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Abstract

Essential for the estimation of the performance of an algorithm in satisficing planning is its

ability to solve benchmark problems. Those results can not be compared directly as they

originate from different implementations and different machines.

We implemented some of the most promising algorithms for greedy best-first search, pub-

lished in the last years, and evaluated them on the same set of benchmarks. All algorithms

are either based on randomised search, localised search or a combination of both.

Our evaluation proves the potential of those algorithms.
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1
Introduction

1.1 Motivation
Recently, many new promising search algorithms for satisficing planning were proposed. The

most promising approaches either focus on the addition of a certain level of randomness use

of a more focused local search.

Random exploration is used to compensate weaknesses or errors in a heuristic. Instead

of expanding the most promising state, a random state from the open list is chosen for

exploration with a certain probability. The algorithms differ in how and how often those

random states are selected.

Local exploration can be used to find a path out of plateaus, i.e. regions in the heuristic

where all states have the same heuristic value. A subset of states is used for a faster, more

focused exploration.

While all approaches show great potential, it is unclear when and why they perform best.

All algorithms were tested on different benchmark sets, in different implementations and

on different machines. To have a fair and easy comparison, we implemented them in the

same framework and in a similar manner. For the implementation we focused on abstraction

and reusability to be able to allow as many combinations of algorithms and configurations

as possible. The algorithms are implemented in the Fast Downward planning framework

(Helmert, 2006).

1.2 Outline
Chapter 2 introduces the relevant background information. In Chapter 3 we introduce the

algorithms we implemented into Fast Downward as part of this thesis or are part of the

experimental comparison. In Chapter 4 we describe the actual design and implementation

details for the algorithms, that were newly added to Fast Downward. In Chapter 5 we

reproduce the experiments from the papers the algorithms where presented in. In Chapter 6

we compare all algorithms directly on the IPC 20111 benchmark set.

Finally in Chapter 7 we discuss the results and give an outlook on possible research.

1 International Planning Competition 2011 http://www.plg.inf.uc3m.es/ipc2011-deterministic/.

http://www.plg.inf.uc3m.es/ipc2011-deterministic/


2
Background

This chapter introduces some basic knowledge and terms relevant for this thesis.

2.1 Planning tasks
We use SAS+ planning tasks as introduced by Bäckström and Nebel (1995). A planning

task is defined as a tuple
∏

= 〈V,O, s0, s∗, c〉 where V is a finite set of state variables, each

state variable v ∈ V having its own finite domain Dv.

A partial state s is a variable assignment of a value s(v) ∈ Dv on variables vars(s) ⊆ V .

A partial state defined on all variables is called a state. The partial state s is consistent

with state s′, if there are no variables v ∈ V for which both states are defined with different

values. The state s0 is called initial state and the partial state s∗ is called goal.

O is a finite set of operators. Each operator has a precondition preo and effect effo which

are both partial states. c is the cost function c : O → R+
0 which assigns each operator o ∈ O

its cost. If the precondition of an operator o ∈ O is consistent with s, the operator o is

applicable.

2.2 Heuristic search
A heuristic is a function which assigns a non negative number or ∞ to every state s ∈ S,

where S is defined as the finite set of all states in
∏

.

h : S → R+
0 ∪ {∞}

It estimates the cost needed to reach a goal state from S. We call h∗ the heuristic that

returns the optimal plan cost for every state.

A heuristic is:

• admissible if h(s) ≤ h∗(s) for every state s ∈ S.

• consistent if h(s) ≤ h(s′) + c(o) for all transitions s
o−→ s′.

• goal aware if h(s) = 0 for every state s consistent with s∗.
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2.2.1 Greedy best-first search
Best-first search is class of heuristic search algorithms, which use a function f(s) to determine

the most promising state to expand, the node with the minimum f .

Greedy best-first Search (GBFS) only considers the heuristic value of a state:

f(s) = h(s).

A prominent example for best-first search is A∗, which also includes the cost from the initial

state s0 to s, g(s):

f(s) = g(s) + h(s).

2.3 Plateaus and misleading heuristics
Heuristics often make errors and thus lead to the exploration of states that do not lie on the

path to the goal. Plateaus are regions in the search space, where the heuristic values h(s)

are all the same. For that reason many states with the same values have to be evaluated,

which will not directly lead to an improvement and only add more states with the same

heuristic value to the open list.

To escape a plateau there are multiple strategies, two of them are random exploration and

local exploration.

2.3.1 Random exploration
In random exploration random states from the open list are explored to eventually find

states with a more promising heuristic value. This is useful to escape plateaus created by a

misleading heuristic.

2.3.2 Local exploration
A local search is started not from the initial state s0 but from a particular state sp from

the search space. Because the local search does not know about states evaluated before, it

is focused on the exploration of the children of the state sp. A local search has therefore a

higher probability to find a state with a lower heuristic value faster. Local exploration has

a great potential for escaping plateaus.

2.4 Fast Downward
Fast Downward (Helmert, 2006) is a planning framework supporting variety of search al-

gorithms and heuristics. Fast Downward is written in C++ and uses modern features from

C++11 and Gnu Compiler Collection (GCC) to obtain a good performance while keeping

a maintainable code base. Fast Downward is an open source project and can be found ot

http://www.fast-downward.org/.

http://www.fast-downward.org/
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2.5 Search Enhancements
While there are many ways to enhance a search, we will only introduce the most relevant

to this thesis.

2.5.1 Deferred evaluation
The default behaviour of GBFS is to evaluate all child states with the heuristic directly

after the parent state is expanded. In Fast Downward this behaviour is found in the so

called eager search engines. One search enhancement is deferred evaluation (Richter

and Helmert, 2009). The children of the expanded state are added to the open list with the

heuristic value of their parent. The computation of their actual heuristic value is delayed

until the states are expanded. In Fast Downward search engines using this approach are

called lazy.

2.5.2 Preferred operators
Preferred operators were first introduced by Hoffmann and Nebel (2001) as helpful actions.

These are operators which are more likely a part of a solution path. A common application

of preferred operators is the use of dual queue search with two open lists (Richter and

Helmert, 2009). One open list contains all open states, and the second open list contains

only the states reached with preferred operators.



3
Algorithms

This chapter introduces the algorithms relevant for this thesis.

3.1 ε-greedy best-first search
ε-greedy best-first search (ε-GBFS) (Valenzano et al., 2014) is an extension of GBFS using

random exploration. With a probability given by the parameter ε, a state is selected uni-

formly randomly from the open list. With a probability of (1− ε) the state with the lowest

heuristic value is selected, i.e. the default behaviour of GBFS.

3.2 Enforced hill climbing
Enforced hill climbing (EHC) (Hoffmann and Nebel, 2001) starts a search on the state

s = s0. The search ends, when a state with a lower heuristic value is found, a goal state is

reached or the whole search fails. If a new state s′ with h(s′) < h(s) is found the operator

o that reached s′, s
o−→ s′, is appended to the solution path. A new search is started on s′,

s = s′.

