
Empirical Analysis of the Tseitin
Transformation on Axioms in Fast

Downward
Runtime and Memory Consumption after Plaisted-Greenbaum Encoding of

FDR Axioms

Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Research Group Artificial Intelligence

https://ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Gabriele Röger

Jan Daniele Walliser

jan.walliser@unibas.ch

22-057-954

23.08.2025

Abstract

It has recently been discovered that applying a Tseitin transformation to axioms can im-

prove the overall coverage of benchmark domains. We ask whether this effect can be ob-

served on the level of finite-domain representation (FDR). Specifically, we implement a

Plaisted–Greenbaum (PG) encoding for FDR axioms in Fast Downward within the search

component, integrated post-translation via a DelegatingTask wrapper so that all other com-

ponents remain unchanged. We also prove that the induced layering remains valid: each

auxiliary variable is assigned the maximum layer of its body variables, preserving stratified,

terminating, and deterministic axiom evaluation.

There is ongoing debate whether axioms should be supported natively or compiled away. Our

results add nuance: across standard axiom-rich benchmarks under greedy best-first search

(eager) with FF and additive heuristics, the PG Tseitin transformation on FDR axioms does

not reproduce the previously reported gains. Coverage is essentially unchanged; runtimes

are similar or slightly worse; and peak memory can increase due to a larger number of (now

smaller) axioms. Initial heuristic values remain unaffected.

We conclude that the benefits observed in prior work likely arise from transformations at

different representation levels (e.g., symbolic or SAT-oriented encodings) rather than from

FDR-time axiom restructuring. In its PG form, Tseitin on FDR axioms is not a general

performance win; its advantages appear situational and do not materialize inside the FDR

search layer.

Table of Contents

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Structure . 2

2 Background 3

2.1 Planning tasks in FDR . 3

2.2 Tseitin Transformation of Axioms . 5

3 Related Work 7

4 Implementation 9

4.1 Fast Downward Task Components . 9

4.2 Axiom Transformation . 11

5 Evaluation 16

5.1 Benchmark Suites . 16

5.2 Measurement procedures . 16

5.3 Evaluation Setup . 17

5.4 Results . 18

5.4.1 Initial Heuristic Values . 18

5.4.2 Coverage . 20

5.4.3 Performance influence . 21

5.4.3.1 Search Time . 22

5.4.3.2 Memory . 28

6 Discussion and Conclusion 33

Bibliography 34

1
Introduction

1.1 Motivation
Automated planning is one of the central areas in Artificial Intelligence (AI) with a wide

range of applications, for instance in robotics [5], logistics and transportation [20]. In a more

general form, a planning problem consists of a description of the initial state of the world,

a set of possible actions, as well as a goal specification. The goal of a planner is to find a

sequence of actions that transforms the initial state into a state that satisfies the goal condi-

tion, a goal state. Over the past decades, planners became more and more efficient in terms

of performance. One of those planning systems is Fast Downward [6], which also includes

the feature of axiom support. Axioms allow the definition of facts that are not changed

through actions of the planner but are derived from other facts through logical inference. In

the Planning Domain Definition Language (PDDL), such derived facts are expressed using

derived predicates. They are important for modelling indirect dependencies, complex do-

main rules as well as relationships that would otherwise require an explosion in the number

of explicit action definitions. In modern planning systems, the axioms are evaluated using

a layered fixed point iteration. Although axioms are essential for concise domain modelling

[18], their evaluation overhead can dominate the computational cost in some problems. This

has recently been highlighted in work by Borgwardt et al. [2], who investigated planning

with ontologies. They showed that applying a Tseitin-style transformation to large axiom

bodies can drastically increase the number of solved instances in benchmark domains. This

raises the question whether similar effects occur in the context of Fast Downward and its

axiom evaluation within the search component:

• Is the observed benefit due to the transformation itself, or to its interaction with the

way axioms are compiled and evaluated?

• How does the transformation influence search time and memory usage?

To investigate this, we apply a Tseitin-inspired transformation directly at the level of axioms

in finite-domain representation (FDR) inside the search component of Fast Downward. The

idea is to replace “wide” axioms with equivalent sets of smaller axioms, thereby reducing the

number of literals checked per axiom, at the cost of introducing more (auxiliary) axioms.

Introduction 2

1.2 Objectives
The aim of this thesis is to investigate whether applying a Tseitin transformation in this

manner improves the coverage of benchmarks domains and observe its influence on the

overall performance of Fast Downward. Specifically, the objectives are:

• Benchmark coverage: Determine if the impact of a Tseitin transformation on FDR

leads to an improvement on coverage over benchmark domains such as shown by

Borgwardt et al. [2].

• Robustness across configurations: Compare the results under two heuristic func-

tions (additive, FF), on a greedy best-first search in its eager variant (eager greedy)

and with two axiom evaluation modes within the heuristics (approximate no negative,

approximate no negative cycles) to determine whether the impact discovered by [2]

can depend on the transformation of axioms within the search component.

• Heuristic vs. Search + Heuristic: Compare the effects of applying the transfor-

mation to only heuristic, and both, heuristic and search, to isolate the impact of axiom

evaluation in heuristics from its impact during state-space search.

• Performance impact: Evaluate the influence of the transformation on runtime and

memory consumption across a diverse benchmark suite.

1.3 Thesis Structure
This thesis is structured as follows:

• Chapter 2 introduces the theoretical background of this thesis. It explains planning

tasks and axioms in FDR as well as the Tseitin transformation.

