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Abstract

In classical planning, actions are used to reach a goal from the initial state. Search algorithms

explore the state space of a planning problem to find a plan, which is a sequence of actions.

To estimate the distance to the goal for the states, search algorithms can use heuristics.

One heuristic used to guide the search is the additive heuristic. Recently, optimizations

were presented to e�ciently compute the additive heuristic in the context of lifted planning.

Fast Downward is a classical planning system that uses a ground representation. In this

work, the optimizations have been used and integrated into Fast Downward to see if they

can be adapted to this ground planning system and whether they bring benefits. The

optimizations are used here to reduce the number of unary operators required to calculate

the heuristic, thereby enhancing performance. It was found that the optimizations can be

used to compute the additive heuristic more e�ciently for specific domains.
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1
Introduction

Classical planning, a subfield of artificial intelligence, is about identifying a sequence of

actions to reach a specific goal from a specific initial state. All constraints or conditions

defined by the problem must be satisfied. To identify such a sequence of actions, search

algorithms are employed to explore the state space of a planning problem and examine

sequences of actions and the resulting states. Search algorithms can use heuristics to

enhance e�ciency. Heuristics guide the search process in a targeted manner. They provide

estimates of the cost or distance to reach the goal state from a state. These estimates assist

the search in prioritizing, thereby minimizing the exploration of paths that are unlikely to

lead to a satisfactory solution. This reduces the number of states to be explored, which

is crucial for an e�cient search. Certain heuristics are computed from solving a relaxed

version of the original problem that ignores certain constraints. This helps to solve the

problem more easily. The costs of the solutions to these simpler, relaxed problems are

used for the estimates of the heuristic for the original problem. The heuristic considered in

this thesis is the additive heuristic. It is a delete relaxation heuristic, which simplifies the

original problem by ignoring the delete e↵ects of actions. Once a fact has become true, it

remains true. The additive heuristic estimates the distance to the goal in a search algorithm

by adding up the cost of the subproblems, treating them as independent.

Planning problems are described and transformed into specific representations, which

significantly impact how they are handled. The lifted representation uses variables that

can later take on the values of objects. It is an abstract and therefore flexible and compact

representation because the variables are instantiated if required. However, the use of

a lifted representation is complex and requires specialized techniques and algorithms.

With a ground representation, all abstract variables are replaced by concrete values or

objects. This simplifies the calculation of state transitions and actions, as no further

instantiations are required. However, if all possible combinations of variables and their

values are explicitly represented, the resulting representation can become quite extensive.

This is very memory-intensive, as the number of possible states and actions grows with

the number of variables and objects, and it is very time-consuming due to the processing

of all possible combinations. However, by analyzing the planning problem, it is possi-
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ble to reduce the size of the representation. Helmert (2009) uses relaxed reachability

analysis before grounding, so that only relevant objects and actions are considered. Logi-

cal programs, Datalog programs consisting of logical facts and rules, are used in this context.

Recently, an approach was introduced to compute certain heuristics from the lifted

representation of the planning problem (Corrêa et al., 2021b). This approach uses extended

Datalog programs with optimizations for the construction of the rules to compute the

additive heuristic. In this thesis, this approach is adapted for the classical planning system

Fast Downward (Helmert, 2006), which works on a ground representation. The additive

heuristic is computed using unary operators, which are ground actions with one e↵ect

each. The idea is to use the specially constructed lifted rules of the extended Datalog

program, ground them with a corresponding algorithm and use them as unary operators

for calculating the heuristic values. This could significantly reduce the number of unary

operators, which can lead to a more e�cient calculation. Experiments show that the new

implementation enables a more e�cient calculation of the additive heuristic values for some

domains.

We begin with the essential background to the content of this work. Then, we ana-

lyze the specific parts of the Fast Downward code that are particularly relevant for this

work. Next, we examine the optimization idea in more detail, describe how the optimiza-

tions are implemented with the changes in the code and discuss the limitations of the new

implementation. We then evaluate the new implementation with experiments. Finally, we

conclude with a summary of the main points and a discussion of future work.
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Background

This section provides the essential background for understanding the following content.

First, the planning task and important related terms are defined. Then, the additive heuris-

tic is presented. Next, Datalog programs are explained and finally the construction of

Datalog rules is shown, which is the basis of the optimizations.

2.1 Planning Task
A planning task in STRIPS representation (Fikes and Nilsson, 1971) is a 4-tuple ⇧ =

hV, I,G,Ai:

• V is a set of binary state variables. They can be true or false.

• I is the initial state. This is the situation at the beginning of the planning. The initial

state is a set of state variables which are true in the initial state.

• G is the goal. This is the situation, that we want to reach. The goal is a set of state

variables which are true in the goal.

• A is the set of actions or operators, where each action a 2 A has a precondition list

pre(a) ✓ V , an add list add(a) ✓ V , a delete list del(a) ✓ V and a non-negative cost

cost(a).

A state is a set of state variables and describes the properties of a situation in a planning

task so that exactly these state variables are true. States, where all state variables of the

goal are true, are goal states.

An action is applicable to state s if pre(a) ✓ s. The successor of s with applicable

action a is defined as s[a] = (s \ del(a)) [ add(a). A sequence of actions ⇡ = ha1, . . . , ani is
applicable to s0 if there are states si for i = 1, ..., n with action ai applicable in si�1, and

si = si�1[a]. The result of applying ⇡ to s is denoted by s[⇡] = sn. A plan is a solution for

a planning task and consists of a sequence of actions ⇡ = ha1, ..., ani, which is applicable to

the initial state s0 and leads from s0 to a goal state. An optimal plan has minimum cost

among all plans, whereby the cost of a plan is
Pn

i=0 cost(ai).
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In this work, we also need a lifted representation of a planning task. In order to en-

able a switch between the representations, we define the term atom. An atom P (ht1, ..., tni)
consists of an n-ary predicate symbol P and a tuple ht1, ..., tni, where t1, ..., tn can be

objects or variables. When grounding an atom, the variables of the atom are replaced by

objects, whereby there is a variable substitution or variable mapping � : V 7! O. Ground

atoms are similar to state variables.