3.3 Type-based exploration
Type-based exploration (type-based-GBFS) (Xie et al., 2014b) is similar to ε-GBFS. This

search algorithm is based on uniform random state selection. It maintains two open lists,

a standard open list and a bucket open list. In the bucket open list states are grouped in

buckets by multiple keys, the types. Types can be multiple heuristic values, the g(s) even a

constant value. When a state is removed from the bucket open list, first a uniform random

bucket is selected. Afterwards out of this bucket a state is selected uniformly at random.

States are selected alternately from the standard open list and from the bucket open list.



Algorithms 6

3.4 Monte-Carlo random walks
In Monte-Carlo random walks (Nakhost and Müller, 2009) the search explores states by

applying operators at random for a path of a pre defined length (random walk). Only

the state at the end of a path is evaluated. This is repeated multiple times (random ex-

ploration) and only the path yielding the lowest heuristic value is appended to the global

path.

The global path consists of all selected random paths. New random walks are started from

the end state of the global path. This is repeated until a goal is found or the search failed.

Monte-Carlo random walks explore the state space fast, as the heuristic is only evaluated

for the end point of a path.

There are multiple enhancements to this algorithm:

• Acceptable progress: The random exploration ends as soon as a heuristic value is

found with an improvement above a certain threshold.

• Iterative deepening: Instead of a fixed length for the random walk, the length of a

walk is automatically increased, if enough random walks did not yield an improve-

ment.

• Monte-Carlo-Helpful-Actions (MHA): When a explorations was successful, h(s) was

improved, the probability to select one of the preferred operators, applicable to the

current end state if the path, is increased.

• Monte-Carlo-Dead-End-Avoidance (MDA): The number of times an operator leads

to a dead end is counted and the probability to select that operator is decreased.

3.5 Local exploration
Local exploration (Xie et al., 2014a) performs a normal GBFS (global search). If the

heuristic value does not improve after a certain number of search steps a local search (GBFS-

LS) is started on the next state s from the open list. The depth of the local search is limited.

The local search shares the closed list with the global search.

The local search ends if either:

• the configured depth is reached.

• a state s′ with h(s′) < h(s) is found.

• the local search fails, the local open list is empty.

All remaining nodes from the local open list will be merged into the open list of the global

search.

A second configuration (GBFS-LRW) for local explorations is using local random walks.

Monte-Carlo random walks (Nakhost and Müller, 2009) are started on the next state s from

the open list. If a state s′ with h(s′) < h(s) is found, the path of the random walk is added

to the close list and s′ is added to the global open list.
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3.6 Diverse best-first search
In diverse best-first search (DBFS) (Imai and Kishimoto, 2011) two open lists are used. The

first is the global open list, which selects states probabilistic to their h(s) and g(s) values

(see Imai and Kishimoto, 2011, Algorithm 2). States with a small g(s) are preferred. The

second list is a local open list, which can be of any open list implemented in Fast Downward.

A state s is selected from the global open list and inserted into the local open list. Afterwards

a search is performed on the local open list with the depth d := h(s). If the depth is reached,

the number of removed nodes equals d, or the local search fails, the remaining states are

merged into the global open list. The local open list is cleared and a new local search is

started, using the next state from the global open list.

DBFS uses both random exploration as well as local exploration.



4
Implementation

In this chapter we describe our implementations and the decisions leading to the actual

design.

4.1 ε-Greedy best-first search
We implemented two versions of ε-GBFS (Valenzano et al., 2014). The first implementa-

tion, RandomBucketOpenList, is similar to the original implementation used by Valen-

zano et al. (2014) (personal communication with the authors). The second implementation,

RandomOpenList, is heap-based and specialised for the requirements of ε-GBFS and should

thus perform better. In Table 4.1 you can find a comparison of the complexities of both

implementations.

4.1.1 RandomBucketOpenList
In StandardScalarOpenList the states are stored in buckets, based on their heuristic

value and the buckets are stored in a std::map mapping the heuristic value to a bucket.

The states are retrieved using FIFO tie breaking. This implementation is an extension of

StandardScalarOpenList. We reimplemented the method

StandardScalarOpenList::remove min. While this method returns the state with

the minimal heuristic value from the open list, RandomBucketOpenList::remove min

returns, with the probability of ε, a random state. With a probability of (1− ε) the default

implementation StandardScalarOpenList::remove min is used. As the states are

stored in buckets, we have to iterate over the buckets until we find the bucket containing

the nth random state, which has linear with respect to the number of buckets.

4.1.2 RandomOpenList
Instead of a std::map containing buckets as used in RandomBucketOpenList, we store

the states in a std::heap. This enables us to remove the states with the lowest heuristic

value in a fast manner, using std::pop heap in case of the default behaviour of GBFS

which happens with the probability (1−ε). To remove a random state we generate a random
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index for the state to be removed. We decrease the key to −∞ of the state and readjust

the heap. Finally, we can just use std::pop heap to remove the selected state. In order

to enable FIFO tie breaking, as it is done with buckets in StandardScalarOpenList,

we not only use the heuristic value as key in our heap, but also assign a unique id to each

state. The id is increased with every added state.

Action RandomBucketOpenList RandomOpenList

Insert state O(1) O(log(n))
Remove random state O(m) O(log(n))
Remove min state O(1) O(log(n))

Table 4.1: Complexity of ε-GBFS. n is the number of states and m the number of buckets.

In Table 4.1 we can see that we have a slightly higher complexity for the insertion of states

and the removal of the minimum state O(log(n)) > O(1) but its compensated by the reduced

complexity for the removal of a random stae. For RandomBucketOpenList the complexity

is linear to the number of buckets, which depending on the problem and the used heuristic

can be enormous.

4.2 Type-based exploration
As Fast Downward already supports alternation between multiple open lists, we only had

to implement the type-based open list. In the type-based open list states are stored in key-

bucket pairs in a std::vector (list). In addition we maintain a std::unordered map

(lookup table) pointing to the index in the list. We use a std::vector<int> as key.

As a result the combination of keys can be of any length.

The lookup table is only used to retrieve the index for the insertion of the state. In order

to remove a state, we generate a uniform random index for the bucket. We access the

list directly with this index without the use of the lookup table. Finally we generate a

uniform random index for the state inside the bucket. We decided to use this two level

approach as accessing the nth random bucket in a map has linear complexity O(n) whereas

the complexity for accessing the nth random bucket in a vector is constant O(1).

4.3 Monte-Carlo random walks
Our implementation of Monte-Carlo random walks (Nakhost and Müller, 2009) includes

all exploration algorithms from ARVAND. The support for multiple configurations is not

implemented and thus we cannot switch between the different exploration algorithms (Pure-

Random, Monte-Carlo-Helpful-Actions (MHA) and Monte-Carlo-Dead-End-Avoidance (MDA)).

However this feature is not needed for this thesis.

While Fast Downward already provides a closed list, we had to implement something new for

the random walks, to be able to prevent loops in the global path. We use a set of states as

a close list, and a simple vector of state-operator pairs to save the path. If a path, resulting

of a random walk, is selected to be part of the global path, we merge it with the global path

and remove possible loops. After the search reaches the goal state, this path is converted to
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the default representation used in Fast Downward.

4.4 Local exploration
Our implementation of local exploration (Xie et al., 2014a) is designed to be an abstract

and non intrusive search engine. The actual search steps are delegated to existing search

engines.

Our design enables us to use different search engines for the local search and for the global

search as well as different heuristics or open lists.

