
Exploring The Prioritized Incremental
Heuristic

Bachelor thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Thomas Keller

Daniel Weissen

daniel.weissen@stud.unibas.ch

17-065-723

12.10.2020

Acknowledgments

I want to thank Prof. Dr. Malte Helmert for accepting my request to do this thesis and

giving me the opportunity to work on such an interesting topic. Special thanks to my

supervisor Dr. Thomas Keller for helping me throughout the completion of this thesis.

Thomas was very generous with his time and his advice and feedback was always useful and

very much appreciated.

Abstract

This thesis discusses the PINCH heuristic, a specific implementation of the additive heuris-

tic. PINCH intends to combine the strengths of existing implementations of the additive

heuristic. The goal of this thesis is to really dig into the PINCH heuristic. I want to

provide the most accessible resource for understanding PINCH and I want to analyze the

performance of PINCH by comparing it to the algorithm on which it is based, Generalized

Dijkstra.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 2

2.1 Classical Planning . 2

2.2 Relaxation Heuristics . 3

2.3 Additive Heuristic . 4

2.3.1 Relaxed Planning Graph . 4

2.3.2 Understanding the Additive Heuristic 5

2.3.3 Implementations of the Additive Heuristic 7

2.3.3.1 Value Iteration . 7

2.3.3.2 Value Iteration with Value Ordering 7

2.3.3.3 Generalized Dijkstra . 7

2.3.3.4 Incremental Value Iteration 8

3 The PINCH Method 10

3.1 PINCH, The Best of Both Worlds . 10

3.2 The Algorithm in Depth . 12

3.3 PINCH more Formally . 18

3.3.1 Why PINCH Changes Equations (2.1) and (2.2) 18

3.3.2 DynamicSWSF-FP . 21

3.4 Expanding PINCH Beyond Unit Cost . 22

3.5 Improved PINCH . 22

4 Evaluation 24

4.1 Summary of Methods . 24

4.2 Evaluation . 25

4.2.1 General Overview . 25

4.2.2 Search Time . 25

4.2.3 The Incremental Benefit . 27

4.2.3.1 Introducing the Factors . 28

Table of Contents v

4.2.3.2 Results . 30

4.2.3.3 Conclusion . 32

4.2.4 Comparing PINCH and GD Directly 33

4.2.4.1 Introducing the Factors . 33

4.2.4.2 Results . 33

4.2.4.3 Conclusion . 34

5 Conclusion 35

Bibliography 36

Declaration on Scientific Integrity 37

1
Introduction

Heuristic search planners like HSP 2.0 [1], FF [2] or Fast Downward [3] transform planning prob-

lems described in a planning domain language (PDDL) into heuristic search problems. They derive

heuristic values from the encoding of the planning problem and use these values to perform a heuris-

tic forward or backward search in the space of world states. The goal is to find a path from a given

initial state to a goal state. There are many different ways of extracting informed heuristic values

from encoded planning problems. One of the most successful approaches is to consider a version

of the planning problem where all delete effects of all actions are ignored (often referred to as a

relaxed planning problem) and use the approximation of the relaxed planning cost as the heuristic

value. One such way of approximating the relaxed planning cost is the additive heuristic.

When finding a plan for a problem, heuristic search planners spend the majority of the planning

time calculating heuristic values, for HSP 2.0 about 80% of the planning time [4]. It therefore

makes sense that, if we want to speed up the planning time, changing the way the heuristic values

are computed should yield the most beneficial results.

For the additive heuristic, there are many different methods of computing the heuristic values. Per-

haps the most intuitive one is to construct a relaxed planning graph and compute a plan for said

graph. A different method uses a process called value iteration which iteratively updates variable

values until none change in an iteration. An improvement on the value iteration approach is to order

the value updates such that it leads to a quicker solution. An alternative way of speeding up the

calculation uses information from previously determined heuristic values by performing incremental

calculations.

The goal of this thesis is to explore a specific implementation of the additive heuristic. The PINCH

(Prioritized, INCremental, Heuristic calculation) method, as described by Yaxin Liu, Sven Koenig

& David Furcy [5], aims to combine both variable ordering and the reuse of information of previous

heuristic values (incremental calculation). It is said to dramatically improve planning times com-

pared to most alternative implementations of the additive heuristic[5]. My aim is to provide an in

depth look at PINCH and to implement and test the PINCH method and describe both its benefits

and failings.

2
Background

First it is important to explain the various concepts we will be using throughout the thesis.

We will cover classical planning, relaxation heuristics and the additive heuristic.

2.1 Classical Planning
Planning refers to the process of finding a plan from a given initial state to a goal state.

Classical planning refers to the process of finding a plan for a subset of problems, mainly

those problems that are static, deterministic and fully observable. These problems are usu-

ally described with the use of a planning formalism. Planning formalisms allow us to encode

problems in a concise and easily understandable way. Common planning formalisms are

STRIPS, ADL, SAS+ and PDDL. For the purpose of this thesis we will focus on STRIPS-

style planning tasks enhanced with action costs.

A problem, encoded in STRIPS, is given as input to a planner. The job of the planner is

to find a solution (=plan) for the problem. To describe how a planner finds a solution it is

useful to introduce a more formal definition of a STRIPS planning task.

A STRIPS planning task is a 4-tuple Π = 〈V, I,G,A〉 where:

• V : finite set of state variables

• I ⊆ V : the initial state

• G ⊆ V : the set of goals

• A: finite set of actions

For each action a ∈ A we also define:

• pre(a) ⊆ V : the preconditions of a

• add(a) ⊆ V : the add effects of a

• del(a) ⊆ V : the delete effects of a

• cost(a) ∈ N0: the cost of a

Background 3

The solution for a STRIPS planning task is a plan from the initial state I to one of the

goal states G and an optimal solution is a plan with the lowest cost. To find a solution, the

planner induces a state space Ω(Π) := 〈S,A, cost, T, s0, S∗〉 where:

• S: set of states = 2V = (power set of V)

• A: actions as defined in Π

• cost: costs as defined in Π

• T : transitions s
a−→ s′ for states s, s′ and action a iff:

– pre(a) ∈ s (preconditions satisfied)

– s′ = (s \ del(a)) ∪ add(a) (delete and add effects are applied)

• s0: initial state s0 = I

• S∗: set of goal states s ∈ S∗ for state s iff G ⊆ s (goals reached)

A planner can then find a solution for the state space Ω using different search algorithms.

As they are generally faster heuristic based search algorithms such as A* are usually used.

The question now is how heuristic values can be derived from STRIPS encodings.

2.2 Relaxation Heuristics
There are many different ways of deriving heuristic values from STRIPS encodings, one of

the most successful approaches is to consider a relaxed version of the planning task.

A relaxed version of a planning task is identical to the original except for one important

difference, for every action a ⊆ A the delete effects del(a) are ignored. This means that, in

a relaxed planning task, applying an action to a state always leads to a state where more

or an equal number of state variables are true. This trivializes the search significantly as

applying any possible action at any possible step of the search is certain to at the very least

not undo any progress we have made. To put it differently, every action brings us closer

to the goal or it keeps us at a consistent distance to the goal, we never take a step backwards.

To define a relaxed planning task more formally let us first introduce a relaxed version

a+ of an action a with:

• pre(a+) = pre(a)

• add(a+) = add(a)

• cost(a+) = cost(a)

• del(a+) = ∅

A relaxed version Π+ of a STRIPS planning task Π = 〈V, I,G,A〉 is defined as:

Π+ := 〈V, I,G, {a+|a ∈ A}〉

Background 4

Let s0, ..., sn ∈ S be states and a1, ..., an ∈ A be actions such that s0
a1

−→ s1, ..., sn−1 an

−−→ sn.

A plan is a sequence of actions π = 〈a1,..., an〉 that leads from s0 to sn. The cost of a plan is

defined as cost(π) =
∑n

i=1 cost(ai), the optimal plan π∗ is the plan with minimum cost(π)

among all plans π ∈ Λ, with Λ being the set of all plans from a given s0 and sn. A plan for

Π+ is denoted by π+ which is also called a relaxed plan for Π. h+(Π) denotes the cost of

an optimal plan for Π+ and h+(s) denotes the cost of an optimal plan for Π+ starting in

state s ⊆ S. h+ is called the optimal relaxation heuristic.