• Chapter 3 presents related work.

• Chapter 4 explains the concrete implementation of the Tseitin transformation in the

Fast Downward planning system.

• Chapter 5 describes the methodology chosen to perform the empirical analysis, in-

cluding benchmark selection and measurement procedures and also presents and dis-

cusses the results of the runtime and memory analyses and compares the transformed

with the non-transformed variant on selected search algorithms and heuristics.

• Chapter 6 summarises the most important results and provides an outlook on possible

further developments and open research questions.

2
Background

2.1 Planning tasks in FDR
We follow the definition of finite-domain representation (FDR) tasks by Helmert [7].

Definition 2.1 (FDR planning task). An FDR planning task is a 5-tuple

Π = ⟨V, s0, sg, A,O⟩,

where

• V is a finite set of state variables, each v ∈ V with a finite domain Dv. Here we

distinguish between state variables, which can be affected by operators (fluent variables)

vf ∈ Vf and state variables computed by evaluation axioms (derived variables) vd ∈ Vd

so that V = Vd ∪ Vf . The domain of derived variables contain the default value ⊥
(unsatisfied).

We will use the general definition of a state s in FDR, as a total function

s : V →
[

v∈V

Dv

such that

s(v) ∈ Dv for all v ∈ V.

A partial assignment thus specifies values only for a subset of the state variables. More

generally, a partial variable assignment p is a function

p : V ′ →
[

v∈V ′

Dv

defined on some subset V ′ ⊆ V , with p(v) ∈ Dv for all v ∈ V ′.

• s0 is a state over V , defined on all vf ∈ V , but not on any vd ∈ V , called the initial

state.

• sg is a partial variable assignment over V , called the goal.

Background 4

• A is a finite, layered set of axioms over V . Axioms are defined as cond → v := d,

where cond is a partial assignment (the body), v is a derived variable (the affected

variable), and d ∈ Dv is the derived value. The set A is partitioned into a totally

ordered sequence of axiom layers A1 ≺ · · · ≺ Ak satisfying the layering property (see

definition 2.2)

• O is a finite set of operators. An operator is a pair ⟨pre, eff⟩, where pre is a partial

assignment over V (the precondition), and eff is a set of conditional effects cond →
v := d with cond a partial assignment over V , v ∈ Vf , and d ∈ Dv.

Definition 2.2 (Layering Property [7]). A set of axioms A can be partitioned into layers

A1 ≺ · · · ≺ Ak if the following conditions hold:

• Within one layer, two axioms with the same head variable must not assign different

values to it.

• If a variable appears as a head in some layer Ai, it must not appear with a different

value in the body of any axiom within the same layer.

The layering property ensures that axioms can be evaluated layer by layer until a fixed point

is reached, guaranteeing termination and determinism of axiom evaluation.

Definition 2.3 (Extended state). Let s be a state over Vf . The corresponding extended

state s⋆ is obtained as follows:

1. Initialise all derived variables v ∈ Vd with the default value ⊥.

2. For each axiom layer Ai in order A1 ≺ · · · ≺ Ak:

a) While there exists an axiom in Ai whose body is satisfied in the current assignment

and whose head variable currently has value ⊥, update that variable to the value

specified by the axiom head.

By the layering property of axioms, this process terminates after finitely many steps and

results in a unique extended state s⋆.

Definition 2.4 (Atom). Let V be the set of variables of a planning task, where each v ∈ V

has a finite domain Dv. An atom is an expression of the form

(v = d),

where v ∈ V and d ∈ Dv.

For the remainder of this thesis, we adopt a slightly simplified notation for axioms in order

to improve readability.

Definition 2.5 (FDR Axiom). Let V be the set of variables of a planning task with V =

Vd ∪ Vf where Vd is the set of derived variables and Vf is the set of fluent variables. An

axiom is a rule of the form

(v1 = d1 ∧ v2 = d2 ∧ · · · ∧ vk = dk) ⇒ (u := e)

Background 5

where each vi ∈ V and u ∈ Vd is a variable, and di ∈ Dvi , e ∈ Du. The conjunction on the

left-hand side is called the body, the assignment on the right-hand side the head.

For convenience, we map each assignment (v = d) to a propositional atom p and u := d to

q. Thus, an axiom can equivalently be written as

(p1 ∧ p2 ∧ · · · ∧ pk) ⇒ q

where each pi and q denotes a variable–value assignment.

2.2 Tseitin Transformation of Axioms
The Tseitin transformation is a widely used technique to convert arbitrary propositional

formulas into a conjunctive normal form (CNF) that is equisatisfiable to the original formula.

It was first introduced by Tseitin [19] and later refined by Plaisted and Greenbaum [14]. The

central idea is to avoid the exponential blow-up of a direct CNF conversion by introducing

fresh auxiliary variables for subformulas.

Definition 2.6 (Tseitin Transformation [14, 19]). Let φ be a propositional formula. The

Tseitin transformation constructs a CNF formula ψ together with a set of fresh auxiliary

variables Y , such that

φ is satisfiable ⇔ ψ is satisfiable.

For each subformula θ of φ, the transformation introduces a new variable yθ ∈ Y and adds

clauses enforcing yθ ↔ θ. The final CNF ψ contains only clauses of size at most three and

its size is linear in the size of φ.

Example: Consider the formula

φ = (a ∧ b) ∨ c.