To be able to run a new search, starting on any state instead of the initial state s0, we

extended the options parameter for the supported search types by the option root. If the

option root is available, the search will start on that state instead of s0. It is now also

possible to pass the search space, which in Fast Downward represents the closed list, to a

search engine using the options. We added a method new instance(const Options

&options), to the supported search engines, to be able to create new instances of search

engines of the same type for a local search.

Open lists in Fast Downward are template-based and the types for lazy (see Subsection 2.5.1)

and eager search are different. For that reason it is not possible to combine a lazy with an

eager search.

4.5 Diverse best-first search
We decided to implement DBFS with two levels of open lists. The DiverseOpenList

receives two open lists as arguments. The first is the global open list, which is used to

store the states between the local search steps. The second is the local open list. DBFS

is implemented as open lists thus it support different search engines. The global open list

is supposed to be a ProbabilisticOpenList, while the local open list can be of any

supported type. Our ProbabilisticOpenList handles probabilistic selection of states

based on Imai and Kishimoto (2011) (Algorithm 2). We modified the algorithm to only

iterate over existing g(s) and h(s) values, see Algorithm 4.1.

The design of our DiverseOpenList implementation is basically a wrapper for the local

open list. Most calls are directly forwarded to the local open list.

DiverseOpenList::remove min counts the number of local steps. If the number of

steps exceeds the limit or the local open list is empty, the local open list is reset. The limit

is defined as the heuristic value of the last root state for the local open list. All remaining

states from the local open lists are evaluated again, inserted into the global open list and

the local open list is cleared. Finally, the next state from the global open list is fetched as

new root state s, inserted into the local open list and the limit for the local steps is set to

h(s) .
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OL = the open l i s t , mapping (h , g ) keys to s t a t e s
p t o t a l = 0
h map = sor t ed map o f h va lue s with r e f e r e n c e count
g map = sor t ed map o f g va lue s with r e f e r e n c e count

i f with p r o b a b i l i t y o f P:
G = random (0 , | g map | )

e l s e :
G = | g map |

end i f

f o r h in h map :
f o r g in g map [ 0 :G] :

i f (h , g ) in OL:
p [ h ] [ g ] = pow(T, h − h min )
p t o t a l += p [ h ] [ g ]

end i f
end f o r

end f o r

s e l e c t a pa i r o f h and g with p r o b a b i l i t y o f p [ h ] [ g ] / p t o t a l
h map [ h]−−
g map [ g]−−

i f the r e f e r e n c e count i s 0 the h or g value i s removed from the maps
dequeue a node n with h(n)=h and g (n)=g in OL
return n

Algorithm 4.1: Modified version of Imai and Kishimoto (2011) Algorithm 2.
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Experiments

5.1 Setup
For all search algorithms we have run experiments with the same configuration as in the

original paper and on the same set of benchmarks. Results named base are always referring

to a standard GBFS run on the benchmark set. The heuristic used depends on the experi-

ments we reproduced.

The experiments were run on a cluster of Intel Xeon E5-2660 processors (2.2 GHz) run-

ning CentOS 6.5. Each task was executed on a single processor core, with a time limit of

30 minutes and a memory limit of 2GB.

The full configurations can be found in Appendix A.

5.2 Evaluation scores
The coverage charts show how many problems of a domain were solved.

Coverage (Sum): The sum over all domains.

Average score: The number of solved problems in relation to domains in percentage.

Coverage score: The average percentage of problems solved per single domain.

Domains better than base: The number of domains, where the coverage improved over

the base line algorithm.

Domains worse than base: The number of domains, where the coverage could not reach

the results of the base line algorithm.

In the bar charts we use the following colours:

• blue: The results of the original implementation.

• green: Our own results.

• red: The results of our second implementation.
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5.3 ε-greedy best-first search
We have run the experiments on the bucket implementation (Subsection 4.1.1). In addi-

tion to the ε parameters proposed, we also evaluated the results for ε = 0 and ε = 1 to

show the performance without any random evaluation and pure random evaluation. We

have run the same benchmarks on our more specialised heap implementation from Subsec-

tion 4.1.2. A comparison of the original results with both RandomBucketOpenList and

RandomOpenList can be found in Figure 5.1.

The benchmark set consists of 790 problems in 30 domains.

528base

589base

589base

5880.00

5840.00

5780.05

6070.05

6180.05

5810.10

5990.10

6160.10

5850.20

5960.20

6210.20

5840.30

5990.30

6080.30

5740.50

5810.50

6020.50

5460.75

5220.75

5810.75

500 650
Coverage sum

Figure 5.1: Comparison of ε-GBFS coverage with Valenzano et al. (2014) Table 1 for
different values of ε. Blue are the results from Valenzano et al. (2014) Table 1, green are
the results for RandomBucketOpenList and red are the results for RandomOpenList.
The results for ε = 1 are not included as they fall out of the comparison.

While we surpass most results from Valenzano et al. (2014) Table 1 even for the baseline

configuration, our specialised implementation of ε-GBFS shows much better results than

both, the original and our bucket approach. The result for ε = 0, i.e. no random states,

shows that our heap implementation can compete with the StandardScalarOpenList.

For RandomBucketOpenList ε = 0.05 achieves the best results, while in RandomOpenList
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Figure 5.2: Comparison of time usage of RandomOpenList and
RandomBucketOpenList for ε = 0.20.

ε = 0.20 achieves the best results.

This is due to the complexity overhead in RandomBucketOpenList. Using more random

values leads to more overhead and impacts the run time.

In Figure 5.2 we compare the run-time of RandomOpenList with the run-time of

RandomBucketOpenList. As expected the gain in coverage is directly related to the im-

proved run-time.

The heap based implementation RandomOpenList consumes more memory than

RandomBucketOpenList. The few cases were RandomBucketOpenList solved a prob-

lem and RandomOpenList did not, are those, where RandomOpenList exceeded the

memory limit.

In Table 5.1 and Table 5.2 you can see that the improvement is evenly distributed over

all domains.
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barman-sat11-strips (20) 19 19 19 16 14 15 11 9 0
elevators-sat08-strips (30) 30 30 30 30 30 30 30 30 0
elevators-sat11-strips (20) 18 18 20 18 20 19 16 14 0
floortile-sat11-strips (20) 6 6 4 4 4 3 3 2 0
nomystery-sat11-strips (20) 9 9 8 9 11 9 9 8 3
openstacks (30) 30 30 30 30 30 30 30 30 7
openstacks-sat08-adl (30) 30 30 30 30 30 30 30 30 6
openstacks-sat08-strips (30) 30 30 30 30 30 30 30 30 6
openstacks-sat11-strips (20) 20 20 20 20 20 20 19 19 0
parcprinter-08-strips (30) 26 26 26 27 26 28 27 26 12
parcprinter-sat11-strips (20) 12 12 12 15 15 14 14 13 0
parking-sat11-strips (20) 18 17 17 17 15 18 17 11 0
pathways (30) 11 11 14 12 13 10 9 9 4
pegsol-08-strips (30) 30 30 30 30 30 30 30 30 25
pegsol-sat11-strips (20) 20 20 20 20 20 20 20 20 15
pipesworld-tankage (50) 23 23 27 25 26 28 29 28 9
rovers (40) 23 23 26 24 23 24 23 21 6
scanalyzer-08-strips (30) 27 27 30 30 30 30 29 27 7
scanalyzer-sat11-strips (20) 17 17 20 20 20 20 20 17 1
sokoban-sat08-strips (30) 29 29 29 29 29 29 29 28 22
sokoban-sat11-strips (20) 19 19 19 19 19 19 19 18 12
storage (30) 18 18 19 21 20 22 21 19 13
tidybot-sat11-strips (20) 14 14 16 15 15 17 16 16 3
tpp (30) 23 23 21 20 19 17 17 15 5
transport-sat08-strips (30) 16 16 17 16 18 16 16 16 6
transport-sat11-strips (20) 0 0 0 0 0 0 0 0 0
trucks (30) 17 17 17 16 15 15 13 13 6
visitall-sat11-strips (20) 5 5 9 7 6 7 5 4 0
woodworking-sat08-strips (30) 30 30 29 30 29 30 30 30 5
woodworking-sat11-strips (20) 19 19 18 19 19 19 19 19 1