A planning task in lifted STRIPS representation similar to Corrêa et al. (2021b) but

without inequality constraints is a 5-tuple ⇧lifted = hP, O,A, s0, �i:

• P is a set of predicate symbols.

• O is a set of objects, which are constants.

• A is the set of actions, where each action a[�] 2 A has a precondition list pre(a[�]),

an add list add(a[�]), a delete list del(a[�]) and a non-negative cost cost(a[�]). Here,

� is a set of variables. The three lists of an action consist of atoms.

• s0 is the initial state, which is the situation at the beginning of the planning. The

initial state is a set of ground atoms which are true.

• � is the goal, which is the situation, that we want to reach. The goal is a set of ground

atoms which are true.

2.2 Additive Heuristic
Heuristics help to focus the search on promising sequences of actions. They estimate the

distance from the states to the nearest goal state. The heuristic considered in this paper is

the additive heuristic hadd. It is originally defined on the ground planning task ⇧ and looks

at ground atoms. The additive heuristic is a delete relaxation heuristic (Bonet and Ge↵ner,

2001). Delete relaxation heuristics compute their estimate on a simplification of the original

task where delete lists are empty. This means that no atoms are removed when actions are

applied, only new atoms are added. All atoms that can be reached in the planning task ⇧

by a sequence of actions can also be reached in the relaxed planning task ⇧+. The additive

heuristic assigns each atom a cost that indicates how expensive it is to reach a state where

this atom is true. These costs are computed by looking at all actions that reach the atom

and summing the cost of their preconditions together, and then taking the minimum. The

single value h(p, s) is an estimate of the cost of reaching an atom p from state s in the

relaxed planning task ⇧+:

h(p, s) =

8
><

>:

0, if p 2 s,

min
a2Ap

{cost(a) +
P

q2pre(a)

h(q, s)}, otherwise,
(2.1)

where Ap is the set of ground actions which have p in their add list. These values for each

ground atom in the goal are added for hadd to obtain the value of the heuristic:

h
add(s) =

X

p2�

h(p, s). (2.2)
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However, the additive heuristic does not provide perfect estimates, i.e. the exact costs,

for ⇧+, as it assumes that reaching the atoms in the goal, i.e. reaching the subgoals, is

independent. It is therefore not taken into account that reaching a subgoal can help to

reach another subgoal.

2.3 Datalog
Datalog programs are logic programs. For the optimizations and for the grounding to

obtain the operators for calculating the heuristic, weighted Datalog programs are used,

as defined by Corrêa et al. (2021b). For the grounding of the actions in the original Fast

Downward, Datalog programs without weights are used, as defined by Helmert (2009). A

weighted Datalog program D = hF ,Ri consists of a set of facts F , which are ground atoms,

and a set of weighted rules R. A weighted Datalog rule r consists of atoms �i and is a

first-order formula of the form �1 ^ ... ^ �m ! �0, for m � 0. It can also be written in the

form �0  �1, ...,�m. Here, head(r) = �0 is the head of the rule and body(r) = {�1, ...,�m}
is the body of the rule. The atoms can contain objects, but usually consist of variables.

The rule has a non-negative weight w(r), which is important in this work for calculating

the cost of an operator and thus for the correct values of the additive heuristic.

Datalog programs help to calculate the set of reachable atoms. To do this, they cal-

culate the set of ground atoms �, which the Datalog program logically implies. This is the

canonical model M of D, so that F [ {r8|r 2 R} |= �. Here, vars(r) = {v1, ..., vn} are the

variables of the rule r and r8 ⌘ 8v1...vk · �1 ^ ... ^ �m ! �0. To calculate M, a specific

Datalog program D(⇧lifted, s0) is created for the planning task ⇧lifted. The set F consists

of all ground atoms of the initial state s0 of the planning task. The set of rules R contains

the following rules:

• For the goal � = {�1, ..., �n} there is a rule r of the form

goal-reachable �1, ..., �n, (2.3)

where w(r) = 0 if the rules are weighted.

• For each action a[�] 2 A with pre(a[�]) = {�1, ...,�n} there is an applicability rule r

of the form

a-applicable �1, ...,�n, (2.4)

where w(r) = cost(a) if the rules are weighted, and the a-applicable is the action

predicate of a corresponding action.

• For each atom  in add(a[�]) there is an e↵ect rule r of the form

  a-applicable, (2.5)

where w(r) = 0 if the rules are weighted.

For the grounding of the actions and rules to obtain the operators, we need the canonical

model M of D(⇧lifted, s0). Helmert (2009) shows that M contains all ground atoms that are
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reachable from s0 in the delete relaxation ⇧+, thus also the a-applicable of the applicable

ground actions as well as the goal-reachable atom, if all goal atoms are reachable.

Corrêa et al. (2021b) show that the values of the additive heuristic can be calculated

using the weighted Datalog programs.

2.4 Construction of Rules
The rules for the calculation of the additive heuristic, i.e. those of the weighted Datalog

program, are constructed in a certain way to enable the weighted rules to be grounded to

operators at all and to allow for e�cient calculations. Three rule construction approaches are

employed. These are the rule splitting by Helmert (2009), which was adapted for weighted

rules by Corrêa et al. (2021b), and action predicate removal and duplicate rule removal by

Corrêa et al. (2021b). These approaches will be explained in the order in which they should

be used for the construction of the weighted rules.