The Tseitin transformation introduces auxili¡ary variables y1 for the subformula (a∧ b) and

y2 for the top-level formula φ. This yields the equivalences

y1 ↔ (a ∧ b), y2 ↔ (y1 ∨ c),

together with the constraint y2 to enforce equivalence with φ.

Replacing the equivalences by their conjunctive normal form results in the clauses

(¬y1 ∨ a) ∧ (¬y1 ∨ b) ∧ (¬a ∨ ¬b ∨ y1),

(¬y2 ∨ y1 ∨ c) ∧ (¬y1 ∨ y2) ∧ (¬c ∨ y2),

y2.

Thus the resulting formula is

ψ = (¬y1 ∨ a) ∧ (¬y1 ∨ b) ∧ (¬a ∨ ¬b ∨ y1) ∧ (¬y2 ∨ y1 ∨ c) ∧ (¬y1 ∨ y2) ∧ (¬c ∨ y2) ∧ y2.

Clearly, φ is satisfiable if and only if ψ is satisfiable. However, the two formulas are not

logically equivalent, since ψ contains the additional auxiliary variables y1, y2.

Plaisted and Greenbaum [14] observed that this is stronger than necessary for satisfiability.

Background 6

Polarity-aware Plaisted–Greenbaum (PG) encoding: An occurrence of a subfor-

mula has a polarity (positive or negative), defined inductively: the outermost formula occurs

positively; in ¬α the polarity of α flips; in α ∧ β and α ∨ β both subformulas inherit the

current polarity.

PG introduces a fresh variable yα for a subformula α and, depending on its polarity, keeps

only one implication:

positive polarity of α : yα → E(α) negative polarity of α : E(α) → yα,

where E(α) is α in terms of the proxy variables of its immediate subformulas. Finally, the

top-level proxy yφ is forced to true by the unit clause yφ. The implications are then written

as CNF clauses.

Example (PG): Let φ = (a ∧ b) ∨ c and introduce y1 ↔ (a ∧ b), y2 ↔ (y1 ∨ c) as proxies

(we do not introduce proxies for literals).

Since all occurrences are positive, PG keeps

y2 → (y1 ∨ c), y1 → (a ∧ b), y2.

In CNF this yields the clauses

(¬y2 ∨ y1 ∨ c) ∧ (¬y1 ∨ a) ∧ (¬y1 ∨ b) ∧ y2.

Thus the resulting CNF is

ψ = (¬y2 ∨ y1 ∨ c) ∧ (¬y1 ∨ a) ∧ (¬y1 ∨ b) ∧ y2,

which is equisatisfiable with φ but strictly smaller than the full Tseitin encoding.

Application to Axioms: While originally developed for propositional satisfiability, the

principle of introducing auxiliary variables to break down large formulas can also be applied

to axioms in planning tasks. In this thesis, we adapt the Tseitin transformation after

Plaisted and Greenbaum [14] to restructure axioms whose bodies contain many conditions.

Instead of encoding the axiom body as a single wide conjunction, we introduce auxiliary

derived variables that represent intermediate conjunctions. This ensures that each axiom

body contains at most two literals, while preserving the semantics of the original FDR task.

3
Related Work

The restructuring of axioms through a Tseitin transformation introduced in this thesis con-

nects to several strands of research in artificial intelligence. A central reference point is

the SAT and logic community, where the Tseitin transformation [19], and especially the

Plaisted–Greenbaum variant [14], have long been standard techniques for converting formu-

las into CNF. Such transformations make it possible to handle large and complex expressions

in a more compact form without altering satisfiability. This idea of replacing complex struc-

tures with auxiliary variables to simplify reasoning serves as one of the key inspirations for

our work.

Within automated planning, derived predicates (originally called “axioms” in early PDDL

[12]) were already part of the original PDDL specification but saw little practical use; they

were standardised and adopted for competition benchmarks with PDDL 2.2 [3, 8]. De-

rived predicates greatly increase the expressiveness of planning domains [18], but they can

also complicate search and heuristic evaluation. Helmert [6, 7] describe how axioms are

integrated into the planning system Fast Downward and formalize the layered fixed-point

semantics that underlie their evaluation. This semantic framework also provides the theo-

retical foundation on which our approach is built.

Research on improving translations in planners has explored a variety of strategies. Rintanen

[15] studied compact representations of logical dependencies through regression techniques

for classical and nondeterministic planning. While not directly concerned with axioms, this

work similarly illustrates how different formulations of logical dependencies can affect the

efficiency of planning systems.

Related Work 8

Another line of research integrates axioms directly into heuristic computation. Ivankovic and

Haslum [10], for example, extend pattern database and abstraction heuristics to correctly

account for derived predicates. Their results demonstrate that axioms can substantially

affect heuristic estimates and that specialized techniques are required to incorporate them

effectively. Rather than designing new heuristics, this thesis focuses on restructuring axiom

bodies, which may in turn influence how existing heuristics perform.

Dedicated search techniques for planning with derived predicates have also been proposed.

Gerevini et al. [4] introduced an approach based on Rule–Action Graphs combined with local

search to reason more effectively in domains with axioms. Whereas their work adapts the

search procedure itself, our contribution operates at the representational layer by decompos-

ing axioms through a Tseitin-inspired transformation within the Fast Downward framework.

Speck et al. [17] investigates alternative ways of axiom encoding within symbolic planning.

Their results demonstrate that the native axiom support in symbolic representation within

optimal planners outperforms those planners, and even in planners not supporting axioms

they showed that the native axiom support in symbolic representation leads to an overall

benefit in classical planning domains, highlighting the practical relevance of how axioms are

represented.