Sum (790) 589 588 607 599 596 599 581 552 174
Average Score in % 74.56 74.43 76.84 75.82 75.44 75.82 73.54 69.87 22.03

Coverage Score in % 74.67 74.51 76.74 75.83 75.43 75.76 73.07 68.95 20.71

Domains better than base 0 0 10 10 11 10 7 4 0
Domains worse than base 0 1 6 5 6 5 8 13 29

Table 5.1: ε-GBFS: Reproduction of Valenzano et al. (2014) Table 1. base is a standard
GBFS, the other results are from RandomBucketOpenList implementation for different
values of ε.
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barman-sat11-strips (20) 19 19 19 19 19 18 17 16 0
elevators-sat08-strips (30) 30 30 30 30 30 30 30 30 1
elevators-sat11-strips (20) 18 18 19 20 20 18 19 17 0
floortile-sat11-strips (20) 6 6 6 6 7 6 6 6 2
nomystery-sat11-strips (20) 9 9 10 10 10 10 9 10 4
openstacks (30) 30 30 30 30 30 30 30 30 7
openstacks-sat08-adl (30) 30 30 30 30 30 30 30 30 6
openstacks-sat08-strips (30) 30 30 30 30 30 30 30 30 6
openstacks-sat11-strips (20) 20 20 20 20 20 20 20 19 0
parcprinter-08-strips (30) 26 26 26 28 28 27 27 27 14
parcprinter-sat11-strips (20) 12 12 14 15 16 15 14 15 0
parking-sat11-strips (20) 18 18 20 20 19 18 18 15 0
pathways (30) 11 11 12 12 12 10 10 5 4
pegsol-08-strips (30) 30 30 30 30 30 30 30 30 27
pegsol-sat11-strips (20) 20 20 20 20 20 20 20 20 17
pipesworld-tankage (50) 23 23 27 27 26 27 26 30 9
rovers (40) 23 22 24 23 24 23 22 21 6
scanalyzer-08-strips (30) 27 27 30 30 30 30 30 28 8
scanalyzer-sat11-strips (20) 17 17 20 20 20 20 20 18 1
sokoban-sat08-strips (30) 29 29 29 29 29 29 29 29 25
sokoban-sat11-strips (20) 19 19 19 19 19 19 19 19 15
storage (30) 18 17 22 21 21 22 23 20 14
tidybot-sat11-strips (20) 14 14 16 16 16 16 17 16 2
tpp (30) 23 21 22 22 22 19 18 16 6
transport-sat08-strips (30) 16 16 19 17 20 18 18 16 6
transport-sat11-strips (20) 0 0 0 0 1 0 0 0 0
trucks (30) 17 17 18 16 16 17 15 17 9
visitall-sat11-strips (20) 5 4 7 7 7 8 7 5 0
woodworking-sat08-strips (30) 30 30 30 30 30 29 29 29 6
woodworking-sat11-strips (20) 19 19 19 19 19 19 19 17 1

Sum (790) 589 584 618 616 621 608 602 581 196
Average Score in % 74.56 73.92 78.23 77.97 78.61 76.96 76.20 73.54 24.81

Coverage Score in % 74.67 74.09 78.41 78.33 79.01 77.22 76.51 73.36 23.54

Domains better than base 0 0 14 13 16 10 10 8 0
Domains worse than base 0 4 1 2 2 4 6 9 29

Table 5.2: ε-GBFS: Reproduction of Valenzano et al. (2014) Table 1. base is a standard
GBFS, the other results are from RandomOpenList implementation for different values of
ε.
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5.4 Type-based exploration
We conducted the same experiment as Xie et al. (2014b) Table 1. A comparison of the

results can be found in Figure 5.3.

The benchmark set consists of 2112 problems in 54 domains.

1561ff-base

1612ff-base

1755ff-typed

1785ff-typed

1498cea-base

1530cea-base

1678cea-typed

1719cea-typed

1513cg-base

1538cg-base

1691cg-typed

1694cg-typed

1400 1800
Coverage sum

Figure 5.3: Comparison Type-based Exploration coverage with Xie et al. (2014b) Table 1
for the heuristics ff, cea, cg and with the type-based-GBFS(heuristic,g(s)).

As you can see in Figure 5.3 the results scale similarly to the original implementation.
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airport (50) 45 41 28 29 36 36
assembly (30) 11 23 12 15 30 30
barman-sat11-strips (20) 0 0 0 1 19 17
blocks (35) 35 35 35 35 35 35
cybersec-sat08-strips (30) 12 30 0 17 26 30
depot (22) 12 14 12 17 15 18
driverlog (20) 18 18 18 20 18 19
elevators-sat08-strips (30) 28 29 28 29 30 30
elevators-sat11-strips (20) 9 10 9 10 19 16
floortile-sat11-strips (20) 6 7 0 2 6 8
freecell (80) 79 80 75 80 79 80
grid (5) 4 5 4 5 4 5
gripper (20) 20 20 20 20 20 20
logistics00 (28) 28 28 28 28 28 28
logistics98 (35) 34 34 34 34 30 29
miconic (150) 150 150 150 150 150 150
miconic-fulladl (150) 139 138 137 139 136 139
miconic-simpleadl (150) 150 150 150 150 150 150
movie (30) 30 30 30 30 30 30
mprime (35) 34 34 35 35 31 33
mystery (30) 17 19 17 18 17 19
nomystery-sat11-strips (20) 7 12 7 15 10 19
openstacks (30) 24 17 26 24 30 30
openstacks-sat08-strips (30) 30 30 30 30 30 30
openstacks-sat11-strips (20) 19 17 13 12 20 19
optical-telegraphs (48) 5 5 1 2 4 6
parcprinter-08-strips (30) 30 29 30 30 30 30
parcprinter-sat11-strips (20) 20 19 20 20 20 20
parking-sat11-strips (20) 14 10 20 17 20 17
pathways (30) 10 20 11 11 10 21
pegsol-08-strips (30) 30 30 30 30 30 30
pegsol-sat11-strips (20) 20 20 20 20 20 20
philosophers (48) 48 48 48 48 48 48
pipesworld-notankage (50) 24 41 28 41 33 42
pipesworld-tankage (50) 21 29 16 23 21 28
psr-large (50) 31 31 31 28 15 22
psr-small (50) 50 50 50 50 50 50
rovers (40) 26 32 27 32 23 29
satellite (36) 31 30 36 36 27 27
scanalyzer-08-strips (30) 29 29 30 30 27 30
scanalyzer-sat11-strips (20) 19 19 20 20 17 20
schedule (150) 20 87 20 87 37 111
sokoban-sat08-strips (30) 5 27 28 29 29 29
sokoban-sat11-strips (20) 3 17 18 19 19 19
storage (30) 16 24 18 28 18 23
tidybot-sat11-strips (20) 18 18 11 15 15 16
tpp (30) 27 24 26 24 23 21
transport-sat08-strips (30) 28 26 30 29 17 16
transport-sat11-strips (20) 9 7 17 14 1 0
trucks-strips (30) 15 20 14 14 17 23
visitall-sat11-strips (20) 4 7 4 8 3 8
woodworking-sat08-strips (30) 14 21 14 20 16 27
woodworking-sat11-strips (20) 2 8 2 4 3 12
zenotravel (20) 20 20 20 20 20 20

