

Combining Novelty-Guided and Bounded Suboptimal Search

Gian-Andrea Wetten <gian-andrea.wetten@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

September 11th 2017

- Find a series of actions which lead from the initial state to a goal state
- > Examples:
 - > Tidybot
 - > Blocks world

- > Forward state space search
- > Expanding the most promising node first
- > Examples:

) GBFS:
$$f(n) = h(n)$$

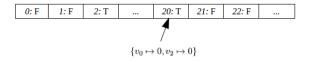
)
$$A^*$$
: $f(n) = g(n) + h(n)$

Definition

The **novelty** w(s) of a state s is i iff there is a tuple t of i atoms such that s is the first state in the search that makes all the atoms in t true, and no tuple of smaller size has this property.

Examples: IW, IW+, SIW

- > List of subsets
- > List of offsets


> Lookup table for encountered partial states

> Variables: $V = \{v_0, v_1, v_2, v_3\}$

> Variable domain sizes: $|D_{v_0}| = 4, |D_{v_1}| = 5, |D_{v_2}| = 3, |D_{v_3}| = 1$

> Variables: $V = \{v_0, v_1, v_2, v_3\}$

- > Variable domain sizes: $|D_{v_0}| = 4$, $|D_{v_1}| = 5$, $|D_{v_2}| = 3$, $|D_{v_3}| = 1$
- > Subsets: *subs* = $\langle \{v_0, v_1\}, \{v_0, v_2\}...\{v_2, v_3\} \rangle$
- > Offsets: $off = \{0, 20, 32, 36, 51, 56\}$

Example

Subset: $s_u = \{v_1, v_2\}$ produces $s^+ = \{v_1 \mapsto 4, v_2 \mapsto 1\}$ off $(s_u) = 36$

$$off^*(s^+) = 36 + s[v_1] \cdot |D_{v_2}| + s[v_2] = 49$$

Yes if cell 49 in encountered_states holds false

Example

Subset: $s_u = \{v_1, v_2\}$ produces $s^+ = \{v_1 \mapsto 4, v_2 \mapsto 1\}$ off $(s_u) = 36$ off $^*(s^+) = 36 + s[v_1] \cdot |D_{v_2}| + s[v_2] = 49$

Yes if cell 49 in encountered_states holds false

Continue iterating through all remaining subsets

Bounded Suboptimal Search

Motivation

- > Reduce memory requirements
- > Reduce search time
- > Bind solution cost

Earlier approaches

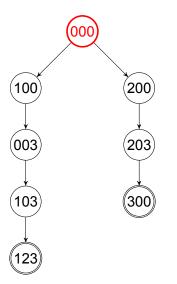
- > Weighted A^* : $f'(n) = g(n) + w \cdot h(n)$
- > Optimistic Search
- $> A_{\epsilon}^*$
- > Explicit Estimation Search

 A^*_ϵ :

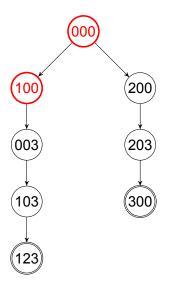
- > open list: sorted on f(n)
- > *focal* list: nodes with $f(n) \le w \cdot f(\textit{best}_f)$ sorted on distance-to-go estimator $\hat{d}(n)$
- > Thrashing problem leads to poor performance

Explicit Estimation Search (EES):

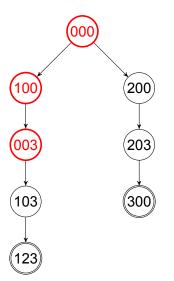
- > open list: sorted on $\hat{f}(n)$
- > *cleanup* list: sorted on f(n)
- > *focal* list: nodes with $\hat{f}(n) \le w \cdot \hat{f}(\textit{best}_{\hat{f}})$ sorted on distance-to-go estimator $\hat{d}(n)$