More recently, Borgwardt et al. [2] investigated planning with ontologies and showed that

a Tseitin-style transformation of axioms can significantly increase the number of solved in-

stances in benchmark domains. Their results suggest that restructuring axioms may have

a strong practical effect. However, their work focuses on the compilation of ontology-based

axioms, while our approach investigate the direct impact of applying such a transformation

to FDR axioms within the search component of Fast Downward.

Taken together, these strands of research illustrate that axioms can be addressed at different

levels of a planning system: through the internal representation of logical dependencies, by

adapting heuristics, or by developing specialized search strategies. In contrast to previous

work, this thesis does not introduce new heuristics or search algorithms, but instead targets

the internal representation of axioms. By applying a Tseitin-inspired transformation to

restructure axiom bodies, we aim to assess if such changes can influence the overall coverage

of benchmark domains and how those impact runtime and memory consumption in an

established planning system.

4
Implementation

This thesis proposes a post-translation optimisation that restructures only those axioms

whose body contain more than two conditions. Such “wide” axioms are split into smaller,

but logical equivalent axioms using a Tseitin-inspired transformation that introduces new

auxiliary axioms that combines two literals in the original body of the previous axiom, and

create a new axiom with those two literals in its body. This encoding is performed to break

every axiom body down to ensure a size of at most two literals, which ensures a lower amount

of checks per axiom during the evaluation.

Before we explicitly explain the details of the implementation itself, we first need to intro-

duce some key components of Fast Downward, ensuring that the following sections remain

understandable even for readers who are not yet familiar with the system.

4.1 Fast Downward Task Components
Background: PDDL and FDR: Planning problems are typically specified in the Plan-

ning Domain Definition Language (PDDL) [12]. PDDL provides a standardized, human-

readable formalism based on first-order logic, in which actions are defined by preconditions

and effects, and planning tasks consist of an initial state and a goal condition. While PDDL

is well suited as an input language, it is not directly optimized for efficient search.

To this end, Fast Downward employs the finite-domain representation (FDR) [7], a propo-

sitional, variable-based encoding in which states are total assignments over finite-domain

variables. All further components of the planner—including search and heuristics—are de-

fined over this representation.

Translator (PDDL → FDR) : Note that the translator is a central component of Fast

Downward but will not be fully covered here. We will only describe the relevant parts for

this thesis. For further details, see [7].

Fast Downward uses a Translater, that translates a PDDL-Domain into a Finite Domain

Representation (FDR).

Implementation 10

The output of the translator is a fully grounded, finite-domain task. This representation

preserves the semantics of the original PDDL problem but makes it directly usable by the

search and heuristic components of the planner.

AbstractTask: AbstractTask provides a general interface for representing a planning task

in Fast Downward. It provides queries for Amount of Variables and Domains as well as

operators and their effects, axioms, costs etc. Most of Fast Downwards components such as

search and heuristic implement this abstract API instead of a discrete data-structure, which

allows the implementation of task transformations on a grounded problem, by implementing

a new type of AbstractTask.

RootTask: In Fast Downward, the currently active planning task is managed via a global

pointer called the RootTask. This global reference always points to exactly one instance

of an AbstractTask. All components that need to read information about the task (such

as search algorithms or heuristics) do not access the RootTask directly, but instead use a

TaskProxy(see 4.1).

This design makes it possible to transparently exchange the underlying task: if we want

to perform a transformation, the global RootTask pointer is simply redirected to a new

DelegatingTask (see 4.1) instance that wraps the original task. All other components remain

unchanged, as they continue to access the task through their proxies.

DelegatingTask: The DelegatingTask is an adapter class that implements the Abstract-

Task interface by internally holding a pointer to another AbstractTask, called its parent. By

default, every request to the DelegatingTask is forwarded to its parent task.

This design follows the delegation pattern and allows new functionality to be introduced

without modifying the original AbstractTask. A DelegatingTask can selectively override spe-

cific methods while relying on the parent task for all others. In this way, transformations

of the task description can be implemented in a clean, encapsulated manner: they change

only the relevant aspects while preserving the semantics of the underlying task. More-

over, such transformations can be enabled or disabled by simply inserting or removing the

corresponding DelegatingTask in the task hierarchy.

TaskProxy: TaskProxy is an access layer for client code (search/heuristics).It encapsu-

lates an AbstractTask and provides convenient, type-safe access functions. The proxy itself

has no semantics of its own, it only simplifies read access to the currently active task.

The following figure will sketch the workflow of Fast Downward without and with a trans-

formation included.

Implementation 11

PDDL

FDR

AbstractTask
(parent)

RootTask
(global ref.)

TaskProxy

Search & Heuristics

Translator

Task Factory

set as Root

PDDL

FDR

AbstractTask
(parent)

DelegatingTask
(optional)

RootTask

TaskProxy

Search & Heuristics

Translator

Task Factory

wrap

set as Root

Workflow (without transformation) Workflow (with transformation)

Figure 4.1: Comparison of the task workflow in Fast Downward without (left) and with
(right) a transformation.

4.2 Axiom Transformation
Our Tseitin-inspired axiom transformation is applied after Fast Downward ’s translator has

created the Finite Domain Representation (FDR), and therefore ensuring no interferences

with the grounding process so that the initial encoding of Fast Downward remains un-

changed. Note that we perform the transformation only on the axioms. All other compo-

nents remain unchanged. In particular, the transformation takes place between translation

and the search process, affecting only the evaluation during search node expansion and

heuristic computation. However, Fast Downward does not support such a transformation

within the search by default; therefore, an interface for this transformation first had to be

Implementation 12

implemented in the planner.