Sum (2112) 1530 1719 1538 1694 1612 1785
Average Score in % 72.44 81.39 72.82 80.21 76.33 84.52

Coverage Score in % 69.70 78.47 71.25 77.71 76.00 83.12

Domains better than base 0 22 0 26 0 25
Domains worse than base 0 11 0 7 0 8

Table 5.3: Type-Based Exploration: We compare the coverage of a standard GBFS with
the heuristics ff, cea, cg and type-based-GBFS (heuristic,g(s)).
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5.4.1 Multiple heuristics in type-based-GBFS
We also reproduced the experiment from Xie et al. (2014b) Table 4 see Figure 5.4. This

experiment is important, as we are able to use any number of heuristics with our type based

open list implementation while the original Fast Downward implementation from Xie et al.

(2014b) only allowed a h(s) and a g(s) value. For that reason only a direct comparison

to the results of the experiments with the keys [const(1)], [g()], [hff()], [hff(), g()] is possible

as the other results originate from the LAMA implementation of type-based exploration.

The results for [hff(), hcea(), g()], [hff(), hcg(), hcea(), g()], [hff(), hcg(), g()] are additions on

our side to test how our implementation performs with longer keys.

1561ff-base

1612ff-base

15291

17351

1758g

1725g

1729ff

1690ff

1755ff-g

1787ff-g

1691ff-cea-g

1661ff-cg-cea-g

1723ff-cg-g

1400 1800
Coverage sum

Figure 5.4: Type-based Exploration: Reproduction of Xie et al. (2014b) Table 4. We
extended the table with the configurations for cg, and cea.

As expected using longer keys, which implies more heuristics, reduces the quality of the

results as the number of the evaluations is greatly increased. In Table 5.4 you can see that

the impact of the multiple evaluations is high enough, that even the simple randomisation

without any type system ([const(1)]) yields better results.

In Table 5.4 you can see that the domain improvement is the best for [const(1)] and

[hff(), g()].
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airport (50) 36 35 36 34 33 33 36 36
assembly (30) 30 30 30 30 30 30 30 30
barman-sat11-strips (20) 19 17 17 14 13 17 17 20
blocks (35) 35 35 35 35 35 35 35 35
cybersec-sat08-strips (30) 26 30 30 30 30 30 30 30
depot (22) 15 17 16 15 14 17 18 17
driverlog (20) 18 18 18 18 18 18 19 19
elevators-sat08-strips (30) 30 30 30 30 30 30 30 30
elevators-sat11-strips (20) 19 18 20 12 12 19 16 20
floortile-sat11-strips (20) 6 8 7 8 6 7 8 7
freecell (80) 79 80 78 77 75 79 80 80
grid (5) 4 5 5 5 5 5 5 5
gripper (20) 20 20 20 20 20 20 20 20
logistics00 (28) 28 28 28 28 28 28 28 28
logistics98 (35) 30 29 29 25 25 26 29 30
miconic (150) 150 150 150 150 150 150 150 150
miconic-fulladl (150) 136 139 137 138 138 139 139 138
miconic-simpleadl (150) 150 150 150 150 150 150 150 150
movie (30) 30 30 30 30 30 30 30 30
mprime (35) 31 31 31 34 35 35 33 31
mystery (30) 17 19 19 19 19 19 19 18
nomystery-sat11-strips (20) 10 10 10 12 11 18 19 10
openstacks (30) 30 30 30 30 30 30 30 30
openstacks-sat08-strips (30) 30 30 30 30 30 30 30 30
openstacks-sat11-strips (20) 20 20 20 19 19 17 19 20
optical-telegraphs (48) 4 4 5 4 5 6 6 6
parcprinter-08-strips (30) 30 30 30 30 30 30 30 30
parcprinter-sat11-strips (20) 20 20 20 20 20 20 20 20
parking-sat11-strips (20) 20 20 19 16 13 17 17 19
pathways (30) 10 18 17 17 13 15 21 16
pegsol-08-strips (30) 30 30 30 30 30 30 30 30
pegsol-sat11-strips (20) 20 20 20 20 20 20 20 20
philosophers (48) 48 48 48 48 48 48 48 48
pipesworld-notankage (50) 33 41 39 39 39 42 42 41
pipesworld-tankage (50) 21 27 25 28 26 26 28 29
psr-large (50) 15 22 18 23 20 22 22 20
psr-small (50) 50 50 50 50 50 50 50 50
rovers (40) 23 30 28 28 27 28 29 27
satellite (36) 27 27 26 26 26 26 27 27
scanalyzer-08-strips (30) 27 30 30 27 27 30 30 30
scanalyzer-sat11-strips (20) 17 20 20 17 17 20 20 20
schedule (150) 37 69 63 83 81 83 111 73
sokoban-sat08-strips (30) 29 29 29 28 29 29 29 29
sokoban-sat11-strips (20) 19 19 19 18 19 19 19 19
storage (30) 18 22 21 20 21 21 23 22
tidybot-sat11-strips (20) 15 16 16 17 15 17 17 16
tpp (30) 23 25 18 16 16 17 21 21
transport-sat08-strips (30) 17 16 17 16 16 17 17 18
transport-sat11-strips (20) 1 0 0 0 0 0 0 0
trucks-strips (30) 17 19 19 22 17 22 23 17
visitall-sat11-strips (20) 3 11 9 7 7 7 8 7
woodworking-sat08-strips (30) 16 22 20 22 19 22 27 29
woodworking-sat11-strips (20) 3 11 8 6 4 7 12 17
zenotravel (20) 20 20 20 20 20 20 20 20

Sum (2112) 1612 1725 1690 1691 1661 1723 1787 1735
Average Score in % 76.33 81.68 80.02 80.07 78.65 81.58 84.61 82.15

Coverage Score in % 76.00 81.53 79.85 78.19 76.31 80.63 83.27 82.15

Domains better than base 0 22 22 19 17 23 25 25
Domains worse than base 0 6 7 13 12 8 7 3

Table 5.4: Type-Based Exploration: Reproduction of Xie et al. (2014b) Table 4. We
extended the table with the configurations for cg, and cea.
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5.5 Monte-Carlo random walks
For Monte-Carlo random walks we have run the experiment from Nakhost and Müller (2009)

Table 1, but also run the experiments for MDA and MHA on the same set of benchmarks.