2.4.1 Action Predicate Removal
The rules which have an a-applicable atom are changed here. This atom is removed from

the respective rules. There are no more applicability rules (2.4). For each e↵ect rule (2.5) of

an action, the atoms of the precondition list of the action are set directly as the rule body

instead of the a-applicable atom. These new rules therefore look like this:

  �1, ...,�n, (2.6)

where {�1, ...,�n} is the precondition of an action and  is an atom of the add list. The

weight of such rules is the cost of the corresponding action.

2.4.2 Rule Splitting
This rule rewriting is used in the original Fast Downward to modify the rules of the Datalog

program in such a way that the canonical model can be calculated e�ciently, as e�cient

unification queries are made possible. Certain decompositions of the rules can improve

performance, as special data structures can be used. The rules are split into smaller rules

during rule splitting, and query optimization techniques are used to split the rules. First,

it is checked that no variables occur more than once in the individual atoms of a rule,

otherwise the duplicate variables are removed. Then, the individual rules are split until

they only contain two atoms in the body. Each rule r ⌘ �0  �1, ...,�i, ...,�j , ...,�m in R
is replaced by two rules r1 and r2. This can result in two di↵erent forms:

r1 ⌘ �0  ✓,�1, ...,�i�1,�i+1, ...,�m

r2 ⌘ ✓  �i

or

r1 ⌘ �0  ✓,�1, ...,�i�1,�i+1, ...,�j�1,�j+1, ...,�m

r2 ⌘ ✓  �i,�j .
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Here, ✓ is a new auxiliary atom. For weighted rules, the weights of the new rules are

w(r1) = w(r) and w(r2) = 0.

2.4.3 Duplicate Rule Removal
This optimization removes rules that are only di↵erent due to the naming of the variables.

In rule splitting, many such rules are created that have an auxiliary predicate as e↵ect. Only

one of these syntactically equivalent rules is kept. The costs are not a↵ected, as this type

of rule that defines an auxiliary predicate has weight 0.



3
Fast Downward

This work explores how the optimizations for the calculation of the additive heuristic can

be integrated into Fast Downward. Fast Downward is a state-of-the-art classical planning

system that works on a ground representation (Helmert, 2006). In this work, we focus

on certain parts of the code of Fast Downward. There is a division into two components:

translate and search. These two components of the original Fast Downward are examined

in more detail in the following.

3.1 Translate
The translate component is responsible for translating planning tasks formulated in PDDL

into the finite-domain representation (FDR) (Helmert, 2009). PDDL is a lifted represen-

tation, while FDR is a grounded representation that uses multi-valued variables. In this

component happens the grounding of the planning task. The code is written in Python.

The following parts of the translate code are particularly important for this work:

PDDL to FDR Task The translate.py file contains the function pddl to sas,

which is called in the main function. This function takes the normalized lifted planning

task, which is a task with specific structural restrictions, and creates a ground FDR task

through a series of steps. Following additional analysis in this function, the number of

reachable atoms is reduced. Among other things, the FDR task contains variables whose

respective possible values are a certain group of the final reachable atoms. These groups of

atoms of the variables are disjoint. Moreover, the FDR task contains the FDR operators

that use these variables. The FDR operators were originally derived from the ground

actions, which have undergone some processing. The FDR task is written to an output file

in a specific format at the end of the function.

At the very beginning of pddl to sas, the explore function of the instantiate.py

file is called. This function calls further functions and returns the instantiated, i.e.

grounded, planning task. The functions called there are outlined briefly below:
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Translating PDDL to Logic Program The first function called is translate in

the file pddl to prolog.py. Here, the Datalog program of the planning task is created

and rule splitting is applied.

Building Canonical Model The second function called is compute model in the file

build model.py. It takes the created Datalog program and computes the corresponding

canonical model that contains all reachable atoms.

Grounding of Planning Task The third function called is instantiate, which,

like explore, is located in instantiate.py. This function takes the planning task and

the canonical model, uses the reachable atoms for instantiation and returns, among other

things, the grounded actions.

3.2 Search
The search component is responsible for finding a plan for the ground planning task, which

is parsed from the output file of the translate component. The code is written in C++.

The files relaxation heuristic.cc and additive heuristic.cc with the corre-

sponding header files are important for calculating the values of the additive heuristic. The

AdditiveHeuristic class is derived from the RelaxationHeuristic class and has

functions for calculating the heuristic values. RelaxationHeuristic is responsible for

creating the data structures for the propositions and unary operators, which are explained

in the next paragraph.

In Fast Downward, relaxation heuristics are computed in the following way. The ground

actions are split into so-called unary operators, this means that for each e↵ect a unary

operator is defined. Furthermore, we use a binary representation of the variables called

propositions, such that each variable-value pair of an FDR variable is a proposition. For

computing the heuristic, a priority queue of propositions and their cost is maintained.

Initially, all propositions which are true in the state are inserted with cost 0. When a

proposition is removed, we check if new unary operators can now be applied and if so, we

insert its e↵ect with the appropriate cost into the queue.

The propositions are stored in a vector called propositions. They have an associ-

ated proposition ID, which is the index of the proposition in the vector. The ID can be

determined using the variable and the value of the fact. The unary operators are stored in

a vector called unary operators. The data structures are built in the constructor of the

RelaxationHeuristic class. The build unary operators function is called there

for each operator. It takes the operator and builds the associated unary operators, each of

which has only one e↵ect.