The reason behind choosing the post-translation stage for our transformation is that we

have three main advantages.

1. It isolates the transformation from the grounding process allowing a simple enable and

disable of the transformation without affecting other planning components.

2. It allows to compare a standard axiom-encoding evaluation with a transformed one on

the same grounded problem. This is important to ensure that differences are caused

by the transformation and not by a different grounded problem.

3. The interface implementation for the transformation was simple because we could

introduce a new parameter for the command line which would allow us to modify the

task when all necessary components for the task already exist.

The implementation of the Tseitin-Axiom transformation was integrated into the existing

planning architecture of Fast Downward as a standalone plugin to ensure encapsulation and

allows us to omit it if the transformation is not required.

The main components of the implementation are:

1. Plugin TseitinFeature

This class serves as the interface of the Transformation and enables the command-line

option transform=tseitin(). The interface workflow is as follows:

• Retrieve the original problem from AbstractTask and wrap it through TaskProxy.

• Initialise and invoke the TseitinTransformer with this TaskProxy as argu-

ment.

• The result contains a list of transformed Tseitin axioms.

• If no auxiliary variables were created, we know that all axioms have a number of

conditions of at most two, so we return the unchanged original problem.

• Else we create a new DelegatingTask-object (a TseitinTask, see 3), which

manages all transformed axioms and auxiliary variables.

• This TseitinTask replaces the original task and is handed over to the search

and heuristic.

2. Class TseitinTransformer

This class contains the core implementation of the Tseitin transformation as well as

an optimisation approach.

a) Introducing the combination cache: a hashmap that stores all previously

created auxiliary variables in order to avoid duplicates. If a combination of literals

has already been replaced in the past, the same auxiliary variable is reused. This

is particularly beneficial in benchmark domains with many wide axioms, where

Implementation 13

different axioms often share parts of their body. Reusing auxiliary variables in such

cases reduces the overall number of axioms and enables more efficient state-space

search, which can lead to substantial memory savings when shared structures

occur frequently.

b) For every axiom the conditions are pre-sorted by their variable to easier check if a

combination of literals was seen before in the transformation process, also allowing

an easier duplicate elimination. Since our transformation will systematically go

through the body of each axiom starting from the backend, we can therefore

discover if a combination of literals was seen before in an efficient manner by this

pre-sorting. This approach will not discover all shared literal combinations and

can be further improved.

The transformation operates as follows:

• The original set of axioms is retrieved from the TaskProxy.

• For each axiom (p1 ∧ · · ·∧ pk) ⇒ q, where each pi and q denotes a variable–value

assignment (atom), the algorithm ensures that the body contains at most two

conjuncts by a recursive encoding:

– If k ≤ 2, leave the axiom unchanged.

– If k > 2:

a) Order the conjuncts p1, . . . , pk by their underlying variable v.

b) Let a := pk−1 and b := pk.

c) Check the combination cache C:

∗ If (a, b) is present , reuse the cached auxiliary atom ui := C(a, b).

∗ Otherwise, create a fresh auxiliary atom u, set C(a, b) ← u, and add

the auxiliary axiom (a ∧ b) ⇒ ui to the axiom set.

d) Replace the tail a∧b in the body by u, obtaining (p1∧· · ·∧pk−2∧ui) ⇒ q,

and set k ← k − 1.

e) Repeat while k > 2 (increase index i).

• After processing, the final axiom (p1∧un ⇒ q) is added to the transformed axiom

set, together with all auxiliary axioms.

Implementation 14

• Here is a short example of the recursive encoding of an axiom:

(p1 ∧ p2 ∧ p3 ∧ p4) ⇒ q

Step 1: combine (p3, p4) into u1 : (p3 ∧ p4) ⇒ u1

body becomes: (p1 ∧ p2 ∧ u1) ⇒ q

Step 2: combine (p2, u1) into u2 : (p2 ∧ u1) ⇒ u2

Final axiom: (p1 ∧ u2) ⇒ q

List of axioms:





(p1 ∧ u2) ⇒ q,

(p2 ∧ u1) ⇒ u2,

(p3 ∧ p4) ⇒ u1

3. Class TseitinTask

TseitinTask implements DelegatingTask and references the original AbstractTask

of Fast Downward. The original operators stay the same but since TseitinTask gets

a new list of axioms and conditions, it is important to cover these changes in the orig-

inal task. Those features are:

• Number of variables: since we add new axioms and auxiliary variables, we

need to adjust the total number of variables we have in our task.

• Domain size: our new auxiliary variables and in particular all axioms can either

be true or false, and therefore have a domain size of two.

• Axiom Layer: Since the axiom layer indicates at what point in the reasoning

process a variable can be derived, the layer for auxiliary variables is determined as

the maximum axiom layer of all its condition variables. This is needed since the

axioms body can have interdependences relationships, and cannot be calculated

at an arbitrary time and therefore ensures that an auxiliary variable can only

become true once all of its defining conditions are available.

Theorem 4.1 (Layering from the max-equations). Let V = Vf ∪ Vd be the

variables of the parent task and L : V → N a valid variable-layer assignment

whose induced axiom layering satisfies the layering property [7]. Let Vaux and

Aaux be the auxiliary variables and axioms introduced by the Tseitin grouping of

axiom bodies; set A := Apar ∪Aaux.