We reproduced the configuration from Nakhost and Müller (2009) Table 3.

The benchmark set consists of 382 problems in 8 domains.

To have an impression of the impact of the acceptable progress parameter, we also run the

experiment with a basic pure random Monte-Carlo Random Walk search without acceptable

progress, see Figure 5.5.

214base

234base

282pure

230pure

205MDA

237MHA

248pure-no-accaptable-progress

150 250
Coverage sum

Figure 5.5: Monte-Carlo random walks: Reproduction of Nakhost and Müller (2009) Table
1. We extended the table with the configurations without acceptable progress. Numbers
for the original results are estimates from percentage of coverage.
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airport (50) 36 37 43 44 46
optical-telegraphs (48) 4 0 7 6 7
philosophers (48) 48 17 14 13 13
pipesworld-notankage (50) 33 42 46 41 45
pipesworld-tankage (50) 21 39 40 41 42
psr-large (50) 15 9 19 18 18
psr-small (50) 50 33 40 40 50
satellite (36) 27 28 28 27 27

Sum (382) 234 205 237 230 248
Average Score in % 61.26 53.66 62.04 60.21 64.92

Coverage score in % 61.67 54.15 62.19 60.32 64.83

Domains better than base 0 4 6 5 5
Domains worse than base 0 4 2 2 1

Table 5.5: Monte-Carlo Random-Walks: Reproduction of Nakhost and Müller (2009)
Table 1. We extended the table with the configurations without acceptable progress.

In Nakhost and Müller (2009) Table 1, ARVAND solved 74% of the problems in the average

case. Our implementation with the same configuration only covers 60% of the problems, but
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without the use of acceptable progress at least 65%. Our implementation of MHA surpasses

the results of the pure random walk. In Nakhost and Müller (2009) Table 3, MHA was only

applied on the satellite set, where it also outperformed pure random walks.

5.6 Local exploration
We reproduced the basic experiment from Xie et al. (2014a) Table 1 for the heuristics

hff , hcg, hcea in Table 5.6.

The benchmark set consists of 2112 problems in 54 domains.

1561ff-base

1612ff-base

1657ff-local

1700ff-local

1513cg-base

1540cg-base

1602cg-local

1600cg-local

1498cea-base

1528cea-base

1603cea-local

1607cea-local

1400 1750
Coverage sum

Figure 5.6: Reproduction of Xie et al. (2014a) Table 1 GBFS-LS.

As in the original implementation, the local search outperforms the standard GBFS in all

three cases. The gained improvement to the base experiments is also at a similar scale.
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airport (50) 45 41 28 28 36 36
assembly (30) 11 23 12 13 30 30
barman-sat11-strips (20) 0 0 0 0 19 19
blocks (35) 35 35 35 35 35 35
cybersec-sat08-strips (30) 12 26 0 2 26 30
depot (22) 12 13 12 12 15 17
driverlog (20) 18 20 18 20 18 18
elevators-sat08-strips (30) 28 28 28 30 30 30
elevators-sat11-strips (20) 9 9 9 10 19 20
floortile-sat11-strips (20) 6 6 0 0 6 6
freecell (80) 79 80 75 76 79 80
grid (5) 4 4 4 5 4 5
gripper (20) 20 20 20 20 20 20
logistics00 (28) 28 28 28 28 28 28
logistics98 (35) 34 34 34 34 30 28
miconic (150) 150 150 150 150 150 150
miconic-fulladl (150) 139 139 137 137 136 136
miconic-simpleadl (150) 150 150 150 150 150 150
movie (30) 30 30 30 30 30 30
mprime (35) 34 34 35 35 31 30
mystery (30) 17 19 17 18 17 18
nomystery-sat11-strips (20) 7 7 7 7 10 9
openstacks (30) 24 9 26 12 30 30
openstacks-sat08-strips (30) 30 30 30 30 30 30
openstacks-sat11-strips (20) 19 19 13 15 20 20
optical-telegraphs (48) 5 2 1 1 4 4
parcprinter-08-strips (30) 30 30 30 30 30 30
parcprinter-sat11-strips (20) 20 20 20 20 20 20
parking-sat11-strips (20) 14 13 20 20 20 20
pathways (30) 10 17 11 10 10 17
pegsol-08-strips (30) 30 30 30 30 30 30
pegsol-sat11-strips (20) 20 20 20 20 20 20
philosophers (48) 48 48 48 48 48 48
pipesworld-notankage (50) 24 28 28 33 33 35
pipesworld-tankage (50) 21 23 16 20 21 26
psr-large (50) 31 31 31 32 15 16
psr-small (50) 50 50 50 50 50 50
rovers (40) 26 32 27 35 23 28
satellite (36) 31 31 36 36 27 28
scanalyzer-08-strips (30) 29 29 30 30 27 28
scanalyzer-sat11-strips (20) 19 19 20 20 17 18
schedule (150) 20 50 20 50 37 81
sokoban-sat08-strips (30) 5 5 28 28 29 29
sokoban-sat11-strips (20) 3 3 18 18 19 19
storage (30) 16 19 18 20 18 22
tidybot-sat11-strips (20) 18 19 13 16 15 15
tpp (30) 25 27 26 29 23 24
transport-sat08-strips (30) 28 28 30 30 17 18
transport-sat11-strips (20) 9 12 17 17 1 1
trucks-strips (30) 15 15 14 13 17 17
visitall-sat11-strips (20) 4 7 4 7 3 8
woodworking-sat08-strips (30) 14 19 14 17 16 18
woodworking-sat11-strips (20) 2 6 2 3 3 5
zenotravel (20) 20 20 20 20 20 20

Sum (2112) 1528 1607 1540 1600 1612 1700
Average Score in % 72.35 76.09 72.92 75.76 76.33 80.49

Coverage score in % 69.58 73.25 71.43 73.92 76.00 79.56

Domains better than base 0 18 0 20 0 21
Domains worse than base 0 4 0 3 0 3

Table 5.6: Reproduction of Xie et al. (2014a) Table 1 GBFS-LS.
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5.7 Diverse best-first search
We reproduced the experiment from Imai and Kishimoto (2011) Table 1.

The benchmark set consists of 1612 problems in 32 domains.

1209ff-base

1228ff-base

1451ff-diverse

1440ff-diverse

1170cg-base

1207cg-base

1358cg-diverse

1397cg-diverse

1202cea-base

1223cea-base

1388cea-diverse

1451cea-diverse

1222ff-diverse-lazy

1100 1500
Coverage sum

Figure 5.7: Diverse best-first search: Reproduction of Imai and Kishimoto (2011) Table 1.