The question now is how this relaxed version Π+ of a STRIPS planning task Π helps us find

informed heuristic values for Π. The general idea is to use the cost of an optimal relaxed

plan h+(s) as heuristic values for each state s ⊆ S. Unfortunately, there is a catch with this

idea. The computation of h+ is NP-hard. It is not feasible to use h+ as heuristic values since

the computation would take too much time, therefore we have to approximate h+ in a time

efficient manner. The domain of relaxation heuristics cover different ways of approximating

h+. One such form of approximation is the additive heuristic.

2.3 Additive Heuristic
The additive heuristic (hadd) is a relaxation heuristic and therefore it has the central goal of

approximating h+ in a time efficient manner. In order to properly explain how hadd works,

we first introduce the concept of a relaxed planning graph.

2.3.1 Relaxed Planning Graph
A relaxed planning graph is a graphical representation of the variables in Π+ which can

be reached and how they can be reached. To explain how a relaxed planning graph works

and what information is displayed let us first look at the following example. Consider the

relaxed planning task Π+ = 〈V, I,G,A〉 with:

• V = {a, b, c, d, e, f, g, h}

• I = {a}

• G = {c, d, e, f, g}

• A = {a1, a2, a3, a4, a5, a6}

• a1 = a
3−→ b, c

• a2 = a, c
1−→ d

• a3 = b, c
1−→ e

• a4 = b
1−→ f

• a5 = d
1−→ e, f

• a6 = d
1−→ g

Background 5

The relaxed planning graph for this task now looks as follows:

a0

b0

c0

d0

e0

f0

g0

h0

a1

a1

b1

c1

d1

e1

f1

g1

h1

a1

a2

a3

a4

a2

b2

c2

d2

e2

f2

g2

h2

a1

a2

a3

a4

a5

a6

a3

b3

c3

d3

e3

f3

g3

h3

c3

d3

e3

f3

g3

G

Figure 2.1: Relaxed planning graph

The graph is structured in a series of variable layers V i and action layers Ai where:

• variable layer V 0 contains the variable vertex v0 for all v ∈ I

• action layer Ai+1 contains the action vertex ai+1 for action a if V i contains the vertex

vi for all v ∈ pre(a)

• variable layer V i+1 contains the variable vertex vi+1 if the previous variable layer

contains vi or the previous action layer contains ai+1 with v ∈ add(a)

• goal vertices Gi are reached if vi ∈ V i for all v ∈ G

• directed edges:

– from vi to ai+1 if v ∈ pre(a) (precondition edges)

– from ai to vi if v ∈ add(a) (effect edges)

– from vi to Gi if v ∈ G (goal edges)

– from vi to vi+1 (no-op edges)

We can now use this relaxed planning graph to help us understand how the additive heuristic

works.

2.3.2 Understanding the Additive Heuristic
The central goal of all relaxation heuristics is to approximate h+. We can think of h+ as

the optimal sequence of actions to reach the goal vertex G form variable layer V 0. In order

to approximate h+, hadd annotates all vertices and all actions with numerical values. These

values estimate the cost to reach a vertex or to reach all preconditions of an action. We use

gs(v) to denote the estimate cost of achieving variable v ∈ V from state s ⊆ S, and gs(a)

to denote the estimate cost of achieving all preconditions of action a ∈ A from state s ⊆ S.

hadd updates the variable and action values according to the following equations:

Background 6

gs(v) =

0 if v ∈ s

mina∈A|v∈add(a)[cost(a) + gs(a)] otherwise
(2.1)

gs(a) =
∑

v∈pre(a)

gs(v) (2.2)

Note that if v ∈ pre(a) := ∅ then
∑

v∈pre(a) gs(v) := 0 and if a ∈ A|v ∈ add(a) := ∅ then

mina∈A|v∈add(a)[gs(a)] :=∞.

hadd makes the fundamental assumption that in order to reach action a ∈ A, all precondi-

tions pre(a) of a must be reached independently of another, hence the summation in (2.2).

This makes hadd a pessimistic algorithm, as it assumes the worst case scenario of needing

to reach all precondition variables independently of another. Now lets look at a version of

the previous relaxed planning graph, but this time with the annotated hadd cost values:

0

b0

c0

d0

e0

f0

g0

h0

0

0

3

3

d1

e1

f1

g1

h1

0

3

6

3

0

3

3

4

7

4

g2

h2

0

3

6

3

4

4

0

3

3

4

7

4

5

h3

3

4

5

4

5

21

hadd({a}) = 21

Figure 2.2: Relaxed planning graph with hadd values

We will not cover how the relaxed planning graph updates its cost values layer by layer, the

relaxed planning graph serves us as an intuitive visual aid, the underlying algorithm is not

important for this thesis. Important to note is that the final variable and action layer give

us the final hadd cost values, which all agree with equations (2.1) and (2.2).

The actual heuristic value is given by the cost value of the goal vertex. There are im-

plementations of hadd that build this relaxed planning graph and determine the heuristic

value by traversing the graph, but these implementations are very slow and currently rarely

used [5]. For us this graph serves more so as an intuitive basis for understanding hadd, it

is not to be confused with the actual algorithms that today are used to compute hadd. I

would now like to explore some relevant implementations of hadd.

Background 7

2.3.3 Implementations of the Additive Heuristic
While the construction of a relaxed planning graph is a very intuitive and easily comprehen-

sible way of understanding hadd, it is not a good implementation of the heuristic in terms

of performance. We will now look at relevant concepts for implementing hadd.

2.3.3.1 Value Iteration

The central idea of the value iteration (VI) approach is to iterate over all variables and

operators and updated their cost values according to Equation (2.1) and (2.2). This is done

until no cost values change in an iteration. This method is fast because it does not build

a relaxed planning graph, but it is not ideal since it randomly iterates over all variables

and operators. The majority of the variables/operators that are considered in each iteration

will not change their cost value, the VI approach therefore wastes a lot of time looking at

variables/operators which are irrelevant for the current iteration. Following is pseudo code

for a version of VI, going forward we will use xq (or xv/xa to be specific) to refer to the

annotated cost values of a variable or operator:

Algorithm 1: Value Iteration

1 Function VI(state s):

2 for each q ∈ V ∪A \ s do set xq :=∞;

3 for each v ∈ s do set xv := 0;

4 repeat

5 for each a ∈ A do set xa := cost(a) +
∑

v∈pre(a) xv;

6 for each v ∈ V \ s do set xv := mina∈A|v∈add(a)[xa];

7 until the values of all xq remain unchanged during an iteration;

8 return
∑

v∈G xv;

2.3.3.2 Value Iteration with Value Ordering

Value ordering (VO) seeks to correct for the main deficiency of the VI approach. By ordering

the value updates, a VO approach mitigates the amount of unnecessary work done and

mainly considers only those variables or operators whose values are likely to change in an

iteration.

2.3.3.3 Generalized Dijkstra

One of the most successful hadd algorithms is often referred to as Generalized Dijkstra

(GD). GD takes VO to an extreme degree, it does not iterate over all variables/operators,

it systematically updates variables in a fashion that guarantees that GD only has to update

each variable and operator once. GD uses a priority queue to keep track of the variables

whose cost values are most likely to change. It orders the value updates by first considering

variables with a low cost and gradually works up to variables with higher cost. Following is

pseudo code for GD:

Background 8

Algorithm 2: Generalized Dijkstra

1 Function GD(state s):

2 queue = priority queue over (value, variable) pairs ordered by value;

3 forever do

4 for each v ∈ V do set xv := ∞;

5 for each a ∈ A do set xa := cost(a);

6 for each v ∈ s enqueue with (0, v);

7 while the priority queue is not empty do

8 (val, var) = pop element with highest priority;

9 if xvar < val then

10 continue;

11 if if var is last unsatisfied goal variable then

12 return
∑

v∈G xv;

13 foreach a ∈ A|var ∈ pre(a) do

14 xa := xa + val;

15 mark precondition var of a as satisfied;

16 if all preconditions of a satisfied then

17 if xa < xadd(a) then

18 xadd(a) := xa;

19 enqueue with (xa, add(a));

20 return deadend;

2.3.3.4 Incremental Value Iteration

Just like VI, incremental value iteration (IVI) approaches generally sweep over all vari-

ables/operators. The difference here is that previous information from previously calculated

heuristic values is used to speed up the calculation. The central idea is to not recalculate

annotated hadd cost values for those variables or operators, for which we know for certain

that their cost values have not changed for the current calculation. The following pseudo

code is different from VI by only setting xq := ∞ once for all q ∈ V ∪ A \ s. It generally

assumes that most xq remain unchanged, if this assumption holds true it can speedup the

heuristic calculation significantly. Unfortunately this assumption can also lead to IVI not

finding a solution, in which case normal VI is called. IVI has produced promising results in

some domains when compared to normal VI [5].

