
A Formalism for Build Order Search

in StarCraft Brood War

Severin Wyss

December 1, 2016

Abstract

We consider real-time strategy (RTS) games which have temporal and
numerical aspects and pose challenges which have to be solved within
limited search time. These games are interesting for AI research because
they are more complex than board games. Current AI agents cannot
consistently defeat average human players, while even the best players
make mistakes we think an AI could avoid. In this thesis, we will focus
on StarCraft Brood War. We will introduce a formal definition of the
model Churchill and Buro [2] proposed for StarCraft. This allows us to
focus on Build Order optimization only. We have implemented a base
version of the algorithm Churchill and Buro used for their agent. Using
the implementation we are able to find solutions for Build Order Problems
in StarCraft Brood War.

1

Acknowledgements

I would like to thank Malte Helmert that I can write my thesis in his research
group and for the motivating topic.

Furthermore I like to thank Dave Churchill not only for his work but also
for helping me resolve questions about his agent.

Very special thanks go to Martin Wehrle who supported me all the way
through with valuable advice, regular meetings and constructive feedback, as
well as being available for questions at any time.

Contents

1 Introduction 4

2 Background 5
2.1 State Space Search . 6
2.2 Numerical Values . 7
2.3 Time . 8
2.4 StarCraft Brood War . 9

3 Churchill and Buro’s Approach 10
3.1 Simplifications on State Spaces for Build Order Optimization in

StarCraft . 10
3.2 The Fast Forward Mechanism . 13
3.3 Search Algorithm . 13

4 State Space Formalization 13
4.1 States . 14
4.2 Fast Forward . 18
4.3 Transitions . 22
4.4 Entry and Solution . 25
4.5 Example . 27

5 Experiments 28

6 Conclusion 29

A Complete List of Orders in our Model 30

3

1 Introduction

Real-time strategy (RTS) games pose interesting challenges for AI research both
when programming them and while playing. In this thesis we will only look
at playing the game. Like boardgames RTS games are completely static and
deterministic. Also normally we only consider the scenario with 2 agents playing
the game as adversaries like we do in Chess or Go. Scenarios with cooperating
agents would boil down to a similar task, extended by the need to communicate.

Usually RTS games are significantly more complex than boardgames. The
complexity comes from continuous values and only partial observability as well
as the way actions influence the game state. In board games actions are in-
stantaneous changes like moving a pawn from one field to another. However in
RTS games, the player usually issues orders to units. These units then perform
a series of jobs like moving or building, as a result of the given order. Though
there might be very different games which are classified as RTS, the scenario we
are interested in is the one present in most famous RTS games like StarCraft ,
Age of Empires 2 or Supreme Commander.

In these games, generally only the positions of game elements are represented
by continuous values, while the rest of the game is discrete. This however suf-
fices for a search space explosion, as already the set of possible “move”-actions
for a single unit in a single moment is infinite. Optimizations in game engines
typically reduce the actual size of this set to a natural number of options. How-
ever, this (at least in modern games) will still be much bigger than the set of 28
“move”-options one queen in chess would have in the middle of an empty board.
Now we cannot compute a set of successors with infinite magnitude for every
state, so we cannot solve this task with brute force. Finding abstractions which
preserve optimality or finding as good as possible, likely suboptimal solutions
are therefore reasonable approaches to this part of the problem.

The next interesting aspect is the time. “Classical” actions do describe an
instantaneous change of a state. Although it is possible to model a world which
is static and deterministic in time steps, it is very tedious. We will explore the
difficulties in such domains and show how temporal action approach them.

Another interesting aspect of RTS games is the partial observability. Hu-
man understanding of the scenario dictates, that the gathering of information
about the game-state is very important. This assumption fits to the concept
of reaction - real time planning on the go - for which this information results
in a possibly significant search-space reduction (worst case no difference) which
is important in case of limited computation power. In this thesis we will only
consider the search for Build Order for one player independently from the op-
ponent. Therefore our problem is completely observable as we only concentrate
on game elements which are constantly visible.

RTS games know different kinds of goal states, StarCraft requires one player
without any building. Age of Empires 2 is not over until the last Unit or
Building from a player is gone and Supreme Commander ends as soon as the
ACU -unit of a Player is killed - similar to the king in chess. The common
characteristic of these games is, that every unit has a certain role towards the

4

goal of the game. A very naive distinction into 3 types is very common for both
units and structures: worker, fighter and utility. For our purpose, units and
structures behave the same way. For brevity, we will denote the union of units
and structures as units. Simplified a game works as follows: workers collect
resources and use these resources to produce units, fighters fight and utility
units increase the fighting potential of fighters or can boost workers. Depending
on the situation, a unit might take any of these roles or even several at once,
this is very much influenced by the game and situation. In StarCraft , a unit
which normally collects resources and constructs buildings can also engage in
combat, taking on the role of a fighter, or repair another unit and therefore be
a utility unit. In most games there are also so called Upgrades. Upgrades are
global variables influencing the performance of units.

In this thesis, we consider StarCraft Brood War because much research about
RTS games in the last years has focused on it. This is due to a community hack
called BWAPI [6] that allows to test implementations directly in the game itself.
In addition, this also allows for human versus AI comparisons. There have been
annual competitions between universities as well as hobby programmers using
this API. While this thesis was written DeepMind and Blizzard announced [7]
that they will publish an API to StarCraft 2 (the successor of StarCraft Brood
War) allowing AI tournaments. This research field might gain a lot of popularity
in the years to come.

In this thesis, we focus on Build Order search for StarCraft Brood War.
Colloquially the term Build Order is often used as an expression for the strategy
of an agent. We use the term Build Order to describe a series of orders to units,
which reaches a given goal. These orders instruct the building of units and
researching of upgrades. A goal can be any combination of units, upgrades and
resources. RTS games are usually war simulations. These simulations progress
in fixed time steps, so called frames. All intervals in the game are fixed to
numbers of frames. We use the term make span to denote the duration of a
Build Order. Intuitively, the make span is the amount of frames that is required
to build and collect the components required by a goal when following the Build
Order.

The goal of this thesis is to provide a state space model which accurately
represents a simplified StarCraft Brood War. To achieve this we make use of
the simplifications Churchill and Buro [2] introduced for StarCraft Brood War.
Our formalism is held closer to the game, while being similarly powerful as the
model of Churchill and Buro. Additionally we provide a basic implementation
of a planner for Build Order search. For this we use the algorithm proposed by
Churchill and Buro and adapt it to our model. Our implementation is able to
find correct solutions for Build Order problems.

2 Background

In this section we will introduce the formalism we used with special empathise
on some topics which go beyond classical state space search. We do not aim

5

at building a new or even innovative formalism but to show the applicability
and correctness of the state-space search we construct later while also pointing
out what the author learned about the topic. Our model will use a less formal
representation of this formalism.

2.1 State Space Search

In state space search we consider an environment which is static, deterministic,
fully observable, discrete and there is only a single agent present. As a basis for
this thesis, we recapitulate the relevant definitions from the course Foundations
of Artificial Intelligence [5]. Our formalism uses SAS+ extended with conditional
effects for states and actions.

Definition 2.1.1 (State Space)
A state space or transition system is a 6-tuple S = 〈S, A, cost, T, s0, S∗〉 with

• S finite set of states

• A finite set of actions

• cost : A→ R+
0 action costs

• T ⊂ S ×A× S transition relation; deterministic in 〈s, a〉.

• s0 ∈ S initial state

• S∗ ⊂ S set of goal states

Definition 2.1.2 (Transition determinism)
Let S = 〈S, A, cost, T, s0, S∗〉 be a state space.

The triples 〈s, a, s′〉 ∈ T are called (state) transitions.
We say S has the transition 〈s, a, s′〉 if 〈s, a, s′〉 ∈ T . We write this as

s
a−→ s′, or s −→ s′ if a does not matter.
Transitions are deterministic in 〈s, a〉: it is forbidden to have both s

a−→ s1
and s

a−→ s2 with s1 6= s2.

Definition 2.1.3 (Terminology from Graph theory)
Let S = 〈S, A, cost, T, s0, S∗〉 be a state space.