4
Changes with Applied Optimizations

The aim of this chapter is to examine the optimization idea in more detail and to present

the changes and adjustments to the Fast Downward planning system that are necessary for

the implementation of the optimizations.

4.1 Optimization Idea
We can reformulate unary operators in di↵erent ways as long as we ensure that they represent

the same relaxed task. Di↵erent formulations might lead to faster computations if the

number of unary operators is smaller. The weighted Datalog program with the construction

of the rules as in Section 2.4 is such a reformulation where we also have unary operators,

i.e. operators with one e↵ect, but in a lifted representation. Using this weighted Datalog

program instead of using the actions for the unary operators can reduce the number of unary

operators and simplify their structure. Therefore, if we directly use the optimized rules for

the unary operators, it can allow a more e�cient computation of the values of the additive

heuristic. To illustrate the di↵erences and the construction of rules, let us compare actions

and rules and the number of ground unary operators in an example:

Actions Let a[�] be an action with pre(a[�]) = {P(x),Q(x, y),R(z)}, add(a[�]) =

{A(x),B(y)}, del(a[�]) = ; and with cost(a[�]) = 1, where � = {x, y, z}. Let O =

{o1, o2, o3} be the set of objects. If each variable of � can be mapped to each object of O,

after grounding we get |O||�| · |add(a[�])| = 33 · 2 = 54 unary operators. A unary operator

consists of one ground atom from the add list and all ground atoms from the precondition

list.

Rules The rules corresponding to the action without the rule construction approaches are

the e↵ect rules

A(x) a-applicable,

B(y) a-applicable,
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where the weight of each rule is 0, and the applicability rule

a-applicable P(x),Q(x, y),R(z),

with weight 1. If we remove the action predicate, we get

A(x) P(x),Q(x, y),R(z),

B(y) P(x),Q(x, y),R(z),

where the weight of each rule is 1. If we apply the rule splitting, we get

A(x) ✓0(x), ✓1(),

B(y) ✓4(y), ✓5(),

each with weight 1 and

✓2(x) Q(x, y),

✓0(x) ✓2(x),P(x),

✓1() R(z),

✓4(y) Q(x, y),P(x),

✓5() R(z),

where the weight of each rule is 0. In the rule splitting, some created auxiliary atoms are

removed again, which is why there is no atom with predicate ✓3 in this example. Next, we

remove the duplicate rule ✓5() R(z) and leave the rules

A(x) ✓0(x), ✓1(),

B(y) ✓4(y), ✓1(),

each with weight 1 and

✓2(x) Q(x, y),

✓0(x) ✓2(x),P(x),

✓1() R(z),

✓4(y) Q(x, y),P(x),

each with weight 0. This results in six rules. Only the variables that are important for

the add e↵ect remain, so four rules depend on one variable and two rules depend on two

variables. If each variable can be mapped to any object, we get 31 · 4 + 32 · 2 = 30 unary

operators after grounding the rules. Rules inherently have a form corresponding to the form

of unary operators, i.e. with only one add e↵ect.

4.2 Changes in Translate
To implement the optimization idea in Fast Downward, the translate component has to be

extended with new code. This includes the building of a second Datalog program with the
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special construction of the rules and a corresponding canonical model, a separate grounding

algorithm for the rules and the writing of the unary operators into another output file.

After calling the function pddl to sas in the main function of translate.py we add an-

other function call of a new function compute operators for relaxation heuristic

in instantiate.py. This is the higher-level function. It takes the PDDL planning task

and the FDR task as arguments. First, it calls a new function translate optimize

of the pddl to prolog.py file to get the Datalog program. Then, it calls the function

compute model of the build model.py file with the result of the previously called func-

tion to compute the canonical model. Next, it builds a dictionary with the predicates of the

atoms of the FDR task as key and the list of matching atoms as value. The dictionary helps

to find an atom quickly. To get the atoms, it uses the values of the variables of the FDR

task. After that, it calls the new function instantiate for relaxation heuristic,

which takes the Datalog program, the canonical model, the dictionary with the FDR task

atoms and the facts that are true in the initial state in the PDDL and instantiates the

rules to get the ground unary operators. Finally, it calls the new function output to write

the unary operators to a new output file. In the following subsections, we will examine the

called functions.

4.2.1 Rule Construction Code
The function translate optimize has the same basic structure as the original

translate but also contains the important additional function calls that are required

for the optimizations. First, the function translate optimize calls the function

remove duplicate preconditions in actions. It is theoretically possible for an

action in a PDDL domain to have duplicate preconditions. However, this is an extremely

rare occurrence. For example, in the action take image of the domain Satellite, there is

the precondition power on ?i twice. This can result in erroneous, higher heuristic values

due to the repeated application of rules with a weight equal to the action costs. To handle

these cases, the duplicates are removed in this function if the precondition is a conjunction.

Next, the Datalog program is generated in translate optimize. Before normalizing

it, we use the function remove action predicates. The code for constructing the

rules was taken from Corrêa et al. (2021a) and only slightly modified. This applies in

particular to the functions remove action predicates, rename free variables

and remove duplicated rules, as well as the changes for weighted rules in the file

split rules.py. Following the removal of action predicates, the normalize function

is called. However, a property of normalized Datalog programs is ignored here: rules with

an empty precondition are allowed. In our case, this type of rule is necessary for correct

functioning, for example to find a solution for planning tasks of the domain Movie. The

add e↵ects of such rules are also added to the facts of the Datalog program. Next, the three

functions split rules, rename free variables and remove duplicated rules

are called in translate optimize to rewrite the rules. Finally, the created Datalog

program is returned.
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4.2.2 Grounding of Rules
In the function instantiate for relaxation heuristic, we first create two dictio-

naries for the canonical model and for the facts that are true in the initial state in the

PDDL. These dictionaries are similar to the dictionary for the values of the FDR variables

with the predicate of the atom as key and the list of matching atoms as value. This makes

finding an atom faster than in a simple list or set. Next, each rule is grounded individually.