Background 9

Algorithm 3: Incremental Value Iteration

1 Function IVI(state s):

2 if s is initial state then

3 for each q ∈ V ∪A do set xq :=∞;

4 set threshold for number of iterations;

5 for each v ∈ s do set xv := 0;

6 set iterations counter := 0;

7 repeat

8 for each a ∈ A do set xa := cost(a) +
∑

v∈pre(a) xv;

9 for each v ∈ V \ s do set xv := mina∈A|v∈add(a)[xa];

10 increase counter by 1;

11 if counter is above threshold then

12 return VI(s);

13 until the values of all xq remain unchanged in an iteration;

14 return
∑

v∈G xv;

3
The PINCH Method

Now that we have laid a foundation, let us talk about the main topic of this thesis, the

Prioritized INCremental Heuristic (PINCH). PINCH was introduced by Yaxin Liu, Sven

Koenig and David Furcy in their 2002 paper ”Speeding Up the Calculation of Heuristics for

Heuristic Search-Based Planning”. It is a method for calculating hadd that combines the

previously introduced Generalized Dijkstra Algorithm with the Incremental Value Iteration

approach.

3.1 PINCH, The Best of Both Worlds
Previously we have discussed two methods for computing hadd, Generalized Dijkstra (GD)

and Incremental Value Iteration (IVI). Both methods come with their strengths and weak-

nesses. GD is very efficient at computing hadd for a single state, but in the larger context

of an entire state space GD doesn’t make use of previously calculated hadd values. In other

words, GD treats each state as its own entity, it doesn’t take into consideration the simi-

larities certain states might share. IVI methods account for similarities between different

states, they remember the previously annotated hadd cost values but they are considerably

worse at evaluating a single state when compared to GD. Another way of thinking about it

is that IVI methods take a holistic approach, they consider, as best they can, information

from the entire state space. GD takes a reductionist approach, its focus is solely on one

state an makes its computation as efficient as possible.

PINCH aims to combine the strengths of both GD and IVI. This is a non trivial task as the

differences between GD and IVI methods appear in many ways irreconcilable. GD makes

the fundamental assumption that cost values cannot increase during the computation of

heuristic values, IVI methods violate this property. To show how PINCH works we will look

at the pseudo code for PINCH and work through the algorithm step by step. Following is

the pseudo code for PINCH.

The PINCH Method 11

Algorithm 4: PINCH

1 Function AdjustVariable(q):

2 if q ∈ V then

3 if q ∈ s then

4 set rhsq := 0;

5 else

6 set rhsq := mina∈A|v∈add(a)[1 + xa];

7 else

8 /*q ∈ A*/

9 set rhsq := 1 +
∑

v∈pre(a) xv;

10 if q is in the priority queue then

11 delete it;

12 if xq 6= rhsq then

13 insert q into the priority queue with priority min(xq, rhsq);

14 Function SolveEquations():

15 while the priority queue is not empty do

16 delete the element with the smallest priority from the queue and assign it to q;

17 if rhsq < xq then

18 set xq := rhsq;

19 if q ∈ V then

20 foreach a ∈ A such that q ∈ pre(a) do

21 AdjustVariable(a);

22 else

23 foreach v ∈ add(q) with v /∈ s do

24 AdjustVariable(v);

25 else

26 set xq :=∞;

27 AdjustVariable(q);

28 if q ∈ V then

29 foreach a ∈ A such that q ∈ pre(a) do

30 AdjustVariable(a);

31 else

32 foreach v ∈ add(q) with v /∈ s do

33 AdjustVariable(v);

34 Function PINCH(state s):

35 if s is initial state then

36 empty the priority queue;

37 foreach q ∈ V ∪A do

38 set xq :=∞;

39 foreach q ∈ V ∪A do

40 AdjustVariable(q);

41 else

42 foreach v ∈ (s \ s′) ∪ (s′ \ s) do

43 AdjustVariable(v);

44 SolveEquations();

45 set s′ := s;

46 return 1/2
∑

v∈G xv;

The PINCH Method 12

3.2 The Algorithm in Depth
I want to explain PINCH by taking the algorithm through an example. Lets consider the

following planning task Π+ = 〈V, I,G,A〉 with:

• V = {a, b, c, d, e, f, g}

• I = {a, b}

• G = {c, d, e, f, g}

• A = {a1, a2, a3, a4, a5, a6}

• a1 = a
1−→ b, c

• a2 = a, c
1−→ d

• a3 = b, c
1−→ e

• a4 = b
1−→ f

• a5 = d
1−→ e, f

• a6 = d
1−→ g

We will compute PINCH(s) for the current state s. For the computation PINCH will use

information from the previous state s′. s and s′ are defined as follows:

• s′ = I = {a, b} • s = {a, c}

Since PINCH is an incremental algorithm the cost values of s′ are relevant for the compu-

tation of s, therefore lets take a look at s′:

0

0

c0

d0

e0

f0

g0

h0

1
+1

1
+1

0

0

2

d1

e1

2

g1

h1

1
+1

3
+1

3
+1

1
+1

0

0

2

4

4

2

g2

h2

1
+1

3
+1

3
+1

1
+1

5
+1

5
+1

0

0

2

4

4

2

6

h3

2

4

4

2

6

18

hadd(s′) = 34/2 = 9

old state s′

q xq rhsq

a 0 0

b 0 0

c 2 2

d 4 4

e 4 4

f 2 2

g 6 6

a1 1 1

a2 3 3

a3 3 3

a4 1 1

a5 5 5

a6 5 5

In the table on the right you will find the annotated cost values xq for all q ∈ V ∪A, you will

also find a column for a property named rhsq, we will explain the utility of this property as

we go along. On the left you see the relaxed planning graph (RPG) for s′. PINCH does not

build a RPG but this visualization will help us understand the algorithm.

You may have noticed that the annotated cost values aren’t calculated the way that was

introduced in equations (2.1) and (2.2), this is because PINCH changes these equations as

follows:

The PINCH Method 13

g′s(v) =

0 if v ∈ s

mina∈A|v∈add(a)[1 + g′s(a)] otherwise
(3.1)

g′s(a) = 1 +
∑

v∈pre(a)

g′s(v) (3.2)

It is trivial to show that gs(v) = 1/2 g′s(v) and therefore hadd(s) =
∑

v∈G gs(v) = 1/2
∑

v∈G g
′
s(v).[5]

This version of PINCH works for planning tasks with unit cost, meaning that every action

a ∈ A|cost(a) = 1. We will explore the reason for PINCH changing these equations in

chapter 3.3. For now I want to provide an intuitive example that gives a basic impression

of how PINCH works, a more formal exploration of the algorithm follows in chapter 3.3.

Starting with the algorithm, I want to focus on lines 42 and 43. Since s is not the initial state

this is where the algorithm begins. Here we call AdjustVariable(q) for each v ∈ (s\s′)∪(s′\s).
In our example v ∈ (s \ s′) = c and v ∈ (s′ \ s) = b. Before we call AdjustVariable(q) on c

and b, lets first think about the state of our state s. State s is currently an exact copy of

s′ (which you can see on page 12). In PINCH we never reinitialize any xq to an arbitrary

value, the xq and rhsq values at the beginning of the computation of s are therefore identical

to its predecessor state s′.

Lines 1 - 13 in the pseudo code cover the AdjustVariable(q) procedure. In this procedure

the rhsq component is set according to equations (3.1) and (3.2) and the q are inserted

into the priority queue (PQ) with value min(xq, rhsq) if xq 6= rhsq. Here the utility of

the rhsq component starts to show, rhsq is used to compare the current cost value of q,

represented by rhsq, with its previous cost value, represented by xq. We have just updated

rhsq and we only insert it into the PQ if rhsq 6= xq. Lets see what happens to s after we

call AdjustVariable(q) on b and c.

