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Abstract

The notion of adding a form of exploration to guide a search has been proven to be an ef-

fective method of combating heuristical plateaus and improving the performance of greedy

best-first search. The goal of this thesis is to take the same approach and introduce explo-

ration in a bounded suboptimal search problem. Explicit estimation search (EES), estab-

lished by Thayer and Ruml, consults potentially inadmissible information to determine the

search order. Admissible heuristics are then used to guarantee the cost bound. In this work

we replace the distance-to-go estimator used in EES with an approach based on the concept

of novelty.
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1
Introduction

Classical Planning plays a very important role in the domain of AI problem solving. The

objective is to find a sequence of actions to apply which move the agent from a given initial

state to a goal state. In contrast to other AI topics the environment in classical planning is

known beforehand and static, which means it does not change while we decide on an action.

Additional properties include being fully observable as well as deterministic.

Best-first search (BFS) is a forward state space search algorithm that expands the most

promising node in each iteration by applying a heuristic evaluation function f . The node

n to expand is the one with the minimum function value f(n). It is thereby customary to

use the priority queue data structure for the open list which keeps track of the candidates

for an expansion. One subtype of BFS is the greedy approach. Greedy BFS or GBFS is

an algorithm that considers only the heuristic estimates f(n) = h(n). Another well-known

variant of BFS is A∗ [1]. Its evaluation function f(n) = g(n)+h(n) sets it apart from GBFS

as A∗ relies on a combination of path cost and heuristic estimation. This guarantees us

an optimal solution given that the heuristic used is admissible, which means that it does

not overestimate. Computing this solution however is often a very costly endeavour with

respect to both the time it takes to find a solution and to memory requirements. Here is

where bounded suboptimality comes into play. Some algorithms, for example weighted A∗,

compute a solution of a cost that is within an adjustable bound from the optimal solution

cost. This leads to fewer expansions and therefor a faster search time. Most approaches for

bounded suboptimal search have severe drawbacks which limit their performance and thus

they often have not seen wide adoption in the field. Thayer and Ruml [2] have shown that by

guiding the search with a potentially inadmissible heuristic while ensuring that the costs are

within the suboptimality bound with an admissible heuristic can lead to great results. In this

paper we take their idea and apply it using the novelty of a state as the guiding function.

The concept of novelty has been first introduced in 2012 by Lipovetzky and Geffner [3].

The novelty is a measurement for how “new” the state looks when compared to already

encountered states. The authors demonstrated that state-of-the-art performance can be

achieved when combining this idea of novelty with known techniques such as landmarks

and heuristics. Our goal is to evaluate whether this concept can be efficiently applied to

bounded suboptimal search. The structure of this thesis is as follows: In Chapter 2 we
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present the background knowledge required for the understanding of this work as well as

basic definitions. Chapter 3 introduces the novelty aspect and how it was implemented.

Chapter 4 provides a closer look on bounded suboptimal search and the ways it has been

approached so far. Chapter 5 explains how we have combined the two ideas and provides

details on the implementation of the search engine which has then been evaluated in Chapter

6. Chapter 7 finishes with a conclusion of the results and an outlook.



2
Background

2.1 Planning
Planning can be described as a search in general state spaces. Planning tasks can be de-

scribed using a suitable problem description language (planning formalism). A variety of

formalisms are used nowadays, each with their own advantages and disadvantages. The two

most common ones are STRIPS and SAS+ [4]. SAS+ is an extension of STRIPS allowing

multi-valued variables and also the language used in the Fast Downward planning frame-

work [5].

It is defined as follows, with the notation borrowed from Sievers et al.[6]:

Definition 1. An instance of the SAS+ planning problem is given by a tuple

Π = 〈V,O, S0, S∗, cost〉

• V = {v1, ..., vm} is the set of state variables. Each variable v ∈ V has a finite domain

D(v). A partial state is a variable assignment on a subset of V, denoted by vars(s).

We write s[v] for the value assigned to v ∈ vars(s), which must satisfy s[v] ∈ D(v).

We say that s complies with partial state s’ if s[v] = s’[v] for all v ∈ vars(s) ∩ vars(s’).

A partial state s is a state if vars(s) = V. An atom is a pair of a variable and one of

its values.