While deferred evaluation (Subsection 2.5.1) is possible, our experimental results showed

that in the current implementation of DBFS, the use of deferred evaluation decreased the

quality of the results. This is due to the nature of deferred evaluation which, in case of

DBFS, leads to a huge increase of local searches, ending after the first node. This again

results in an increased number of evaluations.
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airport (50) 45 44 28 34 36 43 33
assembly (30) 11 28 12 10 30 30 30
blocks (35) 35 35 35 35 35 35 35
depot (22) 12 19 12 19 15 18 17
driverlog (20) 18 20 18 20 18 20 18
freecell (80) 79 80 75 77 79 80 80
grid (5) 4 5 4 5 4 4 5
gripper (20) 20 20 20 20 20 20 20
logistics00 (28) 28 28 28 28 28 28 28
logistics98 (35) 34 34 34 34 30 28 12
miconic (150) 150 150 150 150 150 150 150
miconic-fulladl (150) 139 139 137 139 136 139 134
miconic-simpleadl (150) 150 150 150 150 150 150 150
movie (30) 30 30 30 30 30 30 30
mprime (35) 34 35 35 34 31 33 22
mystery (30) 17 19 17 19 17 19 17
openstacks (30) 24 22 26 22 30 30 20
optical-telegraphs (48) 5 6 1 1 4 7 6
pathways (30) 10 30 11 10 10 27 7
philosophers (48) 48 48 48 48 48 48 47
pipesworld-notankage (50) 24 43 28 43 33 43 43
pipesworld-tankage (50) 21 29 16 29 21 34 34
psr-large (50) 31 27 31 26 15 24 14
psr-middle (50) 50 50 50 50 43 49 38
psr-small (50) 50 50 50 50 50 50 50
rovers (40) 26 38 27 40 23 35 32
satellite (36) 31 31 36 35 27 28 12
schedule (150) 20 142 20 142 37 135 54
storage (30) 16 27 18 30 18 26 24
tpp (30) 26 30 26 30 23 30 24
trucks (30) 15 22 14 17 17 27 16
zenotravel (20) 20 20 20 20 20 20 20

Sum (1612) 1223 1451 1207 1397 1228 1440 1222
Average Score in % 75.87 90.01 74.88 86.66 76.18 89.33 75.81

Coverage score in % 75.74 88.87 75.28 83.99 76.46 87.96 74.92

Domains better than base 0 16 0 14 0 19 10
Domains worse than base 0 3 0 6 0 1 11

Table 5.7: Diverse best-first search: Reproduction of Imai and Kishimoto (2011) Table 1.
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Comparison of all algorithms

In addition to the experiments from Chapter 5, we have also run the most promising config-

uration of each algorithm on the IPC 20112 benchmark set. Thus we will be able to compare

the algorithms on the same set of benchmarks. We have run the experiments twice, once

as eager search without any search enhancements and once as lazy search with deferred

evaluation, provided that deferred evaluation is applicable.

We use unit costs for all experiments and as heuristic we use hff. The setup is the same

used in Chapter 5. An explanation of the scores can be found in Section 5.2. The full

configurations can be found in Appendix A.

The benchmark set consists of 280 problems in 14 domains.

6.1 Eager search

192base

224DBFS

200GBFS-LS

214e-GBFS

213type-based-GBFS

104EHC

118Monte-Carlo random walks

0 250
Coverage sum

Figure 6.1: Comparison of the coverage of all search algorithms introduced in Chapter 3.

All newly implemented algorithms achieved an higher coverage compared to standard GBFS.

Random walks are only included as they have been implemented as part of this thesis. They

can not compete with the other algorithms presented here.

2 International Planning Competition 2011 http://www.plg.inf.uc3m.es/ipc2011-deterministic/.

http://www.plg.inf.uc3m.es/ipc2011-deterministic/
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barman-sat11-strips (20) 19 20 0 19 0 19 19
elevators-sat11-strips (20) 19 20 18 20 19 20 19
floortile-sat11-strips (20) 6 9 0 6 2 7 8
nomystery-sat11-strips (20) 10 19 3 9 5 10 19
openstacks-sat11-strips (20) 20 20 20 20 20 20 20
parcprinter-sat11-strips (20) 20 20 11 20 9 20 20
parking-sat11-strips (20) 20 20 1 20 2 19 16
pegsol-sat11-strips (20) 20 20 2 20 19 20 20
scanalyzer-sat11-strips (20) 17 20 18 18 13 20 20
sokoban-sat11-strips (20) 19 19 1 19 1 19 19
tidybot-sat11-strips (20) 15 17 10 15 15 17 16
transport-sat11-strips (20) 1 3 0 1 2 1 0
visitall-sat11-strips (20) 3 8 0 8 7 6 8
woodworking-sat11-strips (20) 3 9 20 5 4 16 9

Sum (280) 192 224 104 200 118 214 213
Average Score in % 68.57 80.00 37.14 71.43 42.14 76.43 76.07

Domains better than base 0 9 2 4 3 6 6
Domains worse than base 0 0 11 1 8 1 2

Table 6.1: Comparison of the coverage of all search algorithms introduced in Chapter 3.

DBFS performs best. It not only has the biggest improvement for coverage, it also does not

decrease the coverage for a single domain.

Typed-based exploration and ε-GBFS solve a similar amount of problems and improved on

the same amount of domains.

6.2 Lazy search
As deferred evaluation is not applicable for EHC (Section 3.2) and Monte-Carlo random

walks (Section 3.4), we did not include them in this section.

197base

156DBFS

193GBFS-LS

207e-GBFS

218type-based-GBFS

0 250
Coverage sum

Figure 6.2: Comparison of the coverage of all search algorithms introduced in Chapter 3.

In Section 5.7 we already discovered that the performance of DBFS is massively decreased
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barman-sat11-strips (20) 19 20 20 18 17
elevators-sat11-strips (20) 18 10 12 18 18
floortile-sat11-strips (20) 6 4 6 6 7
nomystery-sat11-strips (20) 9 11 9 10 18
openstacks-sat11-strips (20) 20 19 20 20 20
parcprinter-sat11-strips (20) 12 10 12 15 20
parking-sat11-strips (20) 19 6 13 18 17
pegsol-sat11-strips (20) 20 20 20 20 20
scanalyzer-sat11-strips (20) 17 14 18 20 20
sokoban-sat11-strips (20) 19 17 18 19 19
tidybot-sat11-strips (20) 14 16 16 16 17
transport-sat11-strips (20) 0 2 1 0 0
visitall-sat11-strips (20) 5 5 9 8 9
woodworking-sat11-strips (20) 19 2 19 19 16

Sum (280) 197 156 193 207 218
Average Score in % 70.36 55.71 68.93 73.93 77.86

Domains better than base 0 4 5 5 6
Domains worse than base 0 8 3 2 3

Table 6.2: Comparison of the coverage of all search algorithms introduced in Chapter 3
with deferred evaluation.

when deferred evaluation is applied. The deferred evaluation only resulted in a minimal

improvement for the standard GBFS and type-based-GBFS. The coverage for all other

algorithms is decreased.

In Table 6.2 you can see that for DBFS in 8 of 14 domains the coverage was decreased

while it was only increased in 4 domains. Type-based-GBFS is the only algorithm where

the number of domains with a higher coverage than the base algorithm did not decrease for

deferred evaluation, see Table 6.2 and Table 6.1.
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Conclusion and future work

7.1 Conclusion
We proved that all algorithms perform as proposed in the original papers. They all show

improved coverage over GBFS. The combination of random exploration with a local search

in DBFS (Imai and Kishimoto, 2011) showed the best results but already simple randomisa-

tion can greatly enhance the coverage. While DBFS performed best, simple randomisation

performs also well as we where able to see for ε-GBFS (Valenzano et al., 2014) and type-

based-GBFS (Xie et al., 2014b).