The PINCH Method 14

0

0

c0

d0

e0

f0

g0

h0

1
+1

1
+1

0

0

2

d1

e1

2

g1

h1

1
+1

3
+1

3
+1

1
+1

0

0

2

4

4

2

g2

h2

1
+1

3
+1

3
+1

1
+1

5
+1

5
+1

0

0

2

4

4

2

6

h3

2

4

4

2

6

18

new state s

q xq rhsq

a 0 0

b 0 2

c 2 0

d 4 4

e 4 4

f 2 2

g 6 6

a1 1 1

a2 3 3

a3 3 3

a4 1 1

a5 5 5

a6 5 5

PQ

b:0

c:0

The rhsq component of b was set to 2 and the one of c to 0. The RPG hasn’t changed as

it represents the xq and not the rhsq. The numbers in red represent the q whose values

have changed compared to the previous picture. Additionally we now track the state of the

priority queue, that currently holds b and c with value min(xq, rhsq).

Now we move on to Line 44 and therefore to the SolveEquations() procedure. This proce-

dure spans from line 14 - 33 and makes up the majority of the algorithm. The main purpose

of this procedure is to set the xq values and to call AdjustVariable(q) on all the q that are

affected by the newly set xq values. The q that are popped out of the PQ are treated based

on the relationship between rhsq and xq.

If rhsq > xq then xq is set to ∞ and we call AdjustVariable(q) for the current q and all q

that follow from the current q. This is done because in this scenario we do not know the

correct values for xq and therefore we dont know the values for all q that depend on the

current q.

if rhsq < xq then xq is set to rhsq. If this scenario occurs we know for certain that rhsq

holds the correct value. This comparison of xq and rhsq in combination with the PQ is

what allows PINCH to order value updates in a fashion similar to GD while also including

incremental value calculations.

Let us take a look at our example after b and c were popped and processed in SolveEqua-

tions().

The PINCH Method 15

0

b0

0

d0

e0

f0

g0

h0

1
+1

a1

b1

c1

d1

e1

f1

g1

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b ∞ 2

c 0 0

d 4 4

e 4 4

f 2 2

g 6 6

a1 1 1

a2 3 1

a3 3 ∞
a4 1 ∞
a5 5 5

a6 5 5

PQ

a2:1

a4:1

b:2

a3:3

Since the value of b was set to ∞, we can now infer that everything that relies on b might

have to be recalculated. This is why the rhsq of a3 and a4 were set to ∞. The RPG repre-

sents the current state by having removed every node that depends on b directly or indirectly.

The blue nodes in the RPG show us the incremental aspect of PINCH. Since a was never

inserted into the PQ, a itself and all q that solely depend on a (In this case a1) do not have

to be recalculated. The green nodes show us those q which PINCH had to recalculate and

for which PINCH has set the final xq value.

If we now pop a2 and process it the example looks as follows:

0

b0

0

d0

e0

f0

g0

h0

1
+1

1
+1

a1

b1

c1

d1

e1

f1

g1

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b ∞ 2

c 0 0

d 4 2

e 4 4

f 2 2

g 6 6

a1 1 1

a2 1 1

a3 3 ∞
a4 1 ∞
a5 5 5

a6 5 5

PQ

a4:1

d:2

b:2

a3:3

The PINCH Method 16

We will now see how the algorithm progresses as we continue to process the q. This is the

example after we pop a4, d:

0

b0

0

d0

e0

f0

g0

h0

1
+1

1
+1

a1

b1

c1

2

e1

f1

g1

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b ∞ 2

c 0 0

d 2 2

e 4 4

f 2 6

g 6 6

a1 1 1

a2 1 1

a3 3 ∞
a4 ∞ ∞
a5 5 3

a6 5 3

PQ

f :2

b:2

a5:3

a6:3

a3:7

The example after we pop f, b:

0

b0

0

d0

e0

f0

g0

h0

1
+1

1
+1

a1

2

0

2

e1

f1

g1

h1

3
+1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b 2 2

c 0 0

d 2 2

e 4 4

f ∞ 6

g 6 6

a1 1 1

a2 1 1

a3 3 3

a4 ∞ 3

a5 5 3

a6 5 3

PQ

a5:3

a6:3

a4:3

f :6

Interesting to note here is that the rhsq of a3 was set to 3, which is the same as the cost

value from the previous state. If a3 had additional q that solely rely on a3, then PINCH

would not recalculate the cost values for those q, meaning that the algorithm would once

more benefit from the incremental calculations.

The example after we pop a5, a6, a4:

0

b0

0

d0

e0

f0

g0

h0

1
+1

1
+1

a1

2

0

2

e1

f1

g1

h1

3
+1

3
+1

3
+1

3
+1

a2

b2

c2

d2

4

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b 2 2

c 0 0

d 2 2

e 4 4

f ∞ 4

g 6 4

a1 1 1

a2 1 1

a3 3 3

a4 3 3

a5 3 3

a6 3 3

PQ

f :4

g:4

The PINCH Method 17

The example after we pop f ,g:

0

b0

0

d0

e0

f0

g0

h0

1
+1

1
+1

a1

2

0

2

e1

f1

g1

h1

3
+1

3
+1

3
+1

3
+1

a2

b2

c2

d2

4

4

4

h2

a3

b3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b 2 2

c 0 0

d 2 2

e 4 4

f 4 4

g 4 4

a1 1 1

a2 1 1

a3 3 3

a4 3 3

a5 3 3

a6 3 3

PQ

The priority queue is now empty and therefore the SolveEquations() procedure is complete.

PINCH now sets hadd(s) = 1/2
∑

v∈G xv. If we fill in the remaining no-op edges the final

RPG looks as follows:

0

b0

0

d0

e0

f0

g0

h0

1
+1

1
+1

0

2

0

2

e1

f1

g1

h1

1
+1

1
+1

3
+1

3
+1

3
+1

3
+1

0

2

0

2

4

4

4

h2

a3

b3

c3

d3

e3

f3

g3

h3

0

2

4

4

4

14

hadd(s) = 14/2 = 7

new state s

q xq rhsq

a 0 0

b 2 2

c 0 0

d 2 2

e 4 4

f 4 4

g 4 4

a1 1 1

a2 1 1

a3 3 3

a4 3 3

a5 3 3

a6 3 3

PINCH will now set s′ = s which can be seen in Line 45 of the Algorithm. Now the next

state is computed in the same fashion that we have just seen. Lines 35 - 40 set up PINCH

for its first computation of the initial state I. Since there is no s′ in this instance, PINCH

will treat the initial state I in a fashion similar to GD.

The PINCH Method 18

3.3 PINCH more Formally
We have just seen an Example of how PINCH processes the computation of the hadd value

for state s. Now I want to further explain some of the details of the algorithm and give a

more formal explanation of how and why PINCH works.

For us to understand PINCH more formally we first have to introduce the concept of a

strict weakly superior function (SWSF). A SWSF is a function g(x1, ..., xj , ..., xk) : Rk
+ −→

R+ where for every j ∈ 1...k it is monotone non-decreasing in variable xj and satisfies:

g(x1, ..., xj , ..., xk) ≤ xj −→ g(x1, ..., xj , ..., xk) = g(x1, ...,∞, ..., xk).

The SWSF fixed point (in short: SWSF-FP) problem is to compute the unique fixed point

of k equations, namely the equations xi = gi(x1, ..., xk), in the k variables x1, ..., xk, where

the gi are SWSF for i = 1...k. The dynamic SWSF-FP problem is to maintain the unique

fixed point of the SWSF equations after some or all of the functions gi have been replaced by

other SWSF’s. DynamicSWSF-FP solves the dynamic SWSF-FP problem efficiently by re-

calculating only the values of variables that change, rather than the values of all variables. [5]

3.3.1 Why PINCH Changes Equations (2.1) and (2.2)
PINCH uses DynamicSWSF-FP, it therefore requires for functions gi to be SWSF. This is

why equations (2.1) and (2.2) have to be replaced with equations (3.1) and (3.2), as equation

(2.2) specifically is not a SWSF. Following is an example to help us understand how all these

concepts relate to PINCH.