• O is a set of operators with preconditions pre(o) and effects eff(o), which are both

partial variable assignments over V . An operator o ∈ O is applicable in a state s if s

complies with pre(o), in which case o can be applied, resulting in the successor state s′

that complies with eff(o) and satisfies s′[v] = s[v] for all v /∈ vars(eff(o)).

• s0 ∈ S+
V denotes the initial state and is a complete assignment over V . The goal s∗ is

a partial assignment. A plan or solution is an operator sequence π = 〈o1, ..., on〉 that

is applicable to s0 resulting in a state that complies with s∗.

• The function cost : O → R+
0 assigns a non-negative cost to each operator. We call the

plan π = 〈o1, ..., on〉 with the smallest cost(π) =
∑n
i=1 cost(oi) an optimal solution.
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Given a planning task we try to find either:

• A plan, which is a sequences of actions leading from the initial state to a goal state

• Or a proof that no plan exists

Classical planning is a sub-category of planning with a static, deterministic and fully observ-

able environment. Planning is usually subdivided in optimal and suboptimal planning. The

difference is that in the first case we have to guarantee that the returned plans have minimal

overall cost while in the second case we trade in that optimality expecting a performance

gain in return.

2.2 Open lists
Open lists are used to keep track of candidate nodes for expansion. They manage the nodes

generated by the parent node (leaves of a search tree). With their help we decide which

node to expand next. The choice of data structure depends on the search strategy but the

interface for the methods needed usually remains the same:

• is empty() returns true if the list has no values

• pop() removes and returns the next node to expand

• insert(n) inserts node n into the open list

2.3 Heuristics
A heuristic function or heuristic for S is a function h : S → R+

0 ∪{∞} mapping each state to

a non-negative number (or∞). The purpose of this function is to provide distance estimates

from a state s to the closest goal state. The perfect heuristic h∗(s) always returns the cost

of an optimal solution for s (or∞ if no solution exists). A Heuristic h can have the following

properties:

• admissibility: h(s) ≤ h∗(s) ∀s ∈ S

• consistency: h(s) ≤ cost(a) + h(s′) for all transitions s
a−→ s′

• goal-awareness: h(s) = 0 ∀s∗ ∈ S∗

• safeness: h∗(s) =∞ for all s ∈ S with h(s) =∞
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2.4 Best-First Search
A search node is implemented as a data structure holding information about:

• the corresponding state

• the parent node

• the path cost necessary to reach it

• the operator applied to reach it

Best-first search is a forward state space search, which means that it starts of at the initial

state and tries to find a path to a goal state by expanding the most promising (search)

node first. Expanding a node means generating all its children by applying the operators

with met preconditions. An expanded node is noted as closed. Oftentimes a closed list is

used to keep track of them. This us to check if a state already exists as a search node,

also known as duplicate detection. It is also necessary for the concept of reopening a node,

where a duplicate node is expanded if we find a cheaper path to its state. Reopening is an

important feature as it guarantees that algorithms such as A∗ can find optimal solutions

with inconsistent (but admissible) heuristics.
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Novelty-Guided Search

Novelty-guided search, also known as width-based search, is an approach that relies on a

width parameter binding the complexity of classical planning problems. Lipovetzky and

Geffner [7] have shown that the width of many domains is small and bounded provided

that the goals are restricted to single atoms. Furthermore they have proven that classical

planning tasks can be solved in time exponential in the width of the problem.

One example of an implementation for such an algorithm would be the Iterated Width search

(IW) [7]. IW(k) is a normal breadth-first search that prunes all newly generated states with

a novelty > k where the novelty of a state is defined as follows [3]:

Definition 2. The novelty w(s) of a state s is i iff there is a tuple t of i atoms such that

s is the first state in the search that makes all the atoms in t true, and no tuple of smaller

size has this property.

Since our search algorithm is only using the novelty for exploration we do not need to imple-

ment every step from IW. All that is needed is a novelty bound n passed to the framework

as a parameter of the search engine. This bound n specifies the level precision of the novelty

measures. For example with a level precision of 3 the state has either a novelty of 1,2,3

or larger than 3. For each state generated we then calculate its novelty with the specified

precision and if the novelty exceeds the bound we return the value n+1. Nodes with a state

that has a heuristic value which is bigger than the bound will not be inserted in the open list.