Define L′ : V ∪ Vaux → N as the pointwise least solution of

L′(v) = L(v) (v ∈ V), (E)

L′(u) = max{L′(w) | (w = ·)
occurs in the body of the unique auxiliary axiom for u } (u ∈ Vaux).

Let Lmax := max{L′(y) | y ∈ V ∪ Vaux }. For i ∈ {1, . . . , Lmax} define axiom

layers by head layer

Ai = {B ⇒ (x := d) ∈ A | L′(x) = i },

Implementation 15

and order them as A1 ≺ A2 ≺ · · · ≺ ALmax
. Then the sequence (A1 ≺ · · · ≺

ALmax
) satisfies the layering property. Consequently, layer-by-layer evaluation

until a fixpoint is reached terminates and yields a unique result.

Proof. Let Ai be as defined. We verify the two conditions introduced by Helmert

[7].

(1) No conflicting heads within a layer. For parent heads x ∈ V , L′(x) = L(x),

so the parent layering already forbids two axioms in the same layer assigning

different values to x. For auxiliary heads u ∈ Vaux, by construction there is

exactly one auxiliary axiom with head u (uniqueness ensured by the combination

cache), so conflicts are impossible.

(2) If a variable appears as a head in layer i, it does not occur with a different

value in any body of the same layer. For parent variables this is inherited from

the parent layering and is not altered by Tseitin grouping, which only introduces

proxies but does not change variable–value pairs in bodies. Auxiliary variables

appear in bodies only with their distinguished head value, hence cannot occur

with a different value in the same layer.

It remains to note stratification: for any axiom B ⇒ (x := d) ∈ Ai we have by

(E)

L′(x) = max{L′(w) | (w = ·) ∈ B } = i,

thus L′(w) ≤ i for all variables w in the body. Therefore, when evaluating layer

i, all prerequisites are already fixed by layers < i or evolve monotonically within

layer i. Since heads switch at most once (from ⊥ to their target value), the intra-

layer fixpoint terminates and is deterministic, and with finitely many layers the

overall evaluation terminates and is unique.

5
Evaluation

This chapter focuses on the methodology used to perform the analysis as well as presenting

the results over the analysis setup.

5.1 Benchmark Suites
The empirical analysis uses a wide area of benchmarks to ensure robustnes of the results,

containing benchmarks with few axioms and “small” body as well as complex axioms with

“wide” body and many interdependences. All domains are taken from the benchmark repos-

itory of [13]1, which collects domains from the International Planning Competition (IPC)

[9] and includes additional domains by Ivankovic et al. [11] (e.g., sokoban-axioms).

Since we are interested into domains with axioms we took following domains:

sokoban-axioms, psr-middle-noce, psr-middle, optical-telegraphs, philosophers, acc-cc2-ghosh-

etal, doorexample-broken-ghosh-etal, doorexample-fixed-ghosh-etal, grid-axioms, miconic-

axioms, trapping game, collab-and-comm-kg, muddy-child-kg, muddy-children-kg, sum-kg,

wordrooms-kg

We excluded grid-cc2-ghosh-etal because it contains an undeclared object, and mincut be-

cause it relies on object fluents, which are not supported by our planner. These domains

were therefore not usable in our experiments. In addition, we had to interrupt some runs on

other benchmarks due to a possible error in the validation process, which caused the plan

validation to run for more than 24 hours without producing a result.

5.2 Measurement procedures
For the measurement procedure we will focus on 4 main components:

1. heuristic value of the initial state (initial h value): For each run, we compare the

heuristic value of the initial state with and without the transformation. Since the

1 https://github.com/dosydon/axiom benchmarks

Evaluation 17

transformation preserves the semantics of the planning task, this value is expected to

remain unchanged. Any deviation would indicate that the heuristic computation is

sensitive to structural differences in the axiom encoding.

2. coverage: Since the work of Borgwardt et al. [2] showed a significant influence of

the Tseitin transformation in terms of the number of solved instances in benchmark

domains, we want to compare if the Tseitin-inspired transformation on FDR axioms

has a similar influence.

3. memory: We measure the peak memory consumption reported by Fast Downward,

which reflects the maximum amount of main memory used during translation, heuristic

evaluation, and search. Since our transformation reduces the number of conditions in

axiom bodys but introduces additional axioms, we are interested in the influence of

this trade-off

4. search time: We record the search runtime from search start to search termination, and

compare these values to assess whether the transformation has a measurable impact

on performance.

5.3 Evaluation Setup
For the evaluation of our work we will analyse the impact on the above named criteria over

the following setup:

Similar to Borgwardt et al. [2] we used Downward Lab [16] to conduct experiments with the

Fast Downward planning system [6] on ”Hardware” with a time limit of 30 minutes and a

memory limit of 3 GiB per task. To stay comparable, we also adjust our search and heuristic

strategies on that.

Search: We will use the eager greedy search algorithm (just as Borgwardt et al. [2]).

Greedy best-first search expands nodes in order of their heuristic value. In the eager variant,

all successors of an expanded node are generated and evaluated immediately.

Heuristic: We will also cover over every search two different heuristic:

1. FF-heuristic, also used by Borgwardt et al. [2]

2. Additive Heuristic

To see if there are different influences on different heuristics, that support axioms in Fast

Downward

For completeness, we will briefly recall how those two heuristics work:

• The additive heuristic [1] estimates the cost of achieving the goal by summing the

costs of achieving individual subgoals independently.