Consider the following planning task Π+ = 〈V, I,G,A〉 with:

• V = {a, b, c, d}

• I = {a}

• G = {b, c, d}

• A = {a1, a2}

• a1 = a
1−→ b, c

• a2 = c
1−→ d, a

• s = I = {a}

Now consider the following functions: gi(xa, xb, xc, xd, xa1
, xa2

) and g′i(xa, xb, xc, xd, xa1
, xa2

),

where xq ∈ (xa, ..., xa2
) denote the current cost values for q ∈ (a, ..., a2). The functions are

defined as follows:

gi(xa, xb, xc, xd, xa1 , xa2) = gs(i), where i refers to the q (not xq) of the ith entry of the

input arguments of gi(xa, ..., xa2) and gs(i) is equation (2.1) if i ∈ V or equation (2.2) if

i ∈ A. g′i(xa, xb, xc, xd, xa1 , xa2) alternatively uses equation (3.1) and (3.2).

The PINCH Method 19

Now let us apply these functions to our example, imagine that the xq are currently set as

follows: (xa = 0, xb = ∞, xc = ∞, xd = ∞, xa1
= 0, xa2

= ∞). Following we test if equa-

tions g1 to g6 are SWSF. The X indicate that the equation is a SWSF, the × indicate that

the equation is not a SWSF.

g1(0,∞,∞,∞, 0,∞) = gs(a) = 0 −→ g1(0,∞,∞,∞, 0,∞) = g1(∞,∞,∞,∞,∞,∞) = 0X

g2(0,∞,∞,∞, 0,∞) = gs(b) = 1 −→ g2(0,∞,∞,∞, 0,∞) = g2(0,∞,∞,∞, 0,∞) = 1X

g3(0,∞,∞,∞, 0,∞) = gs(c) = 1 −→ g3(0,∞,∞,∞, 0,∞) = g3(0,∞,∞,∞, 0,∞) = 1X

g4(0,∞,∞,∞, 0,∞) = gs(d) =∞ −→ g4(0,∞,∞,∞, 0,∞) = g4(0,∞,∞,∞, 0,∞) =∞X

g5(0,∞,∞,∞, 0,∞) = gs(a1) = 0 −→ g5(0,∞,∞,∞, 0,∞) 6= g5(∞,∞,∞,∞,∞,∞) =∞×
g6(0,∞,∞,∞, 0,∞) = gs(a2) =∞ −→ g6(0,∞,∞,∞, 0,∞) = g6(0,∞,∞,∞, 0,∞) =∞X

Equation g5 is not a SWSF since it does not fulfill the properties of a SWSF. We can

therefore conclude that we cannot use equations (2.1) and (2.2) for the DynamicSWSF-FP

algorithm on which PINCH is based. Now let us test if equations g′1 to g′6 are SWSF, note

that xa1 is now set to 1 to make the two examples equivalent:

g′1(0,∞,∞,∞, 1,∞) = g′s(a) = 0 −→ g′1(0,∞,∞,∞, 1,∞) = g′1(∞,∞,∞,∞,∞,∞) = 0X

g′2(0,∞,∞,∞, 1,∞) = g′s(b) = 2 −→ g′2(0,∞,∞,∞, 1,∞) = g′2(0,∞,∞,∞, 1,∞) = 2X

g′3(0,∞,∞,∞, 1,∞) = g′s(c) = 2 −→ g′3(0,∞,∞,∞, 1,∞) = g′3(0,∞,∞,∞, 1,∞) = 2X

g′4(0,∞,∞,∞, 1,∞) = g′s(d) =∞ −→ g′4(0,∞,∞,∞, 1,∞) = g′4(0,∞,∞,∞, 1,∞) =∞X

g′5(0,∞,∞,∞, 1,∞) = g′s(a1) = 1 −→ g′5(0,∞,∞,∞, 1,∞) = g′5(0,∞,∞,∞,∞,∞) = 1X

g′6(0,∞,∞,∞, 1,∞) = g′s(a2) =∞ −→ g′6(0,∞,∞,∞, 1,∞) = g′6(0,∞,∞,∞, 1,∞) =∞X

All functions g′i are SWSF. PINCH can use equations (3.1) and (3.2) since gs(v) = 1/2 g′s(v)

and therefore hadd(s) =
∑

v∈G gs(v) = 1/2
∑

v∈G g
′
s(v).

To give a more intuitive basis for the utility of SWSF, lets reexamine the example from

chapter 3.2, this time we use equations (2.1) and (2.2) to update the cost values (The RPG

is irrelevant for what we are about to discuss, hence it is absent):

a0

a0

c0

d0

e0

f0

g0

h0

a1

a1

c1

d1

e1

f1

g1

h1

a2

a2

c2

d2

e2

f2

g2

h2

a3

a3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 2

b 0 1

c 1 0

d 2 2

e 2 2

f 1 1

g 3 3

a1 0 0

a2 1 1

a3 1 1

a4 0 0

a5 2 2

a6 2 2

PQ

b:0

c:0

The PINCH Method 20

The state of the algorithm is identical to the one on page 14. Now lets pop c:

a0

a0

c0

d0

e0

f0

g0

h0

a1

a1

c1

d1

e1

f1

g1

h1

a2

a2

c2

d2

e2

f2

g2

h2

a3

a3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b 0 1

c 0 0

d 2 2

e 2 2

f 1 1

g 3 3

a1 0 0

a2 1 0

a3 1 0

a4 0 0

a5 2 2

a6 2 2

PQ

b:0

a2:0

a3:0

After we pop c the priority queue contains 3 entries with the value 0. Here we run into a

tie breaking issue as we have no guarantee over which q will be popped next. Now lets pop

first a3 and then b:

a0

a0

c0

d0

e0

f0

g0

h0

a1

a1

c1

d1

e1

f1

g1

h1

a2

a2

c2

d2

e2

f2

g2

h2

a3

a3

c3

d3

e3

f3

g3

h3

new state s

q xq rhsq

a 0 0

b ∞ 1

c 0 0

d 2 2

e 2 1

f 1 1

g 3 3

a1 0 0

a2 1 ∞
a3 0 ∞
a4 0 0

a5 2 2

a6 2 2

PQ

a3:0

a2:1

b:1

e:1

After we pop a3 PINCH mistakenly believed to have assigned the correct value to a3, only

for it to be reinserted into the priority queue after we pop b. This means that PINCH at

a minimum will update the cost value of a3 3 times. The example demonstrates how the

value ordering of PINCH relies on equations (3.1) and (3.2), if we use equations (2.1) and

(2.2) PINCH loses its vital property of only having to update each cost value at most twice.

[5]

The PINCH Method 21

3.3.2 DynamicSWSF-FP
If we view PINCH through the lens of DynamicSWSF-FP, then we are merely searching

for the unique fixed point of the k equations xi = gi(x1, ..., xk), in the k variables x1, ..., xk

where gi are SWSF for i = 1...k.

If xi = gi(x1, ..., xk), then we call xi consistent, otherwise it is called inconsistent. If

xi < gi(x1, ..., xk) we refer to it as underconsistent and if xi > gi(x1, ..., xk) we refer to

it as overconsistent. PINCH has set the correct cost values for all xq ∈ V ∪ A once they

are all consistent. PINCH uses the variables rhsi to keep track of the current values of

gi(x1, ..., xk). It always holds that rhsi = gi(x1, ..., xk) (Invariant 1). PINCH compares

xi and rhsi to check whether xi is overconsistent or underconsistent. PINCH maintains a

priority queue that always contains exactly the inconsistent xi with priorities min(xi, rhsi)

(Invariant 2). [5]

PINCH calls AdjustVariable() for each xq to ensure that Invariants 1 and 2 hold before it

calls SolveEquations() for the first time. It needs to call AdjustVariable() only for those xq

whose function gq has changed before it calls SolveEquations() again. The invariants will

automatically continue to hold for all other xq.[5]

SolveEquations() then adjusts the values of the inconsistent xq. It always removes the xq

with the smallest priority from the priority queue. If xq is overconsistent then SolveEqua-

tions() sets it to the value of rhsq. This makes xq consistent. Otherwise xq is underconsistent

and SolveEquations() sets it to infinity. This makes xq either consistent or overconsistent.

