute difference between the time for both and
scaled it by dividing by their sum. We then selected all problems, where this
scaled ratio was bigger than 0.15, which we call deriving from the diagonal. Any
value close to 1 is clearly dominated by either translation. As the values come
closer to 0, they are closer to the diagonal. We used the same ratio and selection
for f-evaluations. We present a few comparisons in Table 4.

We quantitatively analysed the points deviating from the diagonal. Our
analysis focused on four attributes, namely on the number of binary FDR vari-
ables, number of FDR variables, number of FDR actions and number of FDR
facts (atoms). We found that the deviating points belong to many different
domains and that there are no directly obvious similarities between them. It
is notable, that the two domains blocks and psr-small are the most prominent.
Of the 15 domains of block that were translated and then solved for both al-
gorithms, we found 13 that deviated from the diagonal. For psr-small, 47 were
translated and solved for both algorithms and 24 of them deviated from the di-
agonal. However, for no heuristic did A∗ perform consistently better for either
translation.

When examining the block translations, we found, that the FDR repre-
sentation by S-MIS had consistently fewer FDR facts, FDR actions and FDR
variables. Both the examples in Table 4 reflect that. The translation by G-IRIS
only achieved a smaller number of binary FDR variables for a few problems.
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Figure 3: Number of f-evaluations for A∗ with ipdb on optimal track.

However, for many instances, the translation of G-IRIS actually had fewer f-
evaluations and took less time. Even for a few where it had a higher number
for all the four attributes.

For psr-small we found that the translation by G-IRIS mostly had fewer
binary FDR variables. However, it only performed significantly better for 5 of
the problems across all four configurations. Some of these were solved better on
the translation by S-MIS for other configurations. In terms of FDR facts, FDR
actions and FDR variables, the translation by S-MIS often has fewer. However,
there are a few problems where the FDR representation resulting from G-IRIS
has fewer of all four attributes.
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heuristic ipdb m&S
domain termes psr-small psr-small blocks blocks

problem p18 p48 p46 pB-8-1 pB-8-2

time
h 13.34 28.11 0.02 0.02 0.12
∆ 10.09 -28.08 0.01 0 -0.1
r 23.43 0.03 0.03 0.02 0.02

f-evaluations
h 3925448 6482493 5818 6803 44964
∆ 2854084 -6471684 5808 -2122 -41685
r 6779532 10809 11626 4681 3279

binary vars
h 1 35 27 9 9
∆ 3 -4 -4 -1 3
r 4 31 23 8 12

variables
h 13 36 92 17 17
∆ 3 -1 0 8 12
r 16 35 92 25 29

facts
h 58 91 67 90 90
∆ 6 0 -5 21 27
r 64 91 62 111 117

actions
h 468 188 28 128 128
∆ 54 0 -3 10 14
r 522 188 25 138 142

Table 4: Comparison of the A* search with the noted heuristic on both transla-
tions, h for tranlated by S-MIS and r for G-IRIS respectively, and the difference
∆ = h − r. We shortened ”termes-opt18-strips“ to ”termes“, ”probBLOCKS“
to ”pB“ and reduced the problem names for termes from ”p48-s101-n5-l3-f30“
and ”p46-s97-n5-l2-f30“ to their index, i.e. ”p48“.

5 Related Work

Bernardini and Smith [3] implemented a version of the algorithm proposed by
Helmert[9] which uses a decision tree to guide the guess-check-repair process on
a generalization to numerical and temporal planning tasks.

Bernardini et al. [4] improved further on the approach by applying the deci-
sion tree on the lifted representation of the planning task. They do report some
improvements in number of identified invariants compared to the algorithm used
in temporal fast downward.

5.1 Alcázar and Torralbas Invariant Synthesis Algorithm
in 2015

Alcázar and Torralba [1] proposed the idea of using the regression direction to
produce invariants which can be used for pruning during the forward search.
The consequent step they take is to argue that the opposite direction works as
well. Consequently they propose alternation of directions to use invariants form
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one direction to improve the other direction and continue using new knowledge
as long as it can be found.

The Algorithm 11 is their proposed fix point computation of grounded invari-
ants defined on SAS+[2] problems. The hn heuristic was proposed by Geffner
and Haslum [6] in 2000. In computeH2 mutexes of size 2 are computed as a
side effect of a reachability analysis in a state space reduced to size 2. The
function returns true if new invariants where found. Meanwhile disambiguate-
Actions computes which actions are consistent with invariants and returns true
if the set changed.

Algorithm 11: Fix point computation of invariants.

1 fw := True, updatedFW := True, updatedBw := True
2 while updatedFW ∨ updatedBW do
3 if fw ∧ updatedBW then
4 updatedFW := computeH2 (fw) ∨ disambiguateActions ()
5 if ¬fw ∧ updatedFW then
6 updatedBW := computeH2 (fw) ∨ disambiguateActions ()
7 fw := ¬fw

Notice how computeH2 receives a boolean fw that is false when updating
backwards.
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6 Discussion

In this thesis we implemented G-IRIS and used it for finding mutex groups in the
translation of Fast Downward. In that role, we compared it against S-MIS. In
terms of speed of the translation, S-MIS performs better. For our experimental
evaluation, it outperformed our implementation of G-IRIS by more than two
magnitudes for all but the simplest problems. Another benefit of S-MIS is that
it can stop early and still deliver results, which is not the case for G-IRIS.

Our implementation of G-IRIS could conceivably be improved upon. Setting
aside smaller optimizations, it might be possible to find systematic ways of
speeding up the algorithm. In the unit resolution we test the formula resulting
from the regression against the set of candidates from the last iteration. We
could, once per iteration, precompute all the unit clauses which will fail the
unit resolution on their own. If these appear in a set of unit clauses, the whole
set can already be dismissed. While the unit resolution was implemented with
smart data structures for clause selection, this optimization could still reduce
the runtime of many of the 2-SAT tests.

We made a few observations about the performance of A∗ on the transla-
tions. There was no obvious causal link between the representation size and
the performance of A∗. It would be interesting to examine the few oddities we
found further. There might be some similarities between the outliers which we
did not yet discover.

A comparison between the implemented algorithms and the algorithm pro-
posed by Alkazar and Torralba could also be interesting. They report to out-
perform S-MIS for many problems. While their algorithm most likely will also
outperform G-IRIS in terms of invariant search speed, it would be interesting
to compare the mutexes these two algorithms find.
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A Search Plots
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Figure 4: Number of evaluations until reaching the last f-layer using the heuristic
in the title on the optimal track. The numbers (Y/X tasks) describe how many
tasks where solved with fewer evaluations by the translation from G-IRIS (Y)
or S-MIS (X).
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Figure 5: Search time using the heuristic in the title on the optimal track. The
numbers (Y/X tasks) describe how many tasks where solved with less time by
the translation from G-IRIS (Y) or S-MIS (X).
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