The goal rule is skipped, as it is only needed for the calculation of the canonical model. We

call the instantiate rule function, which takes as arguments the facts of the initial

state, an empty dictionary for the variable mapping, the preconditions of the rule, the

e↵ect of the rule, the canonical model, the values of the FDR variables and an empty list

called atoms. This function returns the ground unary operators. Each unary operator is

appended to a list of ground operators as a tuple consisting of the e↵ect, a tuple of the

preconditions and the weight of the rule, which is now the cost of the operator. When all

rules have been grounded, this list is returned as a set to remove duplicate operators.

Let us now examine the function instantiate rule. The function is recursive, with

each call shortening the list of preconditions, possibly extending the variable mapping and

checking whether a unary operator can be formed from the atoms.

• Base Case: The base case is reached if the list of preconditions is empty. In this case,

the preconditions have already been checked and grounded, if preconditions exist, and

the e↵ect is now processed here. First we check whether the predicate of the atom

is contained in the canonical model at all. If not, an empty list is returned. If the

predicate is in the model, for each of these atoms containing the predicate of the e↵ect

in the model, we check whether it can be the e↵ect of an operator. The aim here

is to determine whether the atom of the model matches both the e↵ect atom and

the variable mapping of the preconditions of the rule. First it has to be true that

it is either an auxiliary atom or is contained in the values of the FDR variables, so

this atom is not removed by the original implementation. If this is the case, each

argument in the tuple of the e↵ect atom is checked. If the argument is a variable, we

check in the variable mapping whether the value of the variable matches the value of

the argument in the ground atom of the model. If it is an object, which means that

the e↵ect is already partially grounded, as it happens for example with the domain

Airport, we compare it directly with the argument. When all arguments are matched,

we append a tuple consisting of the atom from the model as the e↵ect and the list of

ground precondition atoms to a list of ground operators. After each atom in the model

containing the predicate of the e↵ect has been tested, the list of ground operators is

returned.

• Recursive Case: If the list of preconditions is not empty, the first condition in this

list is set as the current condition, which is now examined. First, we check whether

the predicate of the atom is contained in the canonical model at all. If not, an empty

list is returned, which means that the rule cannot be grounded. If the predicate is in

the model, we test for each of these atoms containing the predicate of the condition
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in the model whether it can be a precondition of an operator. The aim here is to

determine whether the atom of the model matches both the condition atom and the

variable mapping of previously grounded conditions of the rule. We use a copy of the

variable mapping to create separate mappings for each matching atom of the model.

Now we inspect each argument in the tuple of the condition atom. If the argument is

a variable, we check with the variable mapping whether the value of the variable has

already been set. If not, the variable is assigned to the value of the argument. If it has

already been set, it is checked whether the value of the variable matches the value of

the argument. If the argument is an object, we compare it directly with the argument

of the ground atom of the model. When all arguments are matched, we distinguish

between di↵erent cases:

– In the first case, it is ensured that the atom in question is not a special atom with

an @ symbol that is only required for the generation of the canonical model. In

addition, it must be either an auxiliary atom or a value of the FDR variables. If

these conditions are met, the instantiate rule function is called recursively

with the following changes: the variable mapping is possibly extended, the list of

preconditions is shortened and the list of atoms is extended by the ground atom

of the precondition.

– If the atom is neither auxiliary or an FDR fact and it is not an atom with an

@ symbol, the translator must have removed it during its processing. This can

happen for two reasons which can be easily distinguished by checking whether

the atom is contained in the initial state described in the PDDL:

a) If the atom is contained in the initial state, the atom is true in every reach-

able state. Here, the instantiate rule function is called recursively,

whereby the variable mapping is possibly extended, the list of preconditions

is shortened and the list of atoms is not extended by the ground atom of the

precondition. We ignore this atom and it will not appear in the preconditions

of the operator. In this case we also handle atoms with an @ symbol, which

can be ignored.

b) If the atom is not contained in the initial state, the atom is unreachable,

which means it is false in every reachable state. Consequently, there can be

no such operator.

The list of ground unary operators that is returned when instantiate rule is

called recursively is appended to a result, which in turn is returned. This allows for

the collection of all ground operators of a rule in a single result.

4.2.3 New Output File
We write the ground unary operators in the function output to a new output file

operators relaxation heuristic.txt. Here we process the operators one by one.

First, we write the e↵ect atom on one line. Then, we write each precondition atom on a

separate line. After the preconditions, the string cost is written on a separate line and the
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cost number is set on the next line. When all the operators have been processed, we end

the output with the string end operators.

4.3 Changes in Search: Constructor of RelaxationHeuristic
In order to use the new unary operators, the code of the relaxation heuristic.cc

file and the corresponding header file has to be changed in the search component of

Fast Downward. This mainly a↵ects the constructor of the RelaxationHeuristic

class with the functions called there. A new function parse operators as well

as new structs ParsedOperator and ParsedProposition with corresponding

vectors parsed operators and new propositions were added and the function

build unary operators was changed. We will now examine the changes to the con-

structor more closely.