In the latter case, it remains in the priority queue. SolveEquations() then calls AdjustVari-

able() to maintain the Invariants 1 and 2. Once the priority queue is empty, SolveEquations()

terminates since all xq are consistent. One can prove that PINCH changes the value of each

xq at most twice, namely at most once when it is underconsistent and at most once when it

is overconsistent, and thus terminates in finite time. [5] [6]

The authors of DynamicSWSF-FP have proved its correctness, completeness, and other

properties and applied it to grammar problems and shortest path problems. [6]

The PINCH Method 22

3.4 Expanding PINCH Beyond Unit Cost
PINCH, as it was introduced by Yaxin Liu, Sven Koenig and David Furcy in 2002 only

works for planning tasks Π+ = 〈V, I,G,A〉 where for every action a ∈ A|cost(a) = 1. [5]

As a part of this thesis, we have expanded PINCH to be applicable on planning tasks Π+

where for every action a ∈ A|cost(a) > 0. In order to do this we have to adjust equations

(3.1) and (3.2) as follows:

g∗s (v) =

0 if v ∈ s

mina∈A|v∈add(a)[cost(a) + g∗s (a)] otherwise
(3.3)

g∗s (a) = cost(a) +
∑

v∈pre(a)

g∗s (v) (3.4)

Since equations (3.3) and (3.4) are SWSF like equations (3.1) and (3.2) we are allowed

to use them for the computation of PINCH. By adding cost(a) in both equations, the

useful property of gs(v) = 1/2 g∗s (v) remains intact. Therefore hadd(s) =
∑

v∈G gs(v) =

1/2
∑

v∈G g
∗
s (v). This means that we have successfully expanded PINCH beyond unit costs

without raising its complexity.

3.5 Improved PINCH
The PINCH algorithm can be improved with a number of small optimizations. Consider,

for example, the case where q ∈ A has the smallest priority during an iteration of the

while-loop in SolveEquations() and rhsq < xq. At some point in time, SolveEquations()

then executes for each v ∈ add(q) with v /∈ s do AdjustV ariable(v). The for-loop iterates

over all variables that satisfy its condition. For each of them, the call AdjustVariable(v)

executes set rhsq := mina∈A|v∈add(a)[1+xa]. The calculation of rhsq therefore iterates over

all actions that contain v in their add list. However, this iteration can be avoided. Since

rhsq < xq according to our assumption, SolveEquations() sets the value of xq to rhsq and

thus decreases it. All other values remain the same. Thus, rhsv cannot increase and one can

recalculate it faster as follows: set rhsv := min(rhsv, 1 + xq). This and more optimizations

are implemented in the following Improved PINCH algorithm.[5] This is the algorithm we

use for our Evaluation, we have also added Equations 3.3 and 3.4 to make it applicable to

planning tasks with cost(a) > 0 for all a ∈ A.

The PINCH Method 23

Algorithm 5: Improved PINCH

1 Function AdjustVariable(q):

2 if xq 6= rhsq then

3 if q is not in the priority queue then

4 insert it with priority min(xq, rhsq);

5 else

6 change the priority of q in the priority queue to min(xq, rhsq);

7 else

8 if q is in the priority queue then

9 delete q from the priority queue;

10 Function SolveEquations():

11 while the priority queue is not empty do

12 assign the element with the smallest priority in the priority queue to q;

13 if q ∈ V then

14 if rhsq < xq then

15 delete q from the priority queue;

16 set xold := xq;

17 set xq := rhsq;

18 foreach a ∈ A such that q ∈ pre(a) do

19 if rhsa =∞ then

20 set rhsa := cost(a) +
∑

v∈pre(a) xv;

21 else

22 set rhsa := rhsa − xold + xq;

23 AdjustVariable(a);

24 else

25 set xq :=∞;

26 if q /∈ s then

27 set rhsq := mina∈A|v∈add(a)[cost(a) + xa];

28 AdjustVariable(q);

29 foreach a ∈ A such that q ∈ pre(a) do

30 set rhsa :=∞;

31 AdjustVariable(a);

32 else

33 if rhsq < xq then

34 delete q from the priority queue;

35 set xq := rhsq;

36 foreach v ∈ add(q) with v /∈ s do

37 rhsv = min(rhsv, cost(a) + xq);

38 AdjustVariable(v);

39 else

40 set xold := xq;

41 set xq :=∞;

42 set rhsq := cost(a) +
∑

v∈pre(a) xv;

43 AdjustVariable(q);

44 foreach v ∈ add(q) with v /∈ s do

45 if rhsv = cost(a) + xold then

46 set rhsv := mina∈A|v∈add(a)[cost(a) + xa];

47 AdjustVariable(v);

48 Function PINCH(state s):

49 if s is initial state then

50 empty the priority queue;

51 foreach q ∈ V ∪A do

52 set rhsq := xq :=∞;

53 foreach a ∈ A with pre(a) = ∅ do

54 set rhsa := xa := cost(a);

55 foreach p ∈ S do

56 rhsv := 0;

57 AdjustVariable(v);

58 else

59 foreach v ∈ (s \ s′) do

60 rhsv := 0;

61 AdjustVariable(v);

62 foreach v ∈ (s′ \ s) do

63 rhsv := mina∈A|v∈add(a)[cost(a) + xa];

64 AdjustVariable(v);

65 SolveEquations();

66 set s′ := s;

67 return 1/2
∑

v∈G xv;

4
Evaluation

Now it is time to see how PINCH stacks up against its non incremental counterpart Gener-

alized Dijkstra by comparing the two algorithms in a variety of domains.

4.1 Summary of Methods
For our implementation we have used the Fast Downward Planner. The search component

of the planner is written in c++. For our evaluation we compare (improved) PINCH and

GD. Both algorithms use a bucket based priority queue.

For the comparison we will use weighted A* with a weight of 2. The algorithms are com-

pared on a big collection of domains (Satisficing Track of IPC 1998-2018) with in total 2542

instances. The instances induce state spaces with action costs > 0. We track a number of

factors such as coverage, search time and different types of errors.

The experiments were done at the center for scientific computing (sciCORE) in Basel.

http://www.fast-downward.org/
https://scicore.unibas.ch/

Evaluation 25

4.2 Evaluation
4.2.1 General Overview
I want to start the evaluation by giving a basic picture of what the results are like.

Results
Property GD PINCH

Number of Runs 2542 2542
Coverage 1663 1630

Search out of Memory 138 229
Search out of Time 696 638

Search Time 1.08 1.84

Table 4.1: Summary of the Results, Search Time is the mean Search Time in seconds over
all Runs

Let us discuss the Results that we can see in Table 4.1. The coverage, meaning the number

of instances for which a plan was found, is comparable between the 2 algorithms. GD covers

a slightly larger amount, which will make sense as we continue to explore the evaluation.

Search out of Memory and Search out of Time tells us how many runs were interrupted

either due to memory or time constraints, the planning time was restricted to 30 minutes

and the memory to 3584Mib. PINCH runs out of memory more often than GD, this is likely

due to the priority queue storing both variables and actions in PINCH, whereas GD only

stores variables.

Perhaps the most interesting property is the Search Time. GD, on average, finds plans

about 1.7 times more quickly than PINCH.

4.2.2 Search Time
We have just seen that GD outperforms PINCH on average by a significant margin. Figure

4.1 shows us how GD and PINCH compare in terms of search time. The further away

an entry is from the diagonal line, the bigger the disparity for that entry between the two

algorithms. Here we can see that, while GD outperforms PINCH on average, PINCH clearly

has plenty of instances in its favour. To be exact, PINCH outperforms GD on 449 of the

2542 instances. Assuming that PINCH and GD roughly cover the same instances, that

would be 449 of the ∼1600 covered instances, meaning PINCH outperforms GD on circa

one fourth of the covered instances.

Evaluation 26

Figure 4.1: Search Time comparison Plot

I now want to explore the reasons for the inconsistent performance of PINCH. In order to

do this I have selected several domains from the set of domains in which PINCH either

performs exceptionally well, about the same as GD or significantly worse than GD (Table

4.2). The PINCH and GD favored domains were chosen based on the number of instances

in the domains and the degree to which either algorithm outperforms the other one. The

PINCH and GD favored domains are the 4 best domains for either algorithm when comparing

mean search time. The domains for the Equal grouping were chosen based on the number of

instances in the domains and the similarity in performance between PINCH and GD. The

domains in the Equal grouping are the 3 most similar domains between PINCH and GD

when comparing mean search time.