Let s, s′ ∈ S be states with s −→ s′.

• s is a predecessor of s′

• s′ is a successor of s

If s
a−→ s′, then action a is applicable in s.

Definition 2.1.4 (Path)
Let S = 〈S, A, cost, T, s0, S∗〉 be a state space.

Let s(0), ..., s(n) ∈ S be states and π1, ...πn ∈ A be actions such that s(0)
π1−→

s(1),, s(n−1)
πn−−→ s(n).

6

• π = 〈π1, ..., πn〉 is a path from s(0) to s(n)

• length of π : |π| = n

• cost of π: cost(π) =
∑n
i=1 cost(πi)

Definition 2.1.5 (Reachable, Solution, Optimal)
Let S = 〈S, A, cost, T, s0, S∗〉 be a state space.

• state s is reachable if a path from s0 to s exists

• paths from s ∈ S to some state s∗ ∈ S∗ are solutions for/from s

• solution for s0 are called solutions for S

• optimal solutions (for s) have minimal costs among all solutions (for s)

We will use these definitions as they stand for our formalism.

2.2 Numerical Values

With only the classical state-space definition it is not possible to describe an
RTS game as some variables in RTS games take on continuous values or can
take infinitely many different values. Although they are mostly bounded in one
or the other way, they still produce a infinite state space. One element which
is almost always a continuous value in modern RTS is the position, which is a
combination of two or even three floating point numbers - x and y coordinates
on the map (and z the hight), generally bounded by the map size but being
continuous still having a infinitely great domain.

To be able to handle such variables we have to use numerical values instead of
finite domains. Additionally we also need mathematical and logical operations
on these numbers.

We will use N to represent the natural numbers without zero. Then N0 :=
N∪{0}, N∞ := N∪{∞} and N∞0 := N∪{∞, 0}. Analogue we denote Z∞,−∞ :=
Z∪{∞,−∞} for the integer numbers and R∞,−∞ := R∪{∞,−∞} for the real
numbers. As usual N∞0 ∈ Z∞,−∞ ∈ R∞,−∞ and definitions over R∞,−∞ hold
over all other sets.

We use the relation operators <,≤,=,≥, >, 6= as usual. As for the infinity
values, we define ∞ > r for all r ∈ R.

We use the mathematical operators +,−, · as usual over the numbers. We
will also define the division / in a restricted way. Let a ∈ R, b ∈ R \ {0} then
a/b is defined as usual, b must not be 0,∞ or −∞. To ensure this, we will only
ever allow division by constant non zero finite numbers.

For the infinity value we define the operators as follows:
Let r ∈ R be a rational number and ∞ be infinity, then

• ∞+ r =∞ (therefore r −∞ = −∞)

• ∞− r =∞

7

• ∞ · r =∞ iff r 6= 0

• ∞ · r = 0 iff r = 0

• ∞/r =∞ iff r 6= 0

For a state space with numerical values, we also need an assignment of a
number to a variable. Let a be a variable with domain R∞,−∞ and b ∈ R∞,−∞
then we define a := b as the assignment of the value b to the variable a.

2.3 Time

Introducing time into a state-space seems quite easy, basically we can just add
a variable time and modify effects to also take some time if we see fitting. If
we allow numerical values we can represent any duration. This would result in
a state space Stimed = 〈S, A, cost, T, s0, S∗〉 with S ⊂ Vfinitedomain × Vnumerical
where time ∈ Vnumerical with time ∈ R. The time would advance through the
effects of actions ai ∈ A (time+ = xi) ∈ eff (ai) where xi ∈ R is the time the
action takes to be done.

However this naive approach is not very powerful. To see this let us consider
a scenario where Jimmy is either at home or in the city. We can represent this
with simple states Stimed = loc × time where dom(loc) = home, city and a
single operator aGoCity0 = 〈home, city ∧ (time+ = 30), 1〉. Let us also define
s0 = home, 0. So far this works fine. But while Jimmy is on the train he might
engage into other things like reading the newspaper. For this we now introduce
a new boolean variable read. But what about the action of reading? Jimmy
might read the newspaper at either location which would be trivial to represent,
but when we consider that he might also read it on the way to the city things get
more difficult. We could introduce two more actions aGoCity1 = 〈home∧¬read,
city ∧ (time+ = 30) ∧ read, 1〉 and a2 = 〈¬read, read, 0〉. Although this works
for this simple case it can explode very fast when also introducing calling of
up to 100 different people, looking at up to 100 pictures on the phone and
chatting with any combination of 3 neighbours on the train especially when he
could do many of these activities during his ride (100 × 100 × 7 × 2 = 140000
different aGoCity actions). Another problem arises in this context, let us say
Jimmy reads the newspaper where intensively and therefore needs 40 to read it.
The activity of reading the news paper is not finished when the action aGoCity,
which is shorter, is over. But this case also gives some hints towards a possible
solution. In the classical case an action is instantaneous, we apply it to a state
and receive a new state which is independent from the last action. But in a
temporal scenario most activities happen over a period of time and not just in
sequence, but also concurrently. It is therefore reasonable to include all on-going
activities in a state. We also need to consider multiple effects or conditions. On
our example, Jimmy can only start to read the newspaper if he has a newspaper.
He can only keep on reading it, when he takes the newspaper with him all the
time (locnewspaper = locJimmy). Additionally there might also be a condition

8

at the end of the action, maybe Jimmy becomes happy when he, after reading
the whole newspaper, understood everything.

We need a formalism that can describe preconditions at the beginning of the
action, conditions and effects for the duration of the action and also for the end
of it. We will therefore use a typical operator model for temporal numerical
planing, e.g. as used by Eyerich, Mattmüller and Röger [3].

Definition 2.3.1 (Temporal Operator)
A temporal operator is a 7-tupel:

oT = 〈d, prestart(oT),preinvar(oT),preend(oT),

effstart(oT), effinvar(oT), effend(oT), cost(oT)〉
(1)

with :

• prestart(oT),preinvar(oT),preend(oT) which can be all possible combina-
tions of predicate logical or numerical comparisons over all variables in a
state s ∈ S

• effstart(oT), effinvar(oT), effend(oT) which can be all possible assignments
to finite domain variables combined with all numerical operations and as-
signments on numerical variables.

• cost(oT) ∈ R the duration of the action.

One very important aspect of temporal actions is the meaning of their du-
ration. If an action terminates at 5 o’clock, the question is whether the end
effect (or condition) will be triggered (or checked) before reaching 5 o’clock or
when leaving it. If the operator o1 has the end condition preend(o1) = a and
the operator o2 has the start effect effstart(o2) = ¬a, the order in which ef-
fects are applied and conditions are checked can drastically change the state
space. One convention tackling this problem is called the “no moving target”-
rule introduced by Fox, Maria and Long, Derek [4]. This conventions introduces
restrictions on variables s.t. a variable can only ever be affected by one action
at a time and if it is affected, it may not be part of a precondition at the same
time.

Because we are building a model for RTS games and are only considering
the Build Order part of the game, we do not need to restrict ourself in the
way of the “no moving target”-rule. For Build Order search in the simplified
model by Churchill and Buro, we can define all temporal operators to terminate
right before the frame. In our model, we will use temporal operators implicitly
represented by tasks.

2.4 StarCraft Brood War

StarCraft (published in March, 1998) and its Expansion StarCraft Brood War
(published in November, 1998) are RTS games published by Blizzard Entertain-
ment which take place in a science fiction universe. It is a military simulation

9

where a player takes control over one of three different races: Terran (human-
ity), Protoss (highly developed and telepathic alien race) and Zerg (aggressive
insectoid lifeforms). The game became the biggest competitive RTS game until
its successor StarCraft 2 took over with its release in 2007.

We will introduce a few game elements from StarCraft. There are some
elements that are controlled by the player, those are separated into resources,
units, structures and upgrades. As mentioned in the introduction, we use the
term units denoting both structures and units . Also we refer to upgrades as
researches. The player can give orders to all their units. Units can perform
various tasks like moving, attacking or building new units. There are two types
of resources, minerals and vespine gas. For brevity, we will often use gas to
denote vespine gas. Each unit and upgrade requires a certain amount of those
two resources to be purchased. Upgrades are researched each by a unit and
units are build by other units.