In the constructor of the RelaxationHeuristic class, we first calculate the num-

ber of facts. This is the number of values of the FDR variables. Then we call the

parse operators function to get the unary operators from the new output file and

insert them into the parsed operators vector. After proposition o↵sets are formed

as in the original constructor, we now build the unary operators. To achieve this,

we use the parsed operators vector instead of the FDR operators and call the

build unary operators function for each parsed operator. Only then do we build

the vector propositions, whose size here is the sum of the number of facts and the

number of new propositions, which is the size of the vector new propositions that is

set during building the unary operators. Next, we handle goal propositions like in the

original implementation and remember their proposition IDs. The rest of the constructor

remains as in the original implementation. The following subsections will examine the

new parse operators function and the modified build unary operators function in

greater detail.

4.3.1 Parsing Output File
In the function parse operators we open the output file with the unary operators

operators relaxation heuristic.txt. As long as the content of the parsed line

is not the string end operators, i.e. there are more operators to parse, we create a new

ParsedOperator with a ParsedProposition effect and a vector precondition

with ParsedPropositions. We first parse the e↵ect atom. This will be the name of

the ParsedProposition effect. Now as long as the content of the next line is not

the string cost, the content is a precondition atom. We set the atom as the name of a

ParsedProposition, which is inserted into the precondition vector. If the content

of the next line is the string cost, all preconditions have been parsed. We parse the cost

number and set it as the cost of the operator. At this point, the full unary operator has

been parsed and the ParsedOperator is inserted into the parsed operators vector.
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4.3.2 Building Unary Operators
The function build unary operators is called for each ParsedOperator with

the ParsedOperator as argument. Initially, the vector precondition props

is constructed, which will contain the proposition IDs of the preconditions. Each

ParsedProposition of the preconditions of the ParsedOperator is then processed.

First, we examine the facts of the task to determine whether the atom of the precondition

is contained there. If a matching fact is found, the proposition ID of the fact is inserted

into the precondition props vector. If no such atom was found in the facts, we use a

new function get prop id that checks the proposition ID of a ParsedProposition and

returns or sets the value. If the proposition ID of the precondition has not yet been set, it is

now set. It is then inserted into the precondition props vector. Once all preconditions

have been processed, a similar process is repeated with the e↵ect of the ParsedOperator.

When the unary operator is finally built in the unary operators vector, we use the value

NO OP for the index to the matching FDR operator of the task, as we do not have such

an index. The cost of the ParsedOperator is taken as the base cost of the unary operator.

We will now examine the new get prop id function, which was previously mentioned.

The original implementation already has get prop id functions with di↵erent arguments.

In build unary operators we additionally use a new function get prop id with a

ParsedProposition prop and a boolean set id as arguments. This function should

only be called for propositions that are not contained in the task’s facts. In the function,

we first search for the proposition in the vector new propositions. If the proposition is

found, we set the ID of prop to the value of the ID of the proposition in the vector and

return it. If the proposition is not contained in the vector, we check the value of set id.

If the value is true, we set a new ID. To do this, we use the sum of the number of facts and

the size of the new propositions vector. Then we insert the proposition into the vector

and return the ID. If the value of set id is false, we return the value �1. This means that

the proposition was not found and the ID is not set.

4.4 Limitations
Using the specially constructed rules instead of the FDR operators for the unary operators

leads to certain limitations, which are discussed in more detail in this section.

• Cost Depending on Parameter: In a PDDL planning task, there may be action

costs that depend on parameters. This means that the costs can only be determined

when the action is grounded, because the objects for the parameters are set there. Since

we do not know which ground action corresponds to which ground rules, we cannot

determine such costs. Therefore they are not supported. This applies for example to

the domains Agricola, Data-Network, Elevators, Transport and Woodworking.

• Negative Preconditions: PDDL actions can have negative preconditions. They

are compiled away in the FDR representation. To compile them away in the new

implementation, we need a mapping from FDR operators to ground rules. Since we
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do not have such a mapping, we cannot handle these cases. This applies for example

to the domains Organic-Synthesis, Quantum-Layout, Snake, Spider, Termes, Tetris

and Tidybot.

• Removal of Inapplicable Operators: Since Fast Downward removes inapplicable

operators after grounding the actions, such as with the help of mutex information,

the initial heuristic values may be di↵erent from this implementation, which uses

ground rules as unary operators and does not remove these inapplicable operators.

This is not easily transferable to the implementation in this work. This means that in

some cases the task is not as well optimized as in the original implementation. This

happens for example in the domains of Freecell, Pipesworld-Tankage and Scanalyzer.

To illustrate, consider the Scanalyzer domain. It describes a planning task that

has to do with the analysis of cars on segments. These cars are moved in circles

of segments and can either be analyzed or simply rotated. Let us examine certain

elements of the domain in the PDDL formulation:

There are two types: segment, which is a part of the path on which cars are moved,

and car, that can be analyzed and moved. The action analyze-2 has the parameters

?s1 and ?s2, which are segments, and ?c1 and ?c2, which are cars. There are three

preconditions:

(CYCLE-2-WITH-ANALYSIS ?s1 ?s2 - segment): The segments ?s1 and ?s2 form

a 2-cycle where analysis is possible.

(on ?c1 ?s1): The car ?c1 is on the segment ?s1.

(on ?c2 ?s2): The car ?c2 is on the segment ?s2.

The e↵ects are the following:

(not (on ?c1 ?s1)): Car ?c1 is not on ?s1.

(not (on ?c2 ?s2)): Car ?c2 is not on ?s2.

(on ?c1 ?s2): Car ?c1 is on ?s2.

(on ?c2 ?s1): Car ?c2 is on ?s1.

(analyzed ?c1): Marks ?c1 as analyzed.

(increase (total-cost) 3): Increases the total cost by 3.