• The FF heuristic [8] approximates goal distance by extracting a relaxed plan from the

delete-relaxed task.

Evaluation 18

Both heuristics are supported by Fast Downward and can take axioms into account.

Heuristic without search: We will also observe the differences if we only influence the

heuristic but not the search itself.

Axiom Evaluation and Default Value Handling: Fast Downward provides two op-

tions for handling default values of derived variables, which are relevant for the evaluation

of heuristics:

• Approximate Negative: Every derived variable can always take its default value

unconditionally (¬v ← ⊤). This avoids combinatorial blow-ups, but can lead to overly

optimistic heuristic values, since the heuristic assumes that derived conditions can be

“turned off” at no cost (cost=0).

• Approximate Negative Cycles: For acyclic dependencies, exact default-value ax-

ioms are derived by transforming the original axioms into CNF and then to DNF. For

cyclic dependencies, the system falls back to the trivial approximation. This yields

more accurate heuristics in the acyclic case, but risks a combinatorial explosion in the

presence of large formulas.

Since our Tseitin transformation changes the structure of axiom bodies, it may interact

differently with these two modes. We therefore evaluate our approach under both configu-

rations.

5.4 Results
5.4.1 Initial Heuristic Values
Firstly we will observe the initial heuristic values over the FF heuristic:

Evaluation 19

Figure 5.1: FF, negative

Figure 5.2: FF, negative, no search

Evaluation 20

Figure 5.3: FF, negative cycles

Figure 5.4: FF, negative cycles, no search

As expected, the initial heuristic values of the FF heuristic are identical in all experiments

when comparing the plain encoding of axioms with the Tseitin transformed encoding. This

demonstrates that the transformation does not change the semantics of the task.

The same result also holds for the additive heuristic, which we omit here, since the FF

heuristic already provides sufficient evidence for this statement given that we use the same

benchmark domains.

5.4.2 Coverage
In this section we will compare the coverage between benchmark domains and will analyse

if and in what amount a difference between transformed and untransformed axioms can be

Evaluation 21

observed. Note that we will not show every benchmark domain below but focus on the

domains we think are necessary to show.
• FF 1 = ff plain negative

• FF 2 = ff tseitin negative

• FF 3 = ff tseitin negative no search

• FF 4 = ff plain negative cycles

• FF 5 = ff tseitin negative cycles

• FF 6 = ff tseitin negative cycles no

search

• Add 1 = add plain negative

• ADd 2 = add tseitin negative

• Add 3 = add tseitin negative no search

• Add 4 = add plain negative cycles

• Add 5 = add tseitin negative cycles

• Add 6 = add tseitin negative cycles no

search

Benchmark FF 1 FF 2 FF 3 FF 4 FF 5 FF 6
grid-axioms 5 5 5 5 5 5
philosophers 5 5 5 48 48 48
psr-middle 44 44 44 44 44 44
psr-middle-noce 33 33 31 31 33 32
optical-telegraphs 2 2 2 4 4 4
tapping-game 5 5 5 2 2 2

Table 5.1: Results coverage of benchmarks

Benchmark Add 1 Add 2 Add 3 Add 4 Add 5 Add 6
grid-axioms 5 5 5 5 0 5
philosophers 5 5 5 48 0 48
psr-middle 50 50 44 44 0 44
psr-middle-noce 34 35 34 33 0 35
optical-telegraphs 3 3 2 7 0 7
tapping-game 5 5 5 2 0 2

Table 5.2: Results coverage of benchmarks

Although most of the benchmark domain coverage remained the same, we can see that some

benchmark domains were positively influenced. For example, the ff tseitin negative cycles

variant has a positive influence compared to the plain version ff plain negative cycles, and

even on the heuristic transformation a difference can be observed. All of those differences

occurred due to interrupted runs within the experiment. In conclusion, we can say that the

influence reported by [2] is not observable in a Tseitin-style transformation within the FDR

axioms.

5.4.3 Performance influence
In this section we will have a look on the performance influence our transformation has, by

analysing the time needed for search and the overall memory consumption. For this section

we will use scatter Plots to compare the plain encoding with a tseitin encoding. Each caption

specifies the exact experimental setup in the format:

heuristic used, approximation mode used, search + heuristic transformation(empty) or only

Evaluation 22

heuristic (“no search”).

For example, the caption “FF, negative cycles, no search” refers to FF heuristic, approxi-

mate negative cycles, and the transformation applied only heuristic.

All figures are plotted on a log–log scale. The x-axis represents the baseline (no transfor-

mation), and the y-axis represents our Tseitin-based transformation. A reference line x = y

is included: points below this line indicate cases where the baseline value is larger than the

transformed value, and points above the line indicate the opposite.

5.4.3.1 Search Time

Figure 5.5: figure

FF, negative

Evaluation 23

Figure 5.6: figure

FF, negative, no search

Figure 5.7: figure

FF, negative cycles

Evaluation 24

Figure 5.8: figure

FF, negative cycles, no search

Figure 5.9: figure

add, negative

Evaluation 25

Figure 5.10: figure

add, negative, no search

Evaluation 26

results/t add tseitin negative cycles.png

Figure 5.11: figure

add, negative cycles

Evaluation 27

Figure 5.12: figure

add, negative cycles, no search

As we can see, the total runtime of our transformation is in most cases slightly higher than

that of the untransformed computation. There are a few instances where the transformed

runs are marginally faster, but these “speed-ups” are negligible and can likely be attributed

to normal fluctuations in computation time. We did not observe any significant improve-

ments that would indicate a genuine performance gain. On average, the transformation

results in a small slowdown, although the effect is minor.