To check whether the novelty of a state is d or below we have to check all partial states

of size d. This means that for every state we consider we have to check the subsets of size

d; d ∈ [1..n]. This process can be accelerated drastically if we cache all the possible subsets

and create a lookup table where we keep track of the encountered partial states as described

in [8]. An additional list containing the offsets of these subsets is kept in memory for faster

lookups. The number of possible subsets is described as:

l =

n∑
x=1

(
m

x

)
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where m is the number of variables. Both the list of subsets and the list of offsets are of

size l. For the sake of convenience we define the list of subsets subs as a list of sets ordered

by inclusion. A simple way to compute this list is to generate all the subsets su with size

1 ≤ |su| ≤ n of the powerset P (V ) with V = {v0, v1, ..., vm}. The actual offset values and

lookup table size depend on domain sizes |Dv| of the variables as well. With x ∈ [0, l], the

offset of the x-th subset sux
can be calculated as follows:

offset(sux
) =

0, if x = 0

offset(sux − 1) +
∏|sux |
z=0 |Dvz |, otherwise

The partial state s+ for a given subset su is defined as: s+ = {v 7→ s[v] | ∀v ∈ su}. To get the

offset of a partial state we need the position of s+ with respect to all possible assignments.

This means that if s+ is the i-th partial state possible in su we get calculate offset(s+) =

offset(su) + i. The novelty w(s) of a given state can be computed using a sample algorithm

as follows:

Algorithm 1 computeNovelty

novelty = n + 1
for subset in subsets do

partial state = get partial(subset, state)
offset = calculate offset(partial state)
if !encountered partial states[offset] then

novelty = min(novelty, subset.size())
encountered partial states[offset] = true

end if
end for

Since it is important that we update all entries in the lookup table we have to finish the

loop even if we find a cell that holds a false value. We can however exploit the fact that a

check of the subsets of size d guarantees that the novelty is x or below. This means that if

we cycle through the subsets from biggest to smallest we can abort the check if we find no

false entry for all subsets of a particular size d and set w(s) = d+ 1.

Example 1. Look up whether a given partial state has been encountered

• Variables: V = {vo, v1, v2, v3}

• Variable domain sizes: |Dv0 | = 4, |Dv1 | = 5, |Dv2 | = 3, |Dv3 | = 1

• Variable domains: Dv = {0, .., |Dv| − 1} ∀v ∈ V

• Subsets: subs = 〈{v0, v1}, {v0, v2}...{v2, v3}〉

• Novelty bound: n = 2

• State: s = {v0 7→ 2, v1 7→ 4, v2 7→ 1, v3 7→ 0}

• Example subset: su = {v1, v2}
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In this example the offsets, calculated as described above, would be: off = {0, 20, 32, 36, 51, 56}.
The example subset su produces the partial state s+ = {v1 7→ 4, v2 7→ 1}. We now look up

the offset value of the subset {1,2} which is 36 and then we add s[v1] · |Dv2 | + s[v2] to get

the real offset 49 of our partial state. If cell 49 in encountered partial states holds false we

know that the novelty is 2 or below.

In our implementation of the novelty computation we add an extended version of the novelty

wh(s), which takes an additional heuristic h into account. The computation of wh(s) is

exactly the same as above except that we initialize a lookup table for each distinct h(s)

value. This modification helps avoiding thrashing of the lookup table which would cause the

search to have a lot of low novelty values at the start and barely any states with w(s) ≤ n

in the later stages.



4
Bounded Suboptimal Search

The main idea of a bounded suboptimal search is to sacrifice the optimality of the plan

and get a solution more quickly in return. The solution cost is guaranteed to be within

a certain range from the optimal cost, adjustable by a weighting parameter w. Solutions

that give us this guarantee are named w-admissible solutions. A well known example of an

algorithm returning such solutions is the weighted A∗ algorithm [9]. As the name suggests

it is a modified version of the optimal A∗ with the difference that its evaluation function

f ′(n) = g(n)+w ·h(n) places additional emphasis on the estimated cost-to-go h(n). Usually

a single admissible heuristic is used for both objectives, the determination of the search

order and the guarantee of the cost bound. It is however possible to use different heuris-

tics for these two aspects. This approach is the essence of the Explicit Estimation Search

(EES), introduced by Thayer and Ruml [2]. In EES a potentially inadmissible heuristic is

chosen for guiding the search while admissible information ensures the suboptimality bound.