In the competitive setting two player will player against each other on one
of a limited number of maps which are usually known beforehand. They start
with a small set of units and resources. Through the course of the game they
then try to defeat the other player by destroying all structures. Usually both
players will start by collecting resources and building more units. When they
feel that they have a combination of units which can defeat the other player,
they attack. We will not go into more details on combat or movement as we do
not consider those aspects in this thesis.

3 Churchill and Buro’s Approach

In this section, we recapitulate the approach by Churchill and Buro [2]. We
discuss the simplifications proposed by them for Build Order optimization, and
show their solution algorithm.

3.1 Simplifications on State Spaces for Build Order Opti-
mization in StarCraft

• Combat: Everything combat related (health, armour,attack) can be omit-
ted as the task does not include the consideration of such. In reality this
would not suffice for a good AI. However it is not part of this assignment
to construct a good AI for StarCraft, but to build a component which is
capable of finding Build Orders which reach a set goal state in as little
frames as possible.

• Cancel: In StarCraft every construction can be cancelled and a portion of
the price is returned. For humans this gives the option to cancel something
that was not planned to be done, of course an AI will not need this. But
besides errors this can play a vital role in high level strategies as this is
a game with incomplete information. Letting the opposing player see a
building in construction can suggest a strategy while the actual plan is
hidden somewhere else or only started after vision is denied again.

10

However we will ignore it here as every cancel always loses some resources
and we are only trying to reduce the make span of our Build Order an not
to foul the enemy.

This decision will cost us just a small bit of optimality, there is at least
one possible way of using the cancel option which could reduce make span.
By starting a building with Zerg , we are freeing up 1 supply as a worker
unit is morphed into the building. This will allow to build a new unit
with that 1 Supply we now have. Cancelling the building afterwards will
give us back the drone, thereby resulting in a trade of a small amount
of minerals(+gas) against 1 supply. We are then in a state where we
actually use more supply than we have. This could of course be done as
often as we have drones. A very unrealistic case would be if we had all 200
maximum supply filled with drones, 200 Hatcheries (Zerg equivalent to
Command Center - produces drones) and 350000 minerals, we could start
the construction of 200 new hatcheries which would take 1800 frames to
finish and then build 5 times 200 new Drones (which take 300 frames plus a
few more to get to a position where they can build a Hatchery) which each
would start the construction of a new Hatchery again until the last wave of
Drones is finished and then cancel all Hatcheries in construction, resulting
in 1000 Drones. A goal which we could not reach in our abstraction. But
such a goal is not realistic and in an actual game the usability of this
mechanic is not very strong.

• Position: We will ignore the placement of buildings, as it introduces a giant
variety to the search space with very little differences between the state
which build the structures but moved by a few tiles. It is quite reasonable
to assume that there is enough place for any building somewhere near the
mineral line where our workers are collecting minerals. A bad player might
accidentally build in a way that his SCV s cannot get to a free position any
more or that there is literally no space left on the map where a big building
like a Command Center would fit in. However as we are construction a
plan, we will know what buildings we are planning to build and therefore
it will be relatively easy to place our buildings in a way that avoids this
problem.

Of course this will lose us some optimality, as building the structures in
a way so that the SCV s take as little time as possible travelling would
reduce the make span. Also it is often useful to let a SCV build several
buildings in sequence instead of using two SCV ’s to build them in parallel,
for example building 10 Supply Depots, in most realistic scenario a player
will not be able to fill 50 supply in the time which is needed to construct
a Supply Depot , so having 5 SCV ’s building each two means that we have
less time spent travelling.

Building placement can also be decisive in combat by blocking melee units
from reaching range units. There are even some strategies where a building
is deliberately build near the enemy base, so that the combat units reach

11

the enemy quicker after they finished producing.

Additionally the resource gathering has also be replaced by a average
per worker which is not performing another task. This also removes the
option of stopping gathering form the search space, as idle time will always
produce a alternative Build Order which is likely worse, but never better.

There is often room of improving the AI behaviour in resource gathering,
as only 1 worker can gather from any resource field at a time and the
distance between fields and the drop-off-place varies. Instead of trying to
improve this, we assume an average constant income rate. For the Build
Order optimization we now simply multiply our workers who have no other
orders with the average income.

When considering both the building placement and the resource collection
we would be able to achieve a shorter make span. But ignoring them
drastically reduces the state space. Let us examine this at the very simple
goal : build 1 Supply Depot. For simplicity let us assume we only have 20
possible location for building it. We start with 4 SCV s and 50 minerals,
so we have to collect 50 mineralsmore which requires 7 mining trips from
a SCV. We will not consider any action that would not help the goal, so
let us say we send all SCV s to mining (4 actions) and 3 of them back
again when they are finished (3), while the last SCV goes to any of those
20 locations that he can reach in the time the other SCV s need for their
trip (let us assume that are 10, therefore we have 10 more actions). As
soon as the Supply Depot finishes building we reached our goal with 8
actions, there are 10 equally good solution paths and 10 with have the
same amount of actions but take longer. Compared to the search in the
abstraction: build a Supply Depot is 1 action, no branching. Constructing
2 Command Centers takes 800 minerals. So we have 102 actions for a
already simplified version of StarCraft versus the 2 actions in Churchill
and Buro’s model. The more precise solution might have a make span
which is some frames or even seconds faster, however for all but trivial
goals it will very likely take longer to find the optimal solution than the
make span of the plan and therefore we cannot afford to calculate this
online.Given the these simplifications the position of all elements is no
longer of any importance for the Build Order.

• Resources: A final simplification introduced by Churchill and Buro is to
ignore the limitation of resources. As this tool does not consider combat,
it is reasonable to assume that the Build Order should terminate before
we enter combat and this is generally before the resources run dry. The
speed-up here is of course significant as resource collection does not require
any actions.

However this is a dangerous simplification which even in StarCraft Brood
War might not hold, but would not be tolerable in StarCraft 2 Legacy of
the Void where resource sources are consumed faster, not even speaking
of apply the concept to RTS games in general. There is often a restriction

12

on how many worker can collect from one resource source in an RTS, in
StarCraft it is one worker per source, effectively this means that than 4 or
more SCV s on a mineral patch will not give any more income than with
only 3. Already those 3 collect a little slower each than a single one does.
When there are 8 mineral patches in a base, only 24 worker do actually
increase income, all others would have to go to another base to produce
more income.

With these abstraction we can reduce the state space and therefore the
computational effort significantly, however we can not tell how near we are to
the optimum. In this reduced state space we will be able to check a lot over
very different paths, therefore our solution will have a certain quality, being at
least close to a local minima which is better than most solutions. Considering
that we have limited time for our search this is one of the best ways to take on
the challenge.

3.2 The Fast Forward Mechanism

Instead of using a time increment action (only advances time) which potentially
has to be chosen thousands of times for a single path, just jump forward in time
exactly so far that the preconditions of an action are fulfilled. The preconditions
of the (fast forward + temporal action) action are, that the preconditions would
become available eventually when the time increment action would exist and be
chosen continuously.

3.3 Search Algorithm

Churchill and Buro motivated a DFS algorithm because it could be terminated
at any point and return the best solution found so far. The only weakness
here would be that the algorithm explores a path which will not reach a goal
state. To avoid this a upper bound is used. This bound is the make span of
a trivial plan at the beginning and will be updated when a faster solution is
found, thereby always containing the make span of the best currently known
solution. The following Algorithm comes from Churchill and Buro.

The algorithm is bounded in time by t. It is also bounded in make span by b.
Every time a solution is found, it is compared against the current best solution
and the one with the shorter make span is kept. The bound will be updated
to the shortest make span. The bound is compared against the path cost so
far plus a heuristic value. The heuristic gives a naive estimate for resources or
units required to reach the goal. For more details about the heuristic refer to
the paper of Churchill and Buro [2] page 17.