Domain Groups
PINCH favored Equal GD favored

satellite (SAT) miconic-fulladl (MIC) freecell (FRE)

logistics98 (LOG) caldera-sat18-adl (CAL) pipesworld-notankage (PIP)

woodworking-sat11-strips (WOO) schedule (SCH) spider-sat18-strips (SPI)

maintenance-sat14-adl (MAI) agricola-sat18-strips (AGR)

Table 4.2: grouping of domains according to search time performance

Evaluation 27

Going forward we will often use the abbreviations that you can see in parenthesis in Table

4.2 to refer to the domains. We will also use the colors from Table 4.2 (green/blue/red) to

show which domain is part of which group. If we plot only the instances from the domains

from Table 4.2 the plot looks as follows:

Figure 4.2: Search Time comparison Plot for the instances from the domains from Table 4.2

Interesting to note is that the instances in the PINCH favored and GD favored groupings

consistently outperform and have a tendency to outperform more strongly with increasing

size. The instances from the Equal group tend to favor GD on small instance sizes and

slowly start to favor PINCH with increasing size.

Now that we have selected our domains, we will analyze these domains for information that

might explain the performance of PINCH.

4.2.3 The Incremental Benefit
The main difference between GD and PINCH are the incremental calculations that PINCH

uses. In order for us to quantify how big the incremental benefit is that PINCH can derive

from a given instance, we have to come up with factors that are related to the incremental

benefit.

Evaluation 28

4.2.3.1 Introducing the Factors

I want to explain the factors that I use to quantify the incremental benefit by demonstrating

them on our example from chapter 3.2. Remember that the final result of the Example from

chapter 3.2 looks as follows:

0

b0

0

d0

e0

f0

g0

h0

1
+1

1
+1

0

2

0

2

e1

f1

g1

h1

1
+1

1
+1

3
+1

3
+1

3
+1

3
+1

0

2

0

2

4

4

4

h2

a3

b3

c3

d3

e3

f3

g3

h3

0

2

4

4

4

14

hadd(s) = 14/2 = 7

new state s

q xq rhsq

a 0 0

b 2 2

c 0 0

d 2 2

e 4 4

f 4 4

g 4 4

a1 1 1

a2 1 1

a3 3 3

a4 3 3

a5 3 3

a6 3 3

The blue nodes tell us which q did not have to be recalculated and were taken over from s′.

In this example s and s′ were set as follows:

• s′ = I = {a, b} • s = {a, c}

Now lets consider a new example with the same state space from chapter 3.2 but with:

• s′ = {a, b, c, d} • s = {a, b, c, d, e}

The final result for s′ in this instance looks as follows:

0

0

0

0

e0

f0

g0

h0

1
+1

1
+1

1
+1

1
+1

1
+1

1
+1

0

0

0

0

2

2

2

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

6

old state s′

q xq rhsq

a 0 0

b 0 0

c 0 0

d 0 0

e 2 2

f 2 2

g 2 2

a1 1 1

a2 1 1

a3 1 1

a4 1 1

a5 1 1

a6 1 1

Evaluation 29

The final result for s in this instance looks as follows:

0

0

0

0

0

f0

g0

h0

1
+1

1
+1

1
+1

1
+1

1
+1

1
+1

0

0

0

0

0

2

2

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

4

new state s

q xq rhsq

a 0 0

b 0 0

c 0 0

d 0 0

e 0 0

f 2 2

g 2 2

a1 1 1

a2 1 1

a3 1 1

a4 1 1

a5 1 1

a6 1 1

As we can see the incremental benefit of PINCH appears to be much larger than in the

previous example, I derive the following performance factors from this discovery:

Factor 1: PINCH benefits from state s and s’ being as similar as possible.

Factor 2: PINCH benefits from state s and s’ including a large number of variables in

relation to the total number of variables

A further hypothesis we can make is that PINCH is more likely to benefit from its incre-

mental aspects if the number of preconditions for most actions is low. You can see this in

this example by looking at a1 and a2. For a1 it is sufficient to reach variable a, so if a is

part of s and s′ then we will not have to recalculate a and a1 for s. For a2 we need to reach

a and c, meaning that it is more likely that we will have to recalculate a2 rather than a1 for

s.

Factor 3: PINCH benefits from actions having a low number of preconditions.

Perhaps for similar reasons as Factor 3, an additional hypothesis we can make is that PINCH

is more likely to benefit if the ratio of variables and actions tends to favor the former. A lot

of actions, which in turn all have varying amounts of preconditions, tend to make it difficult

for PINCH to derive its incremental benefit.

Factor 4: PINCH benefits from there being a high number of variables in relation to the

number of actions.

Evaluation 30

4.2.3.2 Results

To test for Factors 1 - 4 we have gathered information alongside our test runs. For Factor

1 we compare the similarity of states s and s′ by tracking how many v ∈ s′ ∩ s are present.

We track this information for every s / s′ combination we encounter during search. We then

calculate the mean number of v ∈ s′ ∩ s and finally divide this number by the mean number

of v ∈ s. The output is a percentage number that tells us how many variables state s and

s′ share on average in relation to the total number of variables state s contains. The closer

the number is to 1, the better it is for PINCH.

For Factor 2 we track the same information that we track in Factor 1, mainly the mean

number of v ∈ s′ ∩ s, but this time we divide by the total number of v. The output is

a percentage number that tells us how many variables state s and s′ share on average in

relation to the total number of variables. The closer the number is to 1, the better it is for

PINCH.

For Factor 3 we simply calculate the average number of preconditions an action has, this

can be done once at the beginning of the computation. The output is a decimal number that

tells us the average number of preconditions per action for the given instance. The lower

the number, the better it is for PINCH. For Factor 4 we divide the number of variables by

the number of actions. The output is a decimal number that tells us the ratio of variables

and actions for the given instance. The higher the number, the better it is for PINCH

For all factors the results are averaged over the total number of instances each domain

contains. We can see the results in Table 4.3.

Factor 1-4 Results
SAT LOG WOO MAI MIC CAL SCH FRE PIP SPI AGR

Factor 1 0.96 0.95 0.97 0.99 0.92 0.95 0.95 0.90 0.94 0.98 0.96

Factor 2 0.23 0.06 0.35 0.49 0.41 0.47 0.47 0.21 0.47 0.33 0.40

Factor 3 0.54 0.87 1.60 0.5 1.85 8.24 1.64 1.72 1.32 4.41 2.95

Factor 4 0.017 0.183 0.074 0.365 0.092 0.002 0.243 0.006 0.06 0.009 0.001

Table 4.3: Green domains: PINCH favored. Blue domains: Equal. Red domains: GD
favored

At first glance none of the factors appear to explain the search time performance by them-

selves. Especially for Factor 1 and 2 there are domains from all groupings with strong

results, Factor 3 and 4 appear to be more informative. In Table 4.4 I have colored all entries

according to their relation to the mean of Factors 1-4 over all domains. A green entry is

better than the mean, a red entry is worse, where better and worse refer to the impact of

the factor on PINCH (Factor 1 and 2: better closer to 1. Factor 3: better closer to 0. Factor

4: better closer to ∞). The mean for Factors 1-4 is in that order: (0.89,0.29,1.65,0.015).

Evaluation 31

Factor 1-4 Results
SAT LOG WOO MAI MIC CAL SCH FRE PIP SPI AGR

Factor 1 0.96 0.95 0.97 0.99 0.92 0.95 0.95 0.90 0.94 0.98 0.96

Factor 2 0.23 0.06 0.35 0.49 0.41 0.47 0.47 0.21 0.47 0.33 0.40

Factor 3 0.54 0.87 1.60 0.5 1.85 8.24 1.64 1.72 1.32 4.41 2.95

Factor 4 0.017 0.183 0.074 0.365 0.092 0.002 0.243 0.006 0.06 0.009 0.001

Table 4.4: The green entries perform better than the mean, the red entries perform worse
than the mean, where better and worse refer to the impact on search time performance of
PINCH

If we consider Table 4.4, we see a correlation between Factors 3 and 4 and the search time

performance of PINCH. Figure 4.3 and 4.4 contain plots with domains whose Factor 3/4 is

better than average or significantly better than average.

Figure 4.3: Search time plot with domains whose Factor 3 is less than 1.65 (left), less than
1.1(right). Legend Orange: PINCH favored, Blue: GD favored

Figure 4.4: Search time plot with domains whose Factor 4 is more than 0.015 (left), more
than 0.2 (right). Legend Green: PINCH favored, Orange: GD favored

Evaluation 32

As we continue to raise the standard for Factors 3 and/or 4 the performance of PINCH

improves when compared to GD. There appears to be a strong correlation, in Figure 4.3 on

the right picture PINCH beats GD by a factor of ∼3.3, the issue is that only a small number

of domains contain the desired properties under which PINCH performs best. In Figure 4.5

we plot domains whose Factor 1/2 are better and significantly better than the mean.