In this paper we build upon the idea of EES to obtain a w-admissible solution but use a

slightly modified implementation. The algorithm uses a potentially inadmissible distance-to-

go estimator d̂(n), which tries to approximate the number of actions along a minimum-cost

path from n to a goal. This idea is based on A∗ε [10], where a focal list sorted on d̂(n) is kept

up-to-date. The next nodes are then chosen from that list if they are within the specified

suboptimality bound f(n) ≤ w · f(bestf ), where bestf is the node on the open list with the

smallest f(n). The tendency of f(n) rising along the path consequently leads to children of

an expanded node not being inserted in focal as well as bestf having a low depth and high

d̂. This can cause a serious thrashing problem, where the focal list is repeatedly emptied

until bestf is expanded. That expansion raises the bound condition and thus more children

of the expanded node are included in focal.

EES combats this issue with introducing another list into the mix, which sorts the generated

nodes on f̂(n) = g(n)+ ĥ(n), where ĥ is a potentially inadmissible cost-to-go estimator. Be-

cause the algorithm relies on the unbiased ĥ to form its focal list the tendency for estimated

costs to always rise is tempered and thus the thrashing behaviour observed in A∗ε is avoided.
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For the node selection strategy we define bestf̂ and bestd̂ as follows:

bestf̂ = arg min
n∈open

f̂(n)

bestd̂ = arg min
n∈open∧f̂(n)≤w·f̂(bestf̂ )

d̂(n)

We also have to keep track of the following lists:

• open: Contains all open nodes, sorted on f̂(n)

• cleanup: Contains all open nodes, sorted on f(n)

• focal : Contains all open nodes with f̂(n) ≤ w · f̂(bestf̂ ) sorted on d̂

With these terms defined we select our next node using the following conditions:

Algorithm 2 selectNode

if f̂(bestd̂) ≤ w · f(bestf ) then
bestd̂

else if f̂(bestf̂ ) ≤ w · f(bestf ) then
bestf̂

else
bestf

end if

First bestd̂ is considered provided that the focal list is not empty. If its expected solution

cost is not within the bound we check if bestf̂ satisfies the condition. The expansion of bestf̂
can potentially relax the bound w · f̂(bestf̂ ) raising the number of possible candidates for the

focal list. This can lead to a new bestd̂, which may have a lower f value and consequently be

chosen in the next iteration of the node selection. Worst case we choose bestf and therefor

potentially raise the lower bound w ·f(bestf ). which might lead to choosing bestd̂ or bestf̂ in

the next iteration. As proven by Thayer and Ruml [2], EES guarantees that f(n) ≤ w ·g(opt)

for all expanded nodes n, where g(opt) is the cost of an optimal solution. This conclusion

means that EES provides w-admissible solutions. We must make sure that the constraint

ĥ(n) ≥ h(n) is validated which therefor limits our options in choice of heuristics.
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Combination

The central idea of this thesis was to combine the novelty measures with the bounded sub-

optimal search, specifically the EES algorithm. This is done using the procedure presented

in the previous chapter with the novelty approach in place of the distance-to-go estimator

d̂. We need a way too handle the nodes which are not in the bound restriction for the focal

list, since it is still possible that bestf̂ rises along the path. One way to solve this issue is

to introduce one more list that holds exactly these nodes. With this backup list in place we

have the possibility to move nodes over to the focal list once we expand a new bestf̂ with a

higher solution cost estimate. Furthermore because the novelty of a state does not change,

the focal and backup list can just ignore all nodes with a novelty that exceeds our novelty

bound nb. Looking at those requirements a possible lineup for our lists would be:

• open: Contains all generated nodes, sorted on f̂(n)

• cleanup: Contains all generated nodes, sorted on f(n)

• focal : Contains all generated nodes with d̂(n) ≤ nb ∧ f̂(n) ≤ w · f̂(bestf̂ ) sorted on d̂

• backup: Contains all generated nodes with d̂(n) ≤ nb ∧ f̂(n) > w · f̂(bestf̂ ) sorted on

f̂(n)