4 State Space Formalization

In this section, we construct a state space for StarCraft using the formalisms of
Section 3. But we will not represent the whole complexity of the game. Instead

13

Algorithm 1 Depth First Search Branch & Bound

1: procedure DFBB(S)
2: if TimeElapsed ≥ t then return
3: end if
4: if S satisfies G then
5: b← min(b, St)
6: best solution ← solutionPath(S)
7: else
8: while s has more children do
9: S′ ← S.nextChild

10: S′.parent← S
11: h← eval(S)
12: if S′t + h < b then
13: DFBB(S′)
14: end if
15: end while
16: end if
17: end procedure

we will use a set of simplifications proposed by Churchill and Buro [2].

4.1 States

We are now ready to formally define the state space for Build Order search. To
formally define states, we first need some more definitions.

Definition 4.1.1 (UnitType)
A UnitType is a label that represents the type for a unit in the game. We
distinguish the following UnitType:

• Terran SCV (representing a worker unit called SCV, creates structures
and collects resources)

• Terran Command Center (representing a structure called Command Cen-
ter, can create SCV’s)

• Terran Refinery (representing a structure called Refinery, used for gath-
ering gas)

• Terran Engineering Bay (representing a structure called Engineering Bay,
can research Researches)

• Terran Supply Depot (representing a structure called Supply Depot, pro-
duces supply)

• Terran Comsat Station (representing a structure called Comsat Station,
is build onto an Command Center)

14

The set of all UnitType labels is denoted as UnitTypes. We denote the
number of units, i.e. |UnitTypes|, as cU .

We remark that in common RTS games, there are more types of units than
mentioned in the above definition. We mention the types in Def. 4.1.1 explicitly
because they will be needed later for our further definitions and examples.

Besides units there are also upgrades which may be part of a goal. We will
refer to upgrades as researches. This serves to better distinguish them from
units.

Definition 4.1.2 (ResearchType)
A ResearchType is a label that represents the type for a research in the game.
We distinguish the following ResearchType:

• Terran Infantry Weapons 1 (Research which increases the damage of in-
fantry units)

• Terran Infantry Armor 1 (Research which increases the armor of infantry
units)

The set of all ResearchType labels is denoted as ResearchTypes. We denote
the number of Research label, i.e., |ResearchTypes|, as cR.

As with the UnitTypelabels, there are typically more ResearchTypelabels
than we mention here. But again, we focus on the relevant ones needed for the
thesis.

In the following we denote the special labels for “doing nothing” with IDLE ,
and for “gathering gas” with GasGathering.

Definition 4.1.3 (Task)
We define a Task as a 2-tuple t := (w, d) where w ∈ UnitTypes∪ResearchTypes∪
{IDLE ,GasGathering} and d ∈ N∞0 . The set of all possible Task tuples is
denoted as Tasks.

The first element (w) represents the job that needs to be accomplished.
For most UnitType labels, this is either producing a UnitType, or researching
a ResearchType, or being IDLE . The exception is the worker (Terran SCV),
which can also gather gas. Additionally, by slightly abusing notation and for
brevity, a worker who is IDLE represents the worker having the job of Gas-
Gathering. The second element of a Task tells how many frames are needed
until the job is finished. In this context, the infinity value indicates that the
task will carry on forever or until changed.

Based on these definitions, we can now define our representation of units.
In StarCraft there are some units, called Addon, which are build onto an-

other unit. The two units become partner and can then sometimes produce
additional UnitTypeẆe represent this concept by a UnitType label for each
unit. We denote a label for ”‘having no partner”’ with NOPARTNER.

15

Definition 4.1.4 (Unit)
We define a Unit as a 5-tuple u := (a, b, t, e, n) where a ∈ UnitTypes, b ∈
UnitTypes ∪ {NOPARTNER}, t ∈ Tasks, e ∈ N∞0 , n ∈ N0.

We also denote the set of all Unit tuples by Units.

For a Unit u, the first entry (a) represents its type. The second entry
represents the UnitTypeof u’s partner unit, or specifies that no such partner
exists. The third entry represents the job that the unit is currently assigned
to. The fourth entry is a natural number representing a reservation. After
e frames, the unit will be assigned to a predefined Task (In our representation
this is only used for gas gathering). However before that it, besides being IDLE,
may perform any Task that will terminate before or exactly when e reaches zero.
Here∞ represents that u has no such restriction from this element. The natural
number n represents how many instances exist at the same time. Within the
simplification those instances do not need to be differentiated. Therefore we
can just count them.

As a small example, consider Unit u with

u = (Terran SCV ,NOPARTNER, (GasGathering ,∞),∞, 2).

This example denotes that there are two Unit instances of type Terran SCV
which have no partner assigned, are gathering gas infinitely and both Unit
instances have no reservation.

Definition 4.1.5 (Research)
We define a Research as a 2-tuple r := (v, b) where v ∈ ResearchTypes, b ∈
{true, false}. We denote the set of all Research tuples as Researches.

Furthermore we define the set Res := {((v1, b1), ..., (vk, bk)) |
vi ∈ ReserachTypes, bi ∈ {true, false}, vi 6= vj for all i 6= j, k = |ReserachTypes|}

The Boolean value represents, whether the Research has been researched
(true) or not (false). The Res definition refers to the set that contains tuples
consisting of pairs for each ResearchType and Boolean value. Each Research
exists at every point in the game, but it is only active after it has been re-
searched. For brevity, we will shortly represent a tuple in Res by the set of
ResearchTypes which are associated with a corresponding true value. This is
enough information to distinguish the members of Res.

Based on these notions, we define a state as follows.

Definition 4.1.6 (State)
A State is a 5-tuple s := (f , U,R,m, g) where f ∈ N0, U ⊆ Units, R ∈ Res,m,
g ∈ R

Let States denote the set of all State tuples.

The element f represents in which frame the game currently is. The element
U represents the units which exist in the current frame. The element R denotes
which Researches are active. The element m represents the currently available
minerals. Analogue g represents the currently available gas.

16

As a small example consider the State:

i0 := (0, {(Terran SCV ,NOPARTNER, (IDLE ,∞),∞, 4),

(Terran Command Center ,NOPARTNER, (IDLE ,∞),∞, 1), }
, {}, 50.0, 0.0)

The State i0 represents the situation where the game has just begun (f = 0).
There exist two types of units, one Command Center which is IDLE and four
SCV s which are gathering minerals. All the Researches are inactive. Finally
there are 50.0 minerals and 0.0 gas available.

The supply is a limiting aspect in unit production. To be able to represent
this aspect in our model, we introduce a few formulas.

Definition 4.1.7 (Supply)
A SupplyConsumption is an integer representing how much supply a Unit of
the respective UnitType consumes or produces. We have the following Supply-
Consumption:

• cTerran SCV := −2

• cTerran Command Center := 20

• cTerran Refinery := 0

• cTerran Engineering Bay := 0

• cTerran Supply Depot := 16

• cTerran Comsat Station := 0

Let u = (a, b, t, e, n) be a Unit ca be a SupplyConsumption.
We define an injective function Supply : UnitTypes → Z that maps Unit-

Types to corresponding SupplyConsumption.
Using this we can define another function SupplyUnit : Units → Z for a

Unit u = (a, b, t, e, n) as SupplyUnit(u) := Supply(a).
Let s = (f , U,R,m, g) be a State.
We define a third function on States as SupplyState : States → Z as

SupplyState(s) :=
∑
u∈U SupplyUnit(u)

We have for example the SupplyConsumption cTerran SCV = −2, this means
a Terran SCV uses up 2 supply. Meanwhile a Terran Supply Depot produces 16
supply: cTerran Supply Depot = 16. To be able to produce a new Unit instance,
the total produced supply must be bigger or equal to the consumed supply
plus the supply the UnitType which we want to construct would consume. In
StarCraft the SupplyConsumption is actually only half of that which we use here.
The multiplication with 2 has been proposed in the BWAPI [6]. The reason is
that there is one unit in StarCraft Brood War which requires 0.5 Supply. The
doubling allows the use of an integer instead of a floating point number.

We also need to define which UnitTypecan be partners with each other.

17

Definition 4.1.8 (Partner)
A PartnerRelation is a set p := {a, b} where a, b ∈ UnitTypes representing which
UnitType a can have which UnitType b as partner and vice versa. We denote
the set of PartnerRelation sets as Partners.