The action rotate-2 has the same parameters as analyze-2. There are three precondi-

tions:

(CYCLE-2 ?s1 ?s2): The segments ?s1 and ?s2 form a 2-cycle.

(on ?c1 ?s1): The car ?c1 is on the segment ?s1.

(on ?c2 ?s2)The car ?c2 is on the segment ?s2.

The e↵ects are:
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(not (on ?c1 ?s1)): Car ?c1 is not on ?s1.

(not (on ?c2 ?s2)): Car ?c2 is not on ?s2.

(on ?c1 ?s2): Car ?c1 is on ?s2.

(on ?c2 ?s1): Car ?c2 is on ?s1.

(increase (total-cost) 1): Increases the total cost by 1.

Consider the proposition analyzed(car-out-1) of one of the tasks in the domain. In

this task, we have the cars car-in-1, car-in-2, car-in-3, car-out-1, car-out-2, car-out-3

and the segments seg-in-1, seg-in-2, seg-in-3, seg-out-1, seg-out-2, seg-out-3. We set

co1 for car-out-1, ci1 for car-in-1, so1 for seg-out-1, si1 for seg-in-1, and similarly for

the others. In the following, the propositions which contain p$ are auxiliary atoms.

The value obtained for the proposition analyzed(car-out-1) is 4, whereas the original

implementation yields a value of 5 for this proposition. Figure 4.1 shows the rules that

can be used to reach the proposition. For instance, the proposition analyzed(co1) can

be reached via the propositions on(co1, so1), on(co1, si1) and p$0(si1, so1). This would
correspond to the inapplicable action analyze-2 with seg-out-1, seg-in-1, car-out-1 and

car-out-1, which would mean that car-out-1 is located on two di↵erent segments at the

same time. By employing such rules, it is possible to circumvent the rules associated

with the action rotate-2. Therefore, only cost 1 for reaching the proposition on(co1,

si1), which is associated with the action rotate-2, is added to cost 3 for reaching

the proposition with the predicate analyze, which is associated with action analyze-2.

Therefore, we get a cost of 4.

analyze(co1)

p$16(si2) p$1(co1, si2)p$1(co1, si1)p$16(si1) p$16(si3) p$1(co1, si3)

p$3(so1) p$0(si1, so1) on(co1, si1) p$3(so1) p$0(si2, so1) on(co1, si2) p$3(so1) p$0(si3, so1) on(co1, si3)

p$2(c, so1) p$2(c, so1) p$2(c, so1)

on(c, so1) on(c, so1) on(c, so1)

Figure 4.1: Graph of the rules to reach the proposition analyze(car-out-1). The blue boxes
are di↵erent groups of preconditions. To reach the proposition, we only need one of these
groups. In p$2(c, so1) there can be each car for c and then the precondition on(c, so1) has
the same car c.

The original implementation has a cost of 1 for on(ci1, so1). This proposition is

needed to use action analyse2 with car co1 on segment si1 and car ci1 on segment

so1. Getting on(ci1, so1) is achieved with the same action that achieves on(co1, si1),

but it is counted separately because we just add costs of preconditions. So we get a

cost of 2 for these propositions and add a cost of 3 for the use of action analyze-2.

This results in a cost of 5.
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This utilization of the rules can be regarded as a kind of unauthorized short

cut, as it corresponds to the use of an action that is not applicable. Since we use a

di↵erent definition of the task with the ground rules as unary operators, the values

are not incorrect, as the values of the heuristics are calculated correctly with this

definition. However, this definition results in a less optimized task compared to the

original implementation definition.

• Preferred Operators: The use of preferred operators can improve performance.

However, we cannot use preferred operators because of the absence of a mapping from

the new unary operators to the FDR operators.

• Axioms: This work did not examine the use of axioms.



5
Experimental Results

This chapter presents the results of the evaluation and examines the properties of domains

that a↵ect the new implementation.

5.1 Setup
The experiments were conducted using the Python package Downward Lab (Seipp et al.,

2017) and executed on the infai nodes of the sciCORE scientific computing center at the

University of Basel. The total duration of each run was constrained to 30 minutes, while the

overall memory limit was set to 4GB. The implementations were evaluated on the suite sat-

isficing STRIPS with IPC benchmarks up to and including IPC 23 1. Some benchmarks had

to be omitted due to some limitations of the new implementation, as detailed in Section 4.4.

The heuristic used is, as previously discussed, hadd and the search algorithm used is eager

best-first search. The following metrics are examined to compare the new implementation

with the original implementation:

Coverage: This is the number of planning tasks for which a solution was found within

the specified time limit and memory limit.

Memory: This is the raw memory used by the planner.

Planner Time: This refers to the time needed for the translation part, the prepa-

ration of the search, including the construction of unary operators, and the search

itself.

Search Time: This is the time used for the search.

Total Time: This is the time used for the preparation of the search, including the

construction of unary operators, and the search itself.

Unary Operators: This is the number of unary operators that are built for the

calculation of the heuristic values.

1 https://github.com/aibasel/downward-benchmarks

https://github.com/aibasel/downward-benchmarks
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5.2 Results
The results of the experiments are presented in Table 5.1 and visualized in Figure 5.1. For

both implementations, the coverage summed over all domains is identical. The new imple-

mentation uses slightly more memory. Despite the assumption that the new implementa-

tion would improve the search time in general, this is not the case, although the number of

unary operators is significantly reduced with the new implementation. The total time and

the planner time are generally much better with the original implementation. Figure 5.1

illustrates that, for the majority of planning tasks, the total time and the planner time are

both longer with the new implementation. However, there are tasks for which the search

time is significantly reduced, resulting in a positive e↵ect on the total time and the planner

time.