Most implementation details for the search engine are the same or similar to the eager search,

which is already included in the Fast Downward framework. Each node is inserted in open,

cleanup and backup. Major differences occur mainly in the function fetch next node which

is, as the name already suggests, responsible for choosing the node we want to expand next.
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Algorithm 3 fetchNextNode

1: procedure fetch next node
2: if open.is empty() then return notsolvable
3: end if
4: bestf ← fetch bestf () . From cleanup
5: bestf̂ ← fetch bestf̂ () . From open
6: while true do
7: if backup.is empty() then
8: break
9: end if

10: node← backup.remove min()

11: if f̂(node) ≤ w · f̂(bestf̂ ) then

12: focal.insert(node) . Move nodes from backup to focal
13: else
14: backup.insert(node) . Reinsert node
15: break
16: end if
17: end while
18: bestd̂ ← fetch bestd̂() . From focal

19: if f̂(bestd̂) ≤ w · f(bestf ) then
20: cleanup.insert(bestf ) . Reinsert bestf
21: open.insert(bestf̂ ) . Reinsert bestf̂
22: return bestd̂
23: else
24: focal.insert(bestd̂) . Reinsert bestd̂
25: end if
26: if f̂(bestf̂ ) ≤ w · f(bestf ) then

27: cleanup.insert(bestf ) . Reinsert bestf
28: return bestf̂
29: else
30: open.insert(bestf̂ ) . Reinsert bestf̂
31: return bestf
32: end if
33: end procedure

Notice that we have to explicitly fetch bestf , because it is possible that the cleanup list

contains closed nodes because it would be too costly to go through all 3 lists every time a

node is removed from one. This means we have to iterate through the list discarding nodes

until we hit one that is not closed. The same thing happens when we fetch bestd̂ and bestf̂ .

Furthermore we need to pay attention to moving the nodes from backup to focal. This is a

cheap operation since backup is ordered on f̂ and thus we can abort as soon as one node

has a heuristic value over the bound. Open lists in Fast Downward do not provide a peek

operation. However we can get the function values of the nodes on removal, which means

we do not have to recompute the values (lines 11,19,26). Since they get cached computation

on reinserting is not necessary either (lines 14,20,21,24,27,30). The same applies for the

calculation of the novelty wh(s) where we use ĥ as our heuristic for the extension of w(s).

Looking at the algorithms 2 things become apparent:
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1. The lower the weight w the more often we disregard the focal and backup lists and

choose bestf . That means the search behaves more like A*.

A high w emphasizes the exploration aspect of the search.

2. The higher nb the novelty bound the more we have to compute while gaining “only”

1 level of precision. Since determining that w(s) is i is exponential in i-1 only 2 or 3

level precision is used in the best-first width search. As a consequence thereof setting

the novelty bound too high can have a negative effect on the performance.

From these 2 points we can draw the conclusion that a high w in combination with a low

nb will probably not be a good idea.
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Evaluation

In this chapter we present the results as well as an evaluation of the conducted experiments.

Goal of this work was to determine the usefulness of the of the integration of a novelty guided

approach in bounded suboptimal search. First we compare different runs of our search

algorithm presented in Chapter 5 with the objective of determining the best parameter

choice. Thereafter we compare these findings to weighted A∗, using different weighting

parameters in the process. Finally we proceed to evaluate the results of the two approaches

introduced in Chapter 3 and 4 separately with the intention of observing their impact on

already implemented search engines. The search options used in our experiments can be

found in Appendix A.

6.1 Setup
The experiments were run using the lab Python module on a cluster of Intel R© Xeon R©

processors running CentOS 6.5 at 2.2GHz at the center for scientific computing at the

University of Basel (sciCORE ). A memory limit of 2 GB and a time limit of 3 minutes has

been set for all tasks. For the compilation of our planning system Fast Downward we used

GCC 4.8.1 targeting a 32 bit release. The benchmark consists of 1,667 problems from 40

different domains.