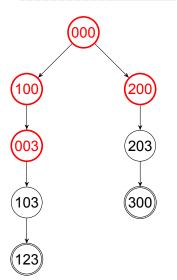

Explicit Estimation Search (EES): selectNode

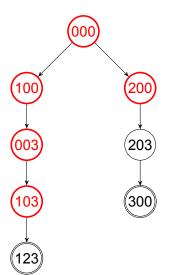
- 1. if $\hat{f}(\textit{best}_{\hat{d}}) \leq w \cdot f(\textit{best}_{f})$ then $\textit{best}_{\hat{d}}$
- 2. else if $\hat{f}(\textit{best}_{\hat{f}}) \leq w \cdot f(\textit{best}_{f})$ then $\textit{best}_{\hat{f}}$
- 3. else $best_f$


 $\hat{h}(n) \ge h(n)$

Combining Novelty-Guided and Bounded Suboptimal Search:


- $> w_h(s)$: one lookup table per unique heuristic value h(s)
- \geq EES with *focal* sorted on w_h instead of \hat{d}
- > Additional inclusion restriction for *focal*: $w_h(s) \le nov_b$


S	W	\widehat{f}	f
100	1	4	4
200	1	5	3


S	w	\widehat{f}	f
100	1	4	4
200	1	5	3
003	1	4	4

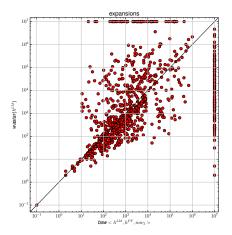
S	W	\hat{f}	f
100	1	4	4
200	1	5	3
003	1	4	4
103	2	4	4

s	w	\hat{f}	f
100	1	4	4
200	1	5	3
003	1	4	4
103	2	4	4
203	2	5	3

s	w	\hat{f}	f
100	1	4	4
200	1	5	3
003	1	4	4
103	2	4	4
203	2	5	3
123	2	4	4

- > Implemented in the Fast Downward planning system (C++)
- > 2GB memory limit
- > Three minute time limit

- > Picking a novelty bound
- > Effect of the weighting parameter
- > Heuristics used:

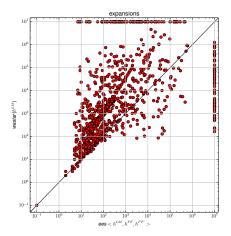

$$\begin{array}{l} h = h^{LM} \\ \hat{h} = h^{FF} \\ \end{array}$$

 $> w_{h^{FF}}(s)$

Summary of the search attributes of the runs using *bsw* with different novelty values

Summary	$bsw(n_b = 1)$	$bsw(n_b = 2)$	$bsw(n_b = 3)$	$\mathbf{W}A^*$
Plan length - Sum	26962	26936	26945	27348
Memory - Sum	8337552	8491108	20315652	10079064
Generated - Geometric mean	9383.61	9379.55	9375.64	12664.49
Expansions - Geometric mean	1098.68	1100.06	1099.75	1493.06
Coverage - Sum	947	947	882	1027
Search time - Geometric mean	0.80	0.85	1.44	0.25

Evaluation


Comparison of expansions between $bsw(n_n = 2)$ and weighted A^* with w = 2

	w = 1.5	w = 2.0		w = 3.0	
Coverage	$bsw(n_b = 2)$	bsw($n_b = 2$)	weighted A^*	bsw($n_b = 2$)	weighted A^*
Nr. of problems 1667	869	947	1027	1008	1071

Summary of the search attributes for the runs using the implementations of the search engine components separately

Summary	$\mathbf{W}A^*$	${\sf tie}{<}{\sf w}A^*, nov_2>$	ees
Plan length - Sum	35999	37096	36504
Memory - Sum	14876532	15126440	9523920
Generated - Geometric mean	20926.90	19148.35	2576.71
Expansions - Geometric mean	2360.67	2164.33	298.77
Coverage - Sum	1027	1029	1070
Search time - Geometric mean	0.46	0.37	0.47

Evaluation

Comparison of expansions between ees and weighted A^* with w = 2

- > Tendency of a lower number of expanded and generated nodes
- > Higher mean search time
- > Lower coverage
- > Good results with pure EES

Questions?