Summary New Original

Coverage - Sum 1’030 1’030

Memory - Sum 48’147’112 47’563’024

Planner time - Geometric mean 3.51 1.42

Search time - Geometric mean 0.60 0.45

Total time - Geometric mean 1.00 0.53

Unary operators - Sum 12’112’234 42’903’919

Table 5.1: Results for the metrics for the new implementation and the original implemen-
tation. The better values are presented in bold font.

The question arises as to why the new implementation is slower in the search, despite a

reduction in the number of unary operators. One potential explanation for the observed

increase in search time is that domains with a di↵erent number of evaluations in both

implementations may be contributing to this e↵ect. These domains are Freecell, Pipesworld-

tankage, Scanalyzer-08-strips and Scanalyzer-sat11-strips. Table 5.2 presents the results of

the experiments, but considers only the domains with the same number of evaluations.

However, the assumption is not confirmed, since the general search time is longer without

these domains. It is evident that these domains are responsible for a considerable number

of created unary operators in the original implementation.

Summary New Original

Coverage - Sum 880 879
Memory - Sum 42’812’408 41’582’716

Planner time - Geometric mean 3.37 1.30

Search time - Geometric mean 0.67 0.45

Total time - Geometric mean 1.03 0.51

Unary operators - Sum 10’427’616 28’345’981

Table 5.2: Results for the metrics for the new implementation and the original implemen-
tation. Here, only domains with the same number of evaluations in both implementations
are considered. The better values are presented in bold font.
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Figure 5.1: Scatter plots for visualization of the individual metrics per planning task and
for comparison of the new implementation with the original implementation.
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Table 5.3 presents the coverage for domains. Only the domains for which the coverage

di↵ers in the two implementations are included in the table. It can be observed that the

new implementation provides better coverage for the domains Parking-sat11-strips, Parking-

sat14-strips and Satellite. For the Logistics98 domain, the coverage is significantly lower with

the new implementation.

Coverage New Original

driverlog (20) 18 19

logistics98 (35) 18 27

parcprinter-08-strips (30) 23 24

parking-sat11-strips (20) 20 18
parking-sat14-strips (20) 20 5
pipesworld-notankage (50) 26 27

pipesworld-tankage (50) 20 21

rovers (40) 25 29

satellite (36) 34 30
storage (30) 16 17

thoughtful-sat14-strips (20) 12 15

Sum (1’466) 1’030 1’030

Table 5.3: Coverage of the new implementation and the original implementation in domains
with di↵erent values of coverage. The better values are presented in bold font. The number
of planning tasks in the domain is shown in parentheses.

5.3 Impact of Domain Properties
As demonstrated by the experiments, the new implementation a↵ects di↵erent domains

in di↵erent ways. This section analyzes the potential positive and negative properties of

domains with respect to the new implementation.

Beneficial Domain Properties Since the coverage for the domain Parking-sat14-strips

is significantly better with the new implementation, we investigate which properties of this

domain might be beneficial, so that the heuristic values are computed more e�ciently.

For the domain Parking-sat14-strips, a total of 189’766 unary operators are built across

all planning tasks with the new implementation and 6’527’262 unary operators with the

original implementation. The PDDL formulation of the domain contains four actions, each

with three variables. The actions have three or four preconditions, of which one precondition

always has two variables, and they have two or three add e↵ects with one or two variables.

When constructing the rules, there are not so many rules that have two variables in the

preconditions. In addition, many rules have the same structure, which allows for the removal

of a significant number of duplicates.

Detrimental Domain Properties Coverage is significantly lower for the Logistics98

domain with the new implementation, so we investigate which properties of this domain

may have a negative impact. For the Logistics98 domain, a total of 356’083 unary operators
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are built across all planning tasks with the new implementation and 55’334 unary operators

with the original implementation. The PDDL formulation of the domain contains six

actions, each with three or four variables. The actions have four to seven preconditions, of

which two preconditions always have two variables. Each action has only one add e↵ect

with two variables. When constructing the rules, many rules are created with two or three

variables in the preconditions. This even applies to the majority of rules.

A comparison of the properties of the two domains reveals that the new implementa-

tion may be particularly e↵ective for domains with actions that have a higher number of

e↵ects, each with preferably only one variable, and a lower number of preconditions, each

with preferably only one variable. In this way, rules with few variables are more likely to be

created, i.e. the rules are split in such a way that many variables are omitted. This can also

result in many rules with the same structure, so that many duplicates are removed. The

minimization of variables in rules leads to a reduction in the number of unary operators

constructed during the grounding process.



6
Conclusion

In this thesis, optimizations were implemented to calculate the values of the additive

heuristic in the classical planning system Fast Downward. This includes the use of specific

weighted Datalog programs with specially constructed rules, an algorithm for grounding

the rules and the use of these ground rules as unary operators. These optimizations can

significantly reduce the number of unary operators used to calculate the values of the

additive heuristic.

However, experiments have shown that although the overall number of unary opera-

tors is significantly reduced with the new implementation, it does not generally improve the

search time. Nevertheless, in certain domains with specific properties, the new implemen-

tation improves performance and reduces the search time and in some cases even the entire

planner time.

A significant issue exists in the absence of a mapping between the ground rules and

the FDR operators. The implementation of such a mapping is complicated by the construc-

tion of the rules, especially by the duplicate rule removal and the variable renaming. One

potential solution to obtain a mapping between the ground rules and the FDR operators

would be to employ a similar approach to annotated Datalog programs as presented by

Corrêa et al. (2022). Such an approach could facilitate the storage of transformations of

the Datalog program, which could simplify the mapping.
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