6.2 Comparing Novelty Bounds
As mentioned in Chapter 5 the choice of a novelty bound heavily impacts the number of

operations that have to be performed for the calculation of the novelty. A higher bound

may lead to more nodes being inserted in our focal list and may improve the results. For

this reason we ran the benchmarks with 3 different novelty bounds nb = {1, 2, 3}, so we

could find out the most suitable choice for our domain. Our own implementation based on

the description in Chapter 5 will from now on be labeled as bsw〈h, ĥ, novnb
〉 where h is the

admissible, ĥ the (potentially) inadmissible and novnb
our novelty approach with the bound

nb and tie-breaking on g(n).
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Table 6.1: Summary of the search attributes of the runs using bsw with different novelty
values

Summary bsw(nb = 1) bsw(nb = 2) bsw(nb = 3) wA∗

Plan length - Sum 26962 26936 26945 27348
Memory - Sum 8337552 8491108 20315652 10079064
Generated - Geometric mean 9383.61 9379.55 9375.64 12664.49
Expansions - Geometric mean 1098.68 1100.06 1099.75 1493.06
Coverage - Sum 947 947 882 1027
Search time - Geometric mean 0.80 0.85 1.44 0.25

In our experiments we used h = hLM, the landmark cut heuristic [11] and ĥ = hFF, the FF-

heuristic [12], which is also used as the bucket heuristic in the determination of wh(s). This

configuration meets the requirements for the w-admissibility of solutions, since hFF ≥ hLM.

We expected better results in terms of number of expansions the higher we set our nb.

We also forecasted a higher memory usage on the basis of the lookup tables growing at an

exponential rate and having to keep track of more subsets. Based on these conditions we

projected a lower expansion per search time rate. This consequently could lead to lower

coverage due to time constraints.

Surprisingly changing nb from one to two does not seem to have a very big effect on any

attribute (see Figure 6.1). This indicates that in almost all problem-domains we meet one

or both of these scenarios:

• We often have a node n with state s and wh(s) = 1 at the front of our focal queue,

• or often fall back to the open lists.

In both cases runs with different bounds fetch the same node for their next expansion. A

different weight w could change that as more nodes from focal are allowed to be selected.

The second step from nb = 2 to nb = 3 has significantly higher impact on the search

attributes and proves us right in our predictions. Coverage and expansion rate dropped

considerably as we can see in Figure 6.2. The sum of memory used more than doubled in

this step. These are all direct consequences of the overhead introduced by a higher precision.

It should also be noted that some tasks could not be solved with nb = 3 because the number

of variables and/or the size of the variable domains makes the size of the lookup tables

too big. An example thereof would be problem 20 from the domain logistics98. It has 50

variables and each has a big domain size. In this particular instance we would have to store

8,339,805,951 booleans in our tables, which is inconceivable. On the other hand with a

nb = 2 this number is reduced down to 7,150,018 booleans.

Because nb = 2 does not introduce much overhead when compared to n = 1 and the

additional precision may be useful when operating with different weights, we used it for the

comparison against weighted A∗ in the next step.
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Figure 6.1: Comparison of expansions between bsw(nb = 1) and bsw(nb = 2) with w = 2
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Figure 6.3: Comparison of expansions between bsw(nb = 1) and weighted A∗ with w = 2
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Figure 6.4: Comparison of expansions between bsw(nn = 2) and weighted A∗ with w = 2
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6.3 Comparing Weights
In this section we compare the impact of the weighting parameter w on our algorithms.

Since we decided based on the results from above to set our bound to nb = 2 we are going

to contrast bsw〈hLM, hFF, nov2〉 and weighted A∗ (wA∗) with h = hLM with the weights

w = {2, 3}. In Fast Downward the weight option, also used by wA∗, is implemented as an

integer value. In bsw however it is also possible to specify a w as a decimal number, because

it is only used in the bound checking and not in the evaluation functions themselves. As a

consequence we additionally evaluated bsw with w = 1.5.

We confirm when looking at Figure 6.4 and Figure 6.3 that the number of expanded nodes

appears to be lower in most domains which speaks for the guiding aspect of our search. In

addition to that Table 6.1 confirms that the total memory used by bsw is lower than in wA∗.
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Figure 6.5: Comparison of expansions between bsw(nb = 2) with w = 1.5 and bsw(nb = 2)
with w = 3.0
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w = 1.5 w = 2.0 w = 3.0