Evaluation 28

5.4.3.2 Memory

Figure 5.13: figure

FF, negative

Figure 5.14: figure

FF, negative, no search

Evaluation 29

Figure 5.15: figure

FF, negative cycles

Figure 5.16: figure

FF, negative cycles, no search

Evaluation 30

Figure 5.17: figure

add, negative

Figure 5.18: figure

add, negative, no search

Evaluation 31

results/m add tseitin negative cycles.png

Figure 5.19: figure

add, negative cycles

Evaluation 32

Figure 5.20: figure

add, negative cycles, no search

Similar to the runtime results discussed above, the transformation shows a slight negative

impact on memory usage. On average, the measurements lie above the central line, indicat-

ing that our transformation generally leads to higher memory consumption.

6
Discussion and Conclusion

In comparison to the work of [2], we found that the transformation applied at the level of the

search component does not increase the coverage of benchmark domains, by maintaining at

least equal coverage overall, indicating that the transformation of FDR axioms is not the

reason for Borgwardt et al. [2] observed impact of the Tseitin transformation.

On the other hand, our empirical analysis shows that the Tseitin-inspired transformation

on FDR axioms does not lead to measurable performance improvements. On the contrary,

the results suggest a slight negative effect on both runtime and memory consumption.

One likely reason for this is the inherent trade-off introduced by the transformation: while

we reduced the width of the FDR axioms, we also created new axioms. On the one hand,

this can reduce memory usage if there are many redundant bodys in the axioms, where our

duplicate elimination could have had a measurable impact. However, this effect was either

not significant enough or such redundancies were not frequent enough to have an overall pos-

itive impact. On the other hand, the newly created axioms increase the memory required

to store them. A similar trade-off appears in runtime: although the transformation reduces

the number of checks per axiom with redundant bodys, it increases the number of axioms

per layer that need to be evaluated during the fixed-point iteration, and the transformation

itself also incurs additional computational cost.

Since there is no influence of our Tseitin transformation on the benchmark domain cover-

age, and the computational cost of memory and search time are influenced negatively, this

transformation seems not to be efficient on the level of search component.

Bibliography

[1] Blai Bonet and Hector Geffner. Planning as heuristic search. In Artificial Intelligence,

volume 129, pages 5–33, 2001.

[2] Stefan Borgwardt, Duy Nhu, and Gabriele Röger. Automated planning with ontologies

under coherence update semantics (extended version), 2025. URL https://arxiv.org/

abs/2507.15120.

[3] Stefan Edelkamp and Jörg Hoffmann. Pddl2.2: The language for the classical part of the

4th international planning competition. In Proceedings of the ICAPS-2004 Workshop

on the Competition, pages 1–14, 2004.

[4] Alfonso Gerevini, Alessandro Saetti, Ivan Serina, and Paolo Toninelli. Fast planning

in domains with derived predicates: An approach based on rule-action graphs and

local search. In Proceedings of the 20th National Conference on Artificial Intelligence

(AAAI), 2005.

[5] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann, 2004.

[6] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[7] Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Arti-

ficial Intelligence, 173(5–6):503–535, 2009.

[8] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[9] Jörg Hoffmann, Stefan Edelkamp, Sylvie Thiébaux, Roman Englert, Frederico Liporace,

and Sebastian Trüg. Engineering benchmarks for planning: the domains used in the

deterministic part of ipc-4. Journal of Artificial Intelligence Research, 26:453–541, 2006.

[10] Franc Ivankovic and Patrik Haslum. Optimal planning with axioms. In Proceedings of

the 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[11] Franc Ivankovic, Patrik Haslum, and Takuya Miura. Axiom benchmarks for planning.

https://github.com/dosydon/axiom benchmarks, 2020. Accessed: 2025-08-02.

[12] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela

Veloso, Daniel Weld, and David Wilkins. PDDL – the planning domain definition

Bibliography 35

language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Com-

putational Vision and Control, 1998. Report of the AIPS-98 Planning Competition

Committee.

[13] Shuwa Miura. Planning benchmarks repository. https://dosydon.github.io/, 2023. Ac-

cessed: 2025-08-20.

[14] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form transla-

tion. Journal of Symbolic Computation, 2(3):293–304, 1986.

[15] Jussi Rintanen. Regression for classical and nondeterministic planning. Journal of

Artificial Intelligence Research, 32:559–606, 2008.

[16] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.790461, 2017.

[17] David Speck, Florian Geißer, Robert Mattmüller, and Álvaro Torralba. Symbolic plan-

ning with axioms. In Proceedings of the International Conference on Automated Plan-

ning and Scheduling, volume 29, pages 464–472, 2019.

[18] Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. In defense of PDDL ax-

ioms. Artificial Intelligence, 168(1):38–69, 2005. ISSN 0004-3702. doi: https:

//doi.org/10.1016/j.artint.2005.05.004. URL https://www.sciencedirect.com/science/

article/pii/S0004370205000810.

[19] G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.

Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic, Part II,

pages 115–125. Consultants Bureau, 1968. English translation; originally 1968 (Rus-

sian).

[20] David E Wilkins. Prism: Planning and scheduling for manufacturing. In Proceedings

of the Second International Conference on Industrial and Engineering Applications of

Artificial Intelligence and Expert Systems, pages 322–330, 1990.