In the definition that we consider here, Partners boils down to the simple set
Partners := {{Terran Command Center ,Terran Comsat Station}}. However
for general RTS games this set could contain any number of entries.

We define a function partner : UnitTypes × UnitTypes → {true, false} as
follows:

partner(a, b) :=

{
true, if {a, b} ∈ Partners

false, otherwise

A UnitType can only have another UnitType as partner, if they both are
contained in the same PartnerRelation.

4.2 Fast Forward

In the following we will formalize the a Fast Forward mechanism. For this pur-
pose we first define the components of the State after applying the Fast Forward
mechanism in relation to the State s0 before the Fast Forward mechanism. In
the following definitions, we assume s0 := (f0, U0, R0,m0, g0) to be a State and
tff ∈ N0 to be a natural number (including zero) which indicates the time by
which s is fast forwarded.

We split the formal definition of the Fast Forward mechanism into several
(smaller) definitions, and provide the overall definition of Fast Forward mecha-
nism at the end of the section. We start with the simple definition of advancing
time.

Definition 4.2.1 (Fast Forward Time)
Let s0 := (f0, U0, R0,m0, g0) be a State and tff ∈ N0 be a natural number in-
cluding zero.

The Fast Forward Time mechanism FF time advances the time of s0 by tff
frames:

FF time(s0, tff) := f0 + tff

With FF time we update the time. What happens during this time jump is
part of the other Fast Forward mechanisms.

As outlined in the section on simplifications, the average income per worker
and frame for both minerals cM/(W∗F) and gas cG/(W∗F) is set to a fixed value.
We set cM/(W∗F) := 0.045 and cG/(W∗F) := 0.07 (values empirically determined
by Churchill and Buro [2]). For the Terran race, the only UnitType that classifies
as worker is Terran SCV .

We will now use these average incomes, to define the resource income for our
model.

18

Definition 4.2.2 (Fast Forward Minerals)
Let s0 := (f0, U0, R0,m0, g0) be a State and tff ∈ N0 be a natural number in-
cluding zero.

Let USCV IDLE ⊆ U0 be the set of Unit tuples with USCV IDLE := {(a, b,
(w, d), e, n) | (a = Terran SCV , w = IDLE , d = ∞, e > tff }. Let (a1, b1(w1,
d1), e1, n1), ..., (al, bl(wl, dl), el, nl) where l = |USCV IDLE | be the Unit tuples in
USCV IDLE . Then let

nSCV IDLE :=

|USCV IDLE |∑
i=1

(ni)

be the total number of Unit instances in USCV IDLE .
Let USCV possible ⊆ U0 \ USCV IDLE be the set of Unit tuples with

USCV possible := {(a, b, (w, d), e, n) | (a = Terran SCV or w = Terran SCV)
and e > tff }.Let (a1, b1(w1, d1), e1, n1), ..., (al, bl(wl, dl), el, nl) where
l = |USCV possible | be the Unit tuples in USCV possible . Then let

mSCV possible := cM/(F∗W) ·
|USCV possible |∑

i=1

(ni · (tff − di))

be the total amount of minerals gathered by all Unit instances in USCV possible

during the time progression by tff .
Let USCV reservation ⊆ U0 \ USCV IDLE be the set of Unit tuples with

USCV reservation := {(a, b, (w, d), e, n) | (a = Terran SCV or w = Terran SCV)
and e ≤ tff }.Let (a1, b1(w1, d1), e1, n1), ..., (al, bl(wl, dl), el, nl) where
l = |USCV reservation | be the Unit tuples in USCV reservation . Then let

mSCV reservation :=

|USCV reservation |∑
i=1

(ni · (tff − di − ei))

be the total amount of minerals gathered by all Unit instances in USCV reservation

during the time progression by tff .

The Fast Forward Mineral mechanism FF mineral calculates the total increase
of minerals during the next tff frames form the current state (s0): FF mineral(s0,
tff) := m+ cM/(F∗W) · (nSCV IDLE · tff) +mSCV possible +mSCV reservation .

The amount of minerals in the State after applying the Fast Forward mech-
anism is equal to the sum of the current amount plus the average income per
frame times the sum of all time a Unit instances of UnitType Terran SCV will
spend IDLE during tff .

Definition 4.2.3 (Fast Forward Gas)
Let s0 := (f0, U0, R0,m0, g0) be a State and tff ∈ N0 be a natural number in-
cluding zero.

Let USCV GG ⊆ U0 be the set of Unit tuples with USCV GG := {(a, b, (w, d),
e, n) | a = Terran SCV , w = GasGathering, d = ∞}. Let (a1, b1(w1, d1), e1,
n1), ..., (al, bl(wl, dl), el, nl) where l = |USCV GG | be the Unit tuples in USCV GG .

19

Then let

nSCV GG :=

|USCV GG |∑
i=1

ni

be the total number of Unit instances in USCV GG .
Let USCV reservation ⊆ U0 \ USCV GG be the set of Unit tuples with

USCV reservation := {(a, b, (w, d), e, n) | a = Terran SCV , e ≤ tff }.Let (a1,
b1(w1, d1), e1, n1), ..., (al, bl(wl, dl), el, nl) where l = |USCV reservation | be the Unit
tuples in USCV reservation . Then let

gSCV reservation := cG/(F∗W) ·
|USCV possible |∑

i=1

(ni · (tff − ei))

be the total amount of gasgathered by all Unit instances in USCV reservation

during tff .
The Fast Forward Gas mechanism FF gas calculates the total increase of

gasduring the next tff frames form the current State (s0): FF gas(s0, tff) :=
g0 + cG/(F∗W) · (nSCV GG ∗ tff) + gSCV reservation .

The amount of gas in the state after applying the Fast Forward Gas mech-
anism is equal to the sum of the current amount plus the average income per
frame times the sum of all time a Unit instances will spend GasGathering during
tff .

Definition 4.2.4 (Fast Forward Research)
Let s0 := (f0, U0, R0,m0, g0) be a state and tff ∈ N0 be a natural number includ-
ing zero. Therefore R0 denotes the tuple ((v1, r1), ..., (vl, rl)) with l = |R0|.

Let Rff ∈ Res be the tuple of Researches (viff, biff) with i = 1, ..., l. Therefore
|Rff| = |R0| and vi = viff for all i = 1, ..., l.

For all r = (vi, ri) ∈ R0 the corresponding Research (viff, biff) ∈ Rff is define
as follows:

• If there exits a Unit tuple ((a, b, (w, d), e, n) ∈ U where w = vi and d ≤
tff) then biff := true

• If bi = true then biff := true

• Else biff := false

The Fast Forward Research mechanism FF research activates the ReserachType
which are researched within the next tff frames form the current state (s0):

FF research(s0, tff) := Rff.

The Research which is build with the Fast Forward Research mechanism
is equal to R0 except, for every Task in (wi, di) ∈ U0 with di ≤ tff , where
wi ∈ Researches the Research tuple is set to be active (bi = true).

20

Definition 4.2.5 (Fast Forward Unit)
Let s0 := (f0, U0, R0,m0, g0) be a State and tff ∈ N0 be a natural number in-
cluding zero.