Figure 4.5: Search time plot with domains whose Factor 1 and 2 is above 0.9/0.29 (left),
above 0.98/0.4 (right). Legend Green: PINCH favored, Orange: GD favored

As Table 4.4 suggested, insisting that all domains must be better than the mean in Factors 1

and 2 has not significantly improved the Performance of PINCH. If we raise the requirements

to extreme amounts (Figure 4.5, right picture) we do get a slight improvement, with GD

beating PINCH in roughly 2/3 of the covered domains, but we loose so many domains that

it is hardly a good indicator.

4.2.3.3 Conclusion

Of the 4 factors that we have hypothesised would benefit the incremental aspect of PINCH

and therefore PINCH as a whole, only 2 proved to have strong evidence in their favor.

Perhaps the example, that was used in Chapter 4.2.3.1 from which Factor 1 and 2 were

derived was too much unlike the types of state spaces that most instances induce. Factor

3 and 4 are clearly correlated with the performance of PINCH. We can conclude this since

choosing domains that perform well in those factors drastically improves the performance of

PINCH when compared to GD. What is especially interesting is that Factor 3 and 4 can be

calculated prior to choosing a hadd implementation, meaning that, if Factor 3 and 4 both

appear to be good, one could choose PINCH for the computation, and GD or a different hadd

implementation otherwise. Further research is needed to say when exactly PINCH reliably

outperforms GD given Factor 3 and 4. In my runs PINCH started to beat GD in more then

50% of the covered domains roughly at around 1.2 for Factor 3 and 0.3 for Factor 4 but these

numbers are based on a small sample-size. I have also not considered the positive effects of

having both factors above a certain threshold, I only looked at each factor in isolation.

Evaluation 33

4.2.4 Comparing PINCH and GD Directly
We can derive further factors if we compare PINCH and GD directly.

4.2.4.1 Introducing the Factors

One thing we can compare is how many times PINCH has to adjusts the cost values of all

q ∈ V ∪A. As mentioned before, PINCH updates the cost value of a given q at most twice,

while GD updates the cost value of all q ∈ V ∪A exactly once. In the example from chapter

3.2, PINCH updates cost values 12 times. GD respectively would update cost values 13

times when applied to the same example.

Factor 5: The algorithm that adjusts fewer cost values has an advantage.

Factor 5 does not take into consideration that PINCH and GD update cost values differently.

PINCH updates exactly one cost value per q ∈ V ∪A that is popped from the priority queue.

GD only inserts v ∈ V into the priority queue, it updates action cost values in the same

iteration as it updates variable cost values. For the example from chapter 3.2, PINCH

pops exactly 12 q from the priority queue, GD only pops 7 v from its priority queue when

processing the same example.

Factor 6: The algorithm that pops fewer q ∈ V ∪A from its priority queue has an

advantage.

4.2.4.2 Results

To test for Factor 5 and 6 we simply count how many times on average for a state s ∈ S
PINCH and GD adjust their cost values or pop q from their priority queues.

Figure 4.6: total number of cost adjustments comparison plot between PINCH and GD

Evaluation 34

Figure 4.6 shows us how many times PINCH adjusts its cost values on average compared to

GD. PINCH updates its cost values at most twice, GD exactly once. In Figure 4.6 we can

see that, thanks to the incremental benefit that PINCH has, PINCH tends to updated its

cost values less than GD. Even for the GD favored domains the number of times cost values

are adjusted are within a similar range.

Figure 4.7: total number of variables/actions popped out of the priority queue comparison
plot between PINCH and GD

Figure 4.7 shows us how many times PINCH pops a variable or action out of its priority

queue compared to GD. Since GD only stores variables in its priority queue it is expected

that it pops fewer variables out of its priority queue. Even for domains that are PINCH

favored GD tends to compare quite well.

4.2.4.3 Conclusion

It is interesting, that Factor 5 appears to indicate that PINCH is the superior algorithm

while Factor 6 does the opposite. While Factor 5 might be a good argument in favor of the

benefits of PINCH, Factor 6 paints a different picture. Even though PINCH updates cost

values less, it only achieves this by maintaining a fairly expensive priority queue. PINCH

is required to store both variables and actions, in the worst case scenario it is required to

insert and pop each of them twice. According to my testing maintenance of the priority

queue is the single most time intensive part of PINCH, GD has an immense advantage here.

The average number of q popped form the priority queue for PINCH is 15519, for GD it is

432. Comparatively the average number of cost adjustments for PINCH is 15502, for GD it

is 15701. Even tough PINCH does update cost values less, the way it achieves this comes

at a huge price.

5
Conclusion

The goal of this thesis was to give an in depth and intuitive explanation of PINCH. Ad-

ditionally I have expanded PINCH beyond unit cost and tested PINCH against its non

incremental counterpart GD. In my testing I have identified factors that indicate the per-

formance of PINCH.

While I am slightly disappointed that PINCH did not perform as well as I had expected, I

believe it is exactly the lackluster performance that motivated me to really dig into PINCH

and figure out its strengths and weaknesses. Even though PINCH performs worse than

GD on average, I have identified one group of domains for which PINCH is more likely to

outperform GD. That group being domains with a low average number of preconditions per

action and/or a high ratio of variables in relation to actions.

The biggest hindrance that PINCH unfortunately fails to overcome is the overhead asso-

ciated with its priority queue. If I were to try to improve the algorithm my first instinct

would be to adjust the priority queue such that it only stores variables like GD. However,

I do not know if it is possible to make that adjustment and keep all or most of the good

properties of PINCH.

It is promising that, despite its priority queue, PINCH still manages to beat GD in a good

number of the covered instances. Even in its current form PINCH should prove useful if used

for domains with the desired properties. While GD may have come out victorious at the

end of my evaluation, I hope to have provided good enough reasons to argue for the benefits

of PINCH. If the issue with its priority queue could be resolved, I believe that PINCH could

be a fantastic option for the computation of hadd.

Bibliography

[1] Blai Bonet and Héctor Geffner. Heuristic search planner 2.0. AI Magazine, 22(3):77–77,

2001.

[2] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[3] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[4] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,

129(1):5–33, 2001.

[5] Yaxin Liu, Sven Koenig, and David Furcy. Speeding up the calculation of heuristics for

heuristic search-based planning. In Proceedings of the Eighteenth National Conference

on Artificial Intelligence (AAAI 2002), pages 484–491, 2002.

[6] Ganesan Ramalingam and Thomas Reps. An incremental algorithm for a generalization

of the shortest-path problem. Journal of Algorithms, 21(2):267–305, 1996.

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Daniel Weissen

Matriculation number — Matrikelnummer

17-065-723

Title of work — Titel der Arbeit

Exploring The Prioritized Incremental Heuristic

Type of work — Typ der Arbeit

Bachelor thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, Oktober 12, 2020

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Classical Planning
	2.2 Relaxation Heuristics
	2.3 Additive Heuristic
	2.3.1 Relaxed Planning Graph
	2.3.2 Understanding the Additive Heuristic
	2.3.3 Implementations of the Additive Heuristic
	2.3.3.1 Value Iteration
	2.3.3.2 Value Iteration with Value Ordering
	2.3.3.3 Generalized Dijkstra
	2.3.3.4 Incremental Value Iteration

	3 The PINCH Method
	3.1 PINCH, The Best of Both Worlds
	3.2 The Algorithm in Depth
	3.3 PINCH more Formally
	3.3.1 Why PINCH Changes Equations (2.1) and (2.2)
	3.3.2 DynamicSWSF-FP

	3.4 Expanding PINCH Beyond Unit Cost
	3.5 Improved PINCH

	4 Evaluation
	4.1 Summary of Methods
	4.2 Evaluation
	4.2.1 General Overview
	4.2.2 Search Time
	4.2.3 The Incremental Benefit
	4.2.3.1 Introducing the Factors
	4.2.3.2 Results
	4.2.3.3 Conclusion

	4.2.4 Comparing PINCH and GD Directly
	4.2.4.1 Introducing the Factors
	4.2.4.2 Results
	4.2.4.3 Conclusion

	5 Conclusion
	Bibliography
	Declaration on Scientific Integrity