Coverage bsw(nb = 2) bsw(nb = 2) weighted A∗ bsw(nb = 2) weighted A∗

airport (50) 20 21 31 20 31

barman-opt11-strips (20) 0 1 4 4 4

barman-opt14-strips (14) 0 0 0 0 0

blocks (35) 26 30 32 32 35

childsnack-opt14-strips (20) 0 0 0 2 0

depot (22) 9 9 9 9 12

driverlog (20) 14 14 15 14 15

elevators-opt08-strips (30) 24 25 22 25 26

elevators-opt11-strips (20,20,20,19,20) 19 19 18 18 19

floortile-opt11-strips (20) 6 6 13 10 9

floortile-opt14-strips (20) 5 5 16 10 12

freecell (80) 15 24 13 41 20

ged-opt14-strips (20) 15 19 15 19 15

grid (5) 2 2 2 3 2

gripper (20) 7 20 20 20 20

hiking-opt14-strips (20) 9 12 9 19 11

logistics00 (28) 20 25 28 27 28

logistics98 (35) 7 7 16 9 15

miconic (150) 147 147 150 147 150

movie (30) 30 30 30 30 30

mprime (35) 27 24 21 22 20

mystery (30) 18 17 15 16 15

nomystery-opt11-strips (20) 15 18 18 18 14

openstacks-opt08-strips (30) 14 14 16 14 16

openstacks-opt11-strips (20) 9 9 11 9 11

openstacks-opt14-strips (20) 1 1 1 1 1

openstacks-strips (30) 7 7 7 15 7

parcprinter-08-strips (30) 20 17 30 14 30

parcprinter-opt11-strips (20) 14 13 20 10 20

parking-opt11-strips (20) 6 15 9 6 9

parking-opt14-strips (20) 4 16 7 8 10

pathways-noneg (30) 5 6 8 6 13

pegsol-08-strips (30) 27 30 27 30 28

pegsol-opt11-strips (20) 17 20 17 20 18

pipesworld-notankage (50) 20 25 21 26 25

pipesworld-tankage (50) 11 13 10 13 14

psr-small (50) 48 48 49 48 49

rovers (40) 7 13 18 18 19

satellite (36) 11 11 13 11 14

scanalyzer-08-strips (30) 14 13 19 15 20

scanalyzer-opt11-strips (20) 11 10 15 11 16

sokoban-opt08-strips (30) 27 28 29 29 29

sokoban-opt11-strips (20) 19 20 20 20 20

storage (30) 15 15 17 19 18

tetris-opt14-strips (17) 3 3 5 5 7

tidybot-opt11-strips (20) 14 13 15 14 16

tidybot-opt14-strips (20) 6 6 10 8 12

tpp (30) 6 10 8 12 10

transport-opt08-strips (30) 12 11 11 11 11

transport-opt11-strips (20) 8 7 7 7 7

transport-opt14-strips (20) 7 7 6 6 7

trucks-strips (30) 10 15 16 16 15

visitall-opt11-strips (20) 12 12 17 15 19

visitall-opt14-strips (20) 8 8 10 9 12

woodworking-opt08-strips (30) 18 16 27 21 30

woodworking-opt11-strips (20) 13 10 19 15 20

zenotravel (20) 10 10 15 11 15

Sum (1667) 869 947 1027 1008 1071
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As expected we achieve a higher coverage with a higher w for both algorithms. Figure 6.6

again confirms that when comparing number of expanded and generated nodes we can see

a trend of them being lower in bsw for most domains. In domains like elevators, freecell,

parking and pegsol there is a big improvement over wA∗. The only 3 domains where wA∗

is substantially lower of bsw in terms of expansions are floortile, sokoban and visitall. The

low correlation on floortile and visitall are likely due to hFF not performing very well in

these domains and bsw being misled when a node from the open list is expanded, while in

the third domain sokoban novelty measures seem to be a poor choice of guiding method.