For all Unit tuplesu = (ai, bi, (wi, di), ei, ni) ∈ U0, the corresponding Fast
Forward Unit set Uff ⊂ Units is defined as follows:

• If di > tff , then Uff := {(ai, bi, (wi, di − tff), ei, ni)}

• If di < tff , w ∈ ResearchTypes, e > tff , then Uff := {(ai, bi, (IDLE ,∞),
ei − tff , ni)}

• If di < tff , w ∈ ResearchTypes, e ≤ tff , then Uff := {(ai, bi, (GasGathering,
∞),∞, ni)}

• If di < tff , w ∈ UnitTypes, e > tff , partner(ai, wi) = true, then Uff :=
{(ai, bi, (IDLE ,∞), ei − tff , ni), (wi,NOPARTNER, (IDLE ,∞),∞, ni)}

• If di < tff , w ∈ UnitTypes, e ≤ tff , partner(ai, wi) = false, then Uff :=
{(ai, bi, (GasGathering,∞),∞, ni), (wi,NOPARTNER, (IDLE ,∞),∞, ni)}

• If di < tff , w ∈ UnitTypes, e > tff , partner(ai, wi) = true, then Uff :=
{(ai, wi, (IDLE ,∞), ei − tff , ni), (wi, ai, (IDLE ,∞),∞, ni)}

• If di < tff , w ∈ UnitTypes, e ≤ tff , partner(ai, wi) = false, then Uff :=
{(ai, wi, (GasGathering,∞),∞, ni), (wi, ai, (IDLE ,∞),∞, ni)}

The Fast Forward Units mechanism FF units calculates the changes on the set of
Unit tuples during the next tff frames form the current state (s0): FF allunitsets(s0,
tff) :=

⋃
u∈U0

Uff

The final set FF units is then defined as the set that contains all units with
the corresponding counters summed up, i.e.

FF units := {(a, b, t, e, n) | n =

|FFallunitsets |∑
i=1

ni, (a, b, t, e, ni) ∈ FF allunitsets

Therefore |FF units | ≥ |U0|.
The set of Unit tuples after applying Fast Forward Unit mechanism is equal

to the set before (U0) except, that all task and reservations have progressed
by tff . This progression includes units becoming IDLE when they finished
their task and starting gas gathering when their reservation is up. Also new
Unit instances are added for finished Tasks with w ∈ UnitTypes. If the creating
UnitType is in a PartnerRelation with the newly created, they become partners.

Having define all our helper functions we can now define the complete Fast
Forward mechansim.

Definition 4.2.6 (Fast Forward Function)
Let s0 := (f0, U0, R0,m0, g0) be a State and tff ∈ N0 be a natural number in-
cluding zero. We define a function ff : States × N0 → States as ff (s, tff) =

s′ where s′ = (FF time(s0, tff),FF units(s0, tff),FF research(s0, tff),FF mineral(s0,
tff),FF gas(s0, tff))

21

The function ff takes a State s and produces a State s′ which is the result
of the time progression by tff .

Churchill and Buro used another name for this function. They called it
S′ := Sim(S, δ) where S, S′ are states and δ ∈ N0 is the time.

4.3 Transitions

We will use Quantified Requirement to denote how many Unit tuples of the
specified form (a, b) we describe.

Definition 4.3.1 (Quantified Requirement)
We define a Quantified Requirement as the 3-tuple q = (a, b, n) where a, b ∈
UnitTypes and n ∈ N.

The next definition corresponds to the action declaration Churchill and Buro
defined. This however is not an action or operator in our transition system.
Therefore we call it Order.

Definition 4.3.2 (Order)
We define LTech = (QTech , RTech) , LConsume = (mConsume , gConsume , QConsume)
and vProducing ∈ UnitTypes ∪ReserachTypes , where QBorrow , QTech , QConsume ,
QReservation , QProducing are finite sets of Quantified Requirementand RTech is
a finite set of ResearchTypes.

With those ingredients we define an Order o as a 6-tuple:
o = (LTech , QBorrow , LConsume ,Duration, QReservation , vProducing)
where Duration ∈ N0, m, g ∈ R and m, g ≥ 0.
The set containing all defined Orders is denoted as Orders.

The informations necessary to define an Order tuple can be found in the
BWAPI. All the information on ResearchTypes and UnitTypes that is needed
to create all Order tuples for StarCraft Brood War can be found in the Names-
pace References of BWAPI::UnitTypes and BWAPI::UpgradeTypes (https://
bwapi.github.io/namespace_b_w_a_p_i_1_1_unit_types.html respectively
https://bwapi.github.io/namespace_b_w_a_p_i_1_1_upgrade_types.html

is the direct link to the Namespace References).
We define the following orders for our definition: oTerran Command Center ,

oTerran Refinery , oTerran Supply Depot , oTerran Engineering Bay , oTerran SCV ,
oTerran Comsat Station , oTerran Infantry Weapons 11, oTerran Infantry Armor 11. We ex-
plain the definition of oTerran Command Center in detail, the other orders are de-
fined analogues in the appendix A.

oTerran Command Center = (({(Terran SCV ,NOPARTNER, 1)}, ∅),
{(Terran SCV ,NOPARTNER, 1)}, (400, 0, ∅), 1896, ∅,

Terran Command Center)

The first entry represents, that the order oTerran Command Center can only be
issued when at least one unit of type Terran SCV exits and that Research is

22

https://bwapi.github.io/namespace_b_w_a_p_i_1_1_unit_types.html
https://bwapi.github.io/namespace_b_w_a_p_i_1_1_unit_types.html
https://bwapi.github.io/namespace_b_w_a_p_i_1_1_upgrade_types.html

required to be active. The second entry represents how many Unit instances of
which UnitType will be borrowed to perform the Order. In this case that would
also be one SCV. The third entry is a tuple representing the mineral cost, gas
cost and unit instances which will be consumed or “paid” when issuing the
Order. The fourth entry represents the how many frames the order will need
to finish. The fifth entry represents which and how many Unit instances will
be marked as reserved when issuing the Order. The fifth entry represents the
UnitType (or ResearchType) that will be build (or researched).

We can denote the set of all Order tuples Orders as follows: Orders :=
{oTerran Command Center , oTerran Refinery , oTerran Supply Depot ,
oTerran Engineering Bay , oTerran SCV , oTerran Comsat Station ,
oTerran Infantry Weapons 11, oTerran Infantry Armor 11}.

For the following definitions let s = (f , U,R,m, g) be a state and o = (LTech ,
QBorrow , LConsume ,Duration, QReservation , vProducing) an order.

Definition 4.3.3 (Tech Precondition)
Let s0 := (f0, U0, R0,m0, g0) be a State. Let o = (LTech , QBorrow , LConsume ,
Duration, QReservation , vProducing) be an order. Then we have LTech = (QTech ,
RTech) with the finite set of quantified requirements QTech = {q1, ..., qk} where
k = |QTech | and the finite set of researches RTech .

We define a function preTech : States ×Orders → {true, false} as preTech(s,
o).

preTech(s, o) evaluates to true iff nTech ≤
∑

(a,b,(w,d),e,n)∈U0

a=aTech ,b=bTech

n for all qi =

(aTech , bTech , nTech) and b = true for all (v, b) ∈ R0 where v ∈ RTech .

The functions preBorrow : States×Orders → {true, false}, preSupply : States×
Orders → {true, false}, preConsume : States × Orders → {true, false} and
preReservation : States ×Orders → {true, false} are defined analogue to preTech .

Definition 4.3.4 (Precondition)
We define a function pre : States×Orders → {true, false} as pre(s, o). pre(s, o)
evaluates to true iff. preTech(s, o) evaluates to true and preBorrow (s, o) evaluates
to true and preSupply(s, o) evaluates to true and preConsume(s, o) evaluates to
true and preReservation(s, o) evaluates to true.

An Order can only be issued when all preconditions are met.

Definition 4.3.5 (Applicability)
We define applicability as follows: o is applicable in s iff ∃c ∈ N0 s.t. pre(ff(s,
c), o) evaluates to true

We use applicability of Orders to represent whether the order can be issued
form the current state, without issuing any other Order.

Definition 4.3.6 (Earliest Time Function: When)
Let o be applicable in s. Let P be a set of time points where the precondition is
satisfied: P = {t | pre(ff (s, t), o) evaluates to true}.

We define a function When : States ×Orders → N0 as

23

When(s, o) := ti | ti ∈ P, (ti ≤ tj)∀tj ∈ P

When is not defined on (s, o) where o is not applicable in s.

Whenever there is one time point, there are infinity many s.t. o is applicable
in s. Churchill and Buroproposed the idea of only ever considering the earliest
time point, as waiting cannot reduce the overall make span.

Definition 4.3.7 (Consume)
We remind that LConsume = (mConsume , gConsume , QConsume).

We define the intermediate results m′, g′ ∈ R and U ′ ∈ Units as follows:
m′ := m−mConsume

g′ := g − gConsume

U ′ := U \ {(a, b, t, e, n)} ∪ {(a, b, t, e, n− nConsume)} for all (a, b, t, e, n) ∈ U
where (a, b, nConsume) ∈ QConsume

We define a function Consume : States ×Orders → State as
Consume(State,Order) := (f , U ′, R,m′, g′) for an Order o which is applica-

ble in the State s.

The function Consume reduces resources and unit instances in a state by
the amount given by the order o. Intuitively, this is paying the price for the
order.

Definition 4.3.8 (Borrow)
We remind that LProducing = (qProducing , rProducing) with qProducing = (aProducing ,
bProducing , nProducing).

We define the intermediate result U ′ ∈ Units as follows:
U ′ := U \ {(a, b, t0, e, n0), (a, b, t1, e, n1)} ∪ {(a, b, t0, e, n0 − nBorrow), (a, b,

t1, e, n1 + nBorrow)} for all (a, b, t, e, n) ∈ U where (a, b, nBorrow) ∈ QBorrow ,
t0 = (IDLE ,∞), t1 = (aProducing ,Duration) and e0 > Duration

We define a function Borrow : (State,Order)→ State as
Borrow(State,Order) := (f , U ′, R,m, g) for an Order o which is applicable

in the State s.

The Borrow function calculates the set of units where the order has been
issued. Note that the number of unit instances will not be changed by this
function.

Definition 4.3.9 (Reservation)
We define the intermediate result U ′ ∈ Units as follows:

U ′ := U \ {(a, b, t, e0, n0), (a, b, t, e1, n1)} ∪ {(a, b, t, e0, n0 − nReservation), (a,
b, t, e1, n1 + nReservation)} for all (a, b, t, e, n) ∈ U where (a, b, nReservation) ∈
QReservation , e0 =∞, e1 = Duration and t = (w, d) with d < Duration.

We define a function Reservation : (State,Order)→ State as
Reservation(State,Order) := (f , U ′, R,m, g) for an Order o which is appli-

cable in the State s.

24

We use the Reservation function, to mark units. These marked units will be
assign to GasGatheringwhen the Refinery, which starts construction with the
same order, is finished.

Definition 4.3.10 (Action)
An Action is characterized by an Order o and an number t ∈ N0. An Action a
is a 2-tuple a := (o, t)

The set of all Actions is denoted as Actions := Orders × N0.

For every Operator there exist infinity many Actions. When talking about
the Build Order we are not really interested in which Action has been chosen.
We want to know the Order that characterized each action. Therefore, when
talking about Build Orders, paths or Actions, we can use the UnitType the
Order of the Actions produces instead of the Action.

Definition 4.3.11 (Transition)
Let s, s′ each be a State and a = (o, t) an Action.

A transition s
a−→ s′ exists iff. o is applicable in s.

If o is applicable in s, then s′ := Reservation(Borrow(Consume(ff(s, t),
o), o), o)

A transition can but doesn’t have to change the framecounter (if resources,tech,
etc are currently available, up to unlimited actions can be performed within the
same frame - although in reality only every a few). If it does, all Tasks are
advanced in time accordingly. Part of each transition is, to calculate the com-
pletion of Tasks and the resulting changes of the state.

4.4 Entry and Solution

The final part of our model is the definition of cost, initial states and goals.

Definition 4.4.1 (Cost)
The cost of an Action a = (o, t) is defined as cost(a) := t.

We are searching for the a solution which minimizes the make span. The
cost of an action is then the time by which the action advanced the time.

The search for Build Orders is usually started in the state the game is cur-
rently in, whichever that might be. As a game of StarCraft Brood War usually
starts in the same state (i0), we will define it as the default initial state.

Definition 4.4.2 (Initial State)
Any state s can be chosen as initial state.

We define the default initial state

i0 = (0, {(Terran SCV , ∅, (IDLE ,∞), 4),

(Terran Command Center , ∅, (IDLE ,∞), 1)}
, {}, 50.0, 0.0)

25

We have reached a goal state, if in the State at least the Researches contained
in the goal are active and the State contains at least the number of Unit instances
the goal requires as well as at least the amount of resources in the goal.

Definition 4.4.3 (Goal)
We define a Goal G as the 4-tuple G := (QG , RG ,mG , gG) where QG is a
set of Quantified Requirement tuples, RG a set of ReserachType labels and
mG , gG ∈ R.

We define the set of all Goal tuples as Goals.
Furthermore we define a function fulfil : States ×Goals → {true, false} as

fulfil(s,G) := ((nG ≤
∑

u:=(a,b,(w,d),e,n),u∈U

n | a = aG , b = bG)∀q ∈ QG)∧

((b = true | (v, b) ∈ R, v = r)∀rinRG) ∧ (m ≥ mG) ∧ (g ≥ gG)

A state s can directly reach a Goal G iff there exists a c ∈ N0 where
fulfil(ff (s, c), G) evaluates to true.

A state s is a goal state iff fulfil(s,G) evaluates to true.

The make span of the resulting Build Order is then the frame count of the
found goal state.

As example consider the Goal :

G0 = ({(Terran SCV , ∅, 4), (Terran Engineering Bay , ∅, 1)},
{Terran Infantry Weapons 1}, 0.0, 0.0)

The Goal G0 requires four SCV’s, one Engineering Bay to exist and the Research
with ResearchType Terran Infantry Weapons 1 to be active. As both minerals
and gas cannot be negative, the requirements on them are trivially fulfilled for
the Goal G0.

Definition 4.4.4 (Finishing Step)
Let G be a goal. Let s be a state who can directly reach G.

Let P be a set of time points where the goal is fulfilled: P = {t | fulfil(ff (s,
t), o) evaluates to true}

We define an action aFinishingStep with the order oFinishingStep := (G, ∅, (0, 0,
∅), 0, ∅, (∅, ∅)) and the time tFinishingStep := ti ∈ P where ti ≤ tj for all tj ∈ P
.

The action Finishing Step is applicable iff. s can directly reach the goal G.
The functions Consume, Borrow and Reservation will return the same state.
Therefore applying Finishing Step can also be described as s′ = ff (s,When(s,
a)). Every Build Order that reaches the goal must include this action. However
it just represents waiting until the orders are finished. Therefore when writing
down a Build Order we will not include it.

The representation described by Churchill and Burois slightly different but
of similar power. Instead of characterizing units as actors which have tasks, he

26

declares them as resources, an approach which was motivated by Chan et al.
[1]. While their approach is further away from the actual game, it allows easier
modelling in PDDL. Either representation can be linearly transformed into the
other and is equally powerful.

The model shown contains a representative subset of the model for the full
Terran race. For the other two races (Zerg and Protoss), the model is analogues.

4.5 Example

This is the state a game of StarCraft Brood War normally starts:

s0 = (0, {(Terran SCV , ∅, (IDLE ,∞),∞, 4),

(Terran Command Center , ∅, (IDLE ,∞),∞, 1)}
, {}, 50.0, 0.0)

One possible action is starting the construction of a Engineering Bay. For
that we first need to collect some minerals, therefore the Fast Forward mecha-
nism advances the time by 417 frames as part of applying the action.

s1 = (417, {(Terran SCV , ∅, (IDLE ,∞),∞, 3),

(Terran SCV , ∅, (Terran Engineering Bay , 900),∞, 1),

(Terran Command Center , ∅, (IDLE ,∞),∞, 1)}
, {}, 0.06, 0.0)

Now we start the construction of a Refinery because we will need it for
collecting vespine gasfor the research later. Of course the algorithm does not
specify which action to take. It could therefore likely be exploring other parts of
the search tree first. We will now only look at a path leading to a goal directly.

s2 = (1158, {(Terran SCV , ∅, (IDLE ,∞), 600, 2),

(Terran SCV , ∅, (Terran Engineering Bay , 159),∞, 1),

(Terran SCV , ∅, (Terran Refinery , 600), 600, 1),

(Terran Command Center , ∅, (IDLE ,∞),∞, 1)}
, {}, 0.096, 0.0)

Here happened several things. In the last state there where two construc-
tions going on. After applying the action aTerran Infantry Weapons 1 , both con-
structions have finished. We now have two new Units (Terran Engineering Bay,
Terran Refinery) in our state. Also 3 SCV s started gathering Vespin Gas. How-
ever the limiting precondition here was actually the minerals, because after it
started, the gas gathering was much faster.