These conclusions coincide with the results obtained in the experiments run by Lipovetzky

and Geffner [13] where they set different algorithms using novelty measures in contrast to

state-of-the-art algorithms like FF [12].
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Figure 6.6: Comparison of expansions between bsw(nb = 2) and weighted A∗ with w = 3

6.4 Alternatives
When using our implementations of EES and novelty measures separately we can observe

an improvement over weighted A∗ in almost all statistical attributes. Two algorithms

are compared to weighted A∗ with the landmark and cut heuristic. All three are us-

ing a weight of w = 2. The impact of the novelty guided search was tested using a

weighted A∗ algorithm that breaks ties using the novelty of states. EES was run with

ees〈h = hLM, ĥ = hFF, d̂ = hFF’〉. The heuristic hFF
′

is the FF-heuristic with the cost

adapted to one which acts as a distance-to-go estimator. For the tie-breaking approach we
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set the novelty bound to 2 and used hLM as the bucket heuristic to avoid the need for com-

putation of additional heuristic values. Both configurations reach a higher coverage than

weighted A∗. The tie-breaking results are very close to weighted A∗ in terms of coverage

and mean search time while the geometric mean of expanded nodes is slightly lower as seen

on Figure 6.7. A larger improvement was observed when analyzing the outcome of EES.

The mean search time as well as the sum of memory used is lower. Figure 6.8 and Table 6.2

show that the number of generated and expanded nodes are much lower across almost all

domains with the exception of the two domains floortile and visitall. The negative results

in these domains can be explained with the same reasoning as above, since hFF is being

used here as well. Measured on memory consumption ees is by a factor 0.65 more efficient

than the best of the other two algorithms. This can be explained with the lower number of

generated nodes, which leads to less memory usage.

Table 6.2: Summary of the search attributes for the runs using the implementations of our
search engine components separately

Summary wA∗ tie<wA∗, nov2 > ees

Plan length - Sum 35999 37096 36504
Memory - Sum 14876532 15126440 9523920
Generated - Geometric mean 20926.90 19148.35 2576.71
Expansions - Geometric mean 2360.67 2164.33 298.77
Coverage - Sum 1027 1029 1070
Search time - Geometric mean 0.46 0.37 0.47
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Figure 6.7: Comparison of expansions between weighted A∗ and weighted A∗ with novelty
measures on tie break and w = 2
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Figure 6.8: Comparison of expansions between ees and weighted A∗ with w = 2
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Conclusion and Future Work

We started off this thesis by introducing the novelty of a state. We then went on to describe

the EES algorithm and explain how it is able to outperform previous bounded suboptimal

search approaches. As a next step we looked at how novelty guided search can be used in

place of the distance-to-go estimator in EES, combining the two ideas. We elaborated how

the different novelty bounds affect the overall performance of the algorithm. The findings

from this section were then used to compare our algorithm against weighted A∗ with different

weights. As a final step we looked at both components of the search engine separately.

An evaluation of the results illustrated a tendency of a lower number of expanded and gen-

erated nodes when comparing bsw to weighted A∗ in most problem-domains. The mean

search time on the other hand was considerably higher. This means we got a lower expan-

sion rate as a result of our approach being computationally intensive which in turn lead to

the coverage being lower. A higher time limit may have a positive effect for bsw on the

comparison of coverage between the two algorithms. This speculation is based upon the

fact that there are still problems open in domains where bsw showed promising results, for

example in freecell, but would need further testing to be confirmed. When examining all

algorithms used in our evaluation pure EES clearly returned us the best results. Although

the overhead that EES introduced when compared to wA∗ is noticeable we still get better

results across almost all statistical attributes.

One possibility for future work would be to implement multiple heuristic functions for wh

instead of just one as described in [3]. As the amount of subsets we check in our calculation

of novelty remains static during the search it would also be pretty easy to group them

in chunks and parallelize this calcuation. With a decreased overhead in calculations the

algorithm may turn out to be more effective than weighted A∗.
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A
Appendix

Search options used with the Fast Downward planning system:

Weighted A∗ with h = hLM and w = 2:

• –search “lazy wastar(lmcut(),w=2)”

bsw with h = hLM ,ĥ = hFF and nov2, w = 2.0

• –heuristic “hff=ff()” –search “bsw(eval=lmcut(),inad=hff,exp=novelty(n=2,bh=hff),w=2.0)”

ees with h = hLM ,ĥ = hFF ,d̂ = hFF
′

and w = 2.0

• –search “bsw(eval=lmcut(),inad=ff(),exp=ff(transform=adapt costs(one)),w=2.0)”

Weighted A∗ with h = hLM , w = 2, ties broken with nov2

• –heuristic “hlm=lmcut()”

–search “lazy(tiebreaking([sum([g(),weight(hlm,2)]),

novelty(n=2,bh=hlm)],pref only=false,unsafe pruning=false),reopen closed=true)”
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