27

s3 = (2338, {(Terran SCV , ∅, (IDLE ,∞),∞, 1),

(Terran SCV , ∅, (GasGathering ,∞),∞, 3),

(Terran Engineering Bay , ∅, (Terran Infantry Weapons 1 , 4000),∞, 1),

(Terran Refinery , ∅, (IDLE ,∞),∞, 1),

(Terran Command Center , ∅, (IDLE ,∞),∞, 1)}
, {}, 0.096, 0.0)

Now all we have to do is advance the time until the research is done.
After applying the Finish Step action we are in the state s4, which is a goal

state.

s4 = (6338, {(Terran SCV , ∅, (IDLE ,∞),∞, 1),

(Terran SCV , ∅, (GasGathering ,∞),∞, 3),

(Terran Engineering Bay , ∅, (IDLE ,∞),∞, 1),

(Terran Refinery , ∅, (IDLE ,∞),∞, 1),

(Terran Command Center , ∅, (IDLE ,∞),∞, 1)}
{Terran Infantry Weapons 1},

180.041, 840.8)

The Build Order for this example is then:

Terran Engineering Bay ,Terran Refinery ,Terran Infantry Weapons 1

The make span of this Build Order is 6338 frames.

5 Experiments

While building our formalism we also implemented stand alone tool featuring a
basic version of the algorithm 1 proposed by Churchill and Buro. Our implemen-
tation is capable of producing correct Build Order. However the implementation
is not real-time. Churchill and Buro describe two admissible heuristics which
the algorithm uses to bound the search depth. Our implementation misses those
heuristics. As a result, we are much slower and cannot compute deep Build Or-
ders. Also we have to use a manually computed initial bound. We removed the
time limitation for our experiments to give perspective of the current power of
the implementation.

We build our own test set, as we were not able to find an existing one. The
table 1 shows results for Build Order goals from the default initial state i0. We
used short “SD” for Supply Depot and “EB” for Engineering Bay. The goals

28

goal bound makespan Build Order expanded generated time(ms)
7 SCV 1000 900 SCV,SCV,SCV 361 3152 979
7 SCV 1500 900 SCV,SCV,SCV 361 3152 978
1 SD 1500 974 SD 2107 16878 6199
1 EB 2000 1413 EB 29701 238018 107108
1 SD, 7 SCV 2000 1587 SCV,SCV,SCV,SD 10603 87933 36014

Table 1: testresults

are relatively simple as they only require a few more units, which all only cost
minerals and have no other precondition than one SCV (which is given in i0
already).

Consider for example the goal “7 SCV”. Formally this is the goal G0 =
({(Terran SCV , ∅, 7)}, {}, 0.0, 0.0). To reach this goal we only need to build 3
SCV ’s with a total minerals cost of 150.

The bound is the search depth in frames, any state with a make span greater
than the bound will not be reached. The make span is also given in frames. The
Build Order from left to right give the action sequence of the solution found.
We used short “expanded” for the number of expanded nodes and “generated”
equivalently for generated nodes. The solutions can easily be checked with our
model and are correct.

6 Conclusion

In this thesis, we have introduced a formal model for Build Order search in
StarCraft Brood War based on the intuition proposed by Churchill and Buro [2].
Our model features numerical values and handles temporal actions. We also
implemented a stand alone planer as a prove of concept. Our planner is not
very strong as it lacks algorithmic optimizations, but is capable of finding correct
solutions for Build Order for the Terran race.

Our abstraction is very specialized on the game StarCraft Brood War. We
belief it can be used for the successor StarCraft 2 with only minor adaptation,
because the two games are very similar.

In the future, we would like to adapt the model to more general RTS games.
The abstraction used by Churchill and Buro [2] is a reasonable trade of between
speed and optimality in StarCraft Brood War. However it can not handle other
RTS games like Age of Empires 2 where there are 4 different resources and
the collection rate can vary. But the action applicability abstraction proposed,
might also be used for resource collection. Instead of using single collection-
actions which would dominate the search space or just fixed workers per resource
policies which can be extremely suboptimal, we could define collecting-goals.
These could just be the resources needed for a next unit. With the domain
knowledge we have, we can derive the time needed for all preconditions besides
the resources required. Then we can determine, how fast we need to collect the
resources so that we have them available when the other preconditions are met,
or as soon afterwards as possible.

29

References

[1] Hei Chan, Alan Fern, Soumya Ray, Nick Wilson, and Chris Ventura. Online
planning for resource production in real-time strategy games. In ICAPS,
pages 65–72, 2007.

[2] David Churchill and Michael Buro. Build order optimization in starcraft. In
AIIDE, pages 14–19, 2011.

[3] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. Using the context-
enhanced additive heuristic for temporal and numeric planning. In ICAPS,
pages 130–137, 2009.

[4] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. JAIR, 20:61–124, 2003.

[5] Malte Helmert. 5. state-space search: State spaces. In Foundation of Ari-
tifcial Intelligence, pages 9–16, 2016.

[6] Opensource. BWAPI an api for interacting with starcraft: Broodwar
(1.16.1). http://bwapi.github.io/.

[7] Vinyals Oriol. Deepmind and blizzard to release starcraft 2
as an ai research environment. https://deepmind.com/blog/

deepmind-and-blizzard-release-starcraft-ii-ai-research-environment/,
2016.

A Complete List of Orders in our Model

oTerran Command Center = (({(Terran SCV ,NOPARTNER, 1)}, ∅),
{(Terran SCV ,NOPARTNER, 1)}, (400, 0, ∅), 1896, ∅,

Terran Command Center)

oTerran Refinery = (({(Terran SCV ,NOPARTNER, 1)}, ∅),
{(Terran SCV ,NOPARTNER, 1)}, (100, 0, ∅), 696,

{(Terran SCV ,NOPARTNER, 3)},Terran Refinery)

oTerran Supply Depot = (({(Terran SCV ,NOPARTNER, 1)}, ∅),
{(Terran SCV ,NOPARTNER, 1)}, (100, 0, ∅), 696, ∅,

Terran Supply Depot)

30

http://bwapi.github.io/
https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-research-environment/
https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-research-environment/

oTerran Engineering Bay = (({(Terran SCV ,NOPARTNER, 1),

(Terran Command Center ,NOPARTNER, 1)}, ∅),
{(Terran SCV ,NOPARTNER, 1)}, (125, 0, ∅), 996, ∅,Terran Engineering Bay)

oTerran SCV = (({(Terran Command Center ,NOPARTNER, 1)}, ∅),
{(Terran Command Center ,NOPARTNER, 1)}, (50, 0, ∅), 300, ∅,Terran SCV)

oTerran Comsat Station = (({(Terran Command Center ,NOPARTNER, 1)}, ∅),
{(Terran Comsat Station,NOPARTNER, 1)}, (50, 50, ∅),

600, ∅,Terran Comsat Station)

Here the units required to be allowed to build a Terran Comsat Station has
been reduced to the units contained in the model.

oTerran Infantry Weapons 11 = (({(Terran Engineering Bay ,NOPARTNER, 1)},
∅), {(Terran Engineering Bay ,NOPARTNER, 1)}, (100, 100, ∅),

4000, ∅,Terran Infantry Weapons 1 1)

oTerran Infantry Armor 11 = (({(Terran Engineering Bay ,NOPARTNER, 1)},
∅), {(Terran Engineering Bay ,NOPARTNER, 1)}, (100, 100, ∅),

4000, ∅,Terran Infantry Armor 1 1)

31

	Introduction
	Background
	State Space Search
	Numerical Values
	Time
	StarCraft Brood War

	Churchill and Buro's Approach
	Simplifications on State Spaces for Build Order Optimization in StarCraft
	The Fast Forward Mechanism
	Search Algorithm

	State Space Formalization
	States
	Fast Forward
	Transitions
	Entry and Solution
	Example

	Experiments
	Conclusion
	Complete List of Orders in our Model