In Section 5.3 we were able to prove that our implementation of ε−GBFS performs better

than the simple implementation and further effort on the improvement of these algorithms

seems reasonable.

7.2 Future work
The implementation of those algorithms in the same framework and with this level of ab-

straction enables us to experiment with many more configurations of experiments than

presented here. For example, it would be possible to try an open list other than the

ProbabilisticOpenList as global open list for DBFS.

While we already tried to reduce the complexity of the DBFS algorithm (Section 4.5) there

are still many possibilities for improvement. Our version of the algorithm should also be

compared to linear implementation from Imai and Kishimoto (2011).

We also did not explore the full set of configurations for the algorithms and features men-

tioned in the original papers.

The results for type-based-GBFS with a const key ([const(1)]) show that it could be in-

teresting to use the alternating open list in combination with a single bucket open list,

basically a specialised version of type-based-GBFS.

There is also still space for optimisation. In Section 5.3 we discovered that the higher

memory consumption of the heap implementation causes the search to fail in some cases.



Conclusion and future work 30

There are many possibilities how we could reduce the memory usage.

In Section 6.1 the results for type-based-GBFS and ε-GBFS show that we probably should

run experiments with both algorithms on a bigger set of benchmarks to see whether the

type system gives any improvement over the simple randomisation in ε-GBFS.
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A
Configurations

# bas e l i n e

. / downward −−search lazy ( s i n g l e ( f f ( c o s t type=one ) ) , c o s t type=one ) < output

# the f o l l ow ing exper iments where run f o r ep s i l o n = 0 .00 , 0 . 05 , 0 . 10 , 0 . 20 , 0 . 30 , 0 . 50 ,

0 . 75 , 1 .00

# random open l i s t

. / downward −−search lazy ( random( f f ( c o s t type=one ) , e p s i l o n =0.50) , c o s t type=one ) < output

# random−buckets open l i s t

. / downward −−search lazy ( random buckets ( f f ( c o s t type=one ) , e p s i l o n =0.50) , c o s t type=one ) <

output

Configuration A.1: ε-GBFS.

#f f−base

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( s i n g l e ( h f f ) ) < output

#f f−typed

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f , g ( ) ] ) ] ) ) < output

#cg−base

. / downward −−h e u r i s t i c hcg=cg ( co s t type=one ) −−search eager ( s i n g l e ( hcg ) ) < output

#cg−typed

. / downward −−h e u r i s t i c hcg=cg ( co s t type=one ) −−search eager ( a l t ( [ s i n g l e ( hcg ) , type based ( [

hcg , g ( ) ] ) ] ) ) < output

#cea−base

. / downward −−h e u r i s t i c hcea=cea ( co s t type=one ) −−search eager ( s i n g l e ( hcea ) ) < output

#cea−typed

. / downward −−h e u r i s t i c hcea=cea ( co s t type=one ) −−search eager ( a l t ( [ s i n g l e ( hcea ) , type based

( [ hcea , g ( ) ] ) ] ) ) < output

Configuration A.2: type-based-GBFS.

#f f−base

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( s i n g l e ( h f f ) ) < output

#one

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

const (1 ) ] ) ] ) ) < output

#g

./ downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [ g

( ) ] ) ] ) ) < output

#h f f

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f ] ) ] ) ) < output

#hf f−g

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f , g ( ) ] ) ] ) ) < output

#hf f−cg−g

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f , cg ( ) , g ( ) ] ) ] ) ) < output

#hf f−cea−g
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. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f , cea ( ) , g ( ) ] ) ] ) ) < output

#hf f−cg−cea−g

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f , cg ( ) , cea ( ) , g ( ) ] ) ] ) ) < output

Configuration A.3: type-based-GBFS with different paramter.

#base

. / downward −−search eager ( s i n g l e ( f f ( c o s t type=one ) ) ) < output

#pure−no−alpha

. / downward −−search random walk ( f f ( c o s t type=one ) , walk type=pure ( ) ,

max explorat ions without improvement=7, wa l k s p e r exp l o r a t i on =2000 , d e f au l t wa l k l eng th

=10, ex t end ing pe r i od =300 , ex t end ing ra t e =1.5) < output

#pure

. / downward −−search random walk ( f f ( c o s t type=one ) , walk type=pure ( ) ,

max explorat ions without improvement=7, wa l k s p e r exp l o r a t i on =2000 , d e f au l t wa l k l eng th

=10, ex t end ing pe r i od =300 , ex t end ing ra t e =1.5 , w e i gh t f o r a c c ep t ab l e p r o g r e s s =0.9) <

output

#mha

./ downward −−search random walk ( f f ( c o s t type=one ) , walk type=mha( tau=10) ,

max explorat ions without improvement=7, wa l k s p e r exp l o r a t i on =2000 , d e f au l t wa l k l eng th

=10, ex t end ing pe r i od =300 , ex t end ing ra t e =1.5 , w e i gh t f o r a c c ep t ab l e p r o g r e s s =0.9) <

output

#mda

./ downward −−search random walk ( f f ( c o s t type=one ) , walk type=mda( tau=0.5) ,

max explorat ions without improvement=7, wa l k s p e r exp l o r a t i on =2000 , d e f au l t wa l k l eng th

=1, ex tend ing pe r i od =300 , ex t end ing ra t e =2, we i g h t f o r a c c ep t ab l e p r o g r e s s =0.9) < output

Configuration A.4: Monte-Carlo random walks.

#f f−base

. / downward −−search eager ( s i n g l e ( f f ( c o s t type=one ) ) ) < output

#f f−l o c a l

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search e a g e r l o c a l ( eager ( s i n g l e ( h f f ) ,

c o s t type=one ) , eager ( s i n g l e ( h f f ) , c o s t type=one ) , max sta l l ed =1000 , max l o c a l t r i e s =100 ,

l o c a l s e a r c h s i z e =1000) < output

#cg−base

. / downward −−search eager ( s i n g l e ( cg ( co s t type=one ) ) , c o s t type=one ) < output

#cg−l o c a l

. / downward −−h e u r i s t i c hcg=cg ( co s t type=one ) −−search e a g e r l o c a l ( eager ( s i n g l e ( hcg ) ,

c o s t type=one ) , eager ( s i n g l e ( hcg ) , c o s t type=one ) , max sta l l ed =1000 , max l o c a l t r i e s =100 ,

l o c a l s e a r c h s i z e =1000) < output

#cea−base

. / downward −−search eager ( s i n g l e ( cea ( co s t type=one ) ) , c o s t type=one ) < output

#cea−l o c a l

. / downward −−h e u r i s t i c hcea=cea ( co s t type=one ) −−search e a g e r l o c a l ( eager ( s i n g l e ( hcea ) ,

c o s t type=one ) , eager ( s i n g l e ( hcea ) , c o s t type=one ) , max sta l l ed =1000 , max l o c a l t r i e s

=100 , l o c a l s e a r c h s i z e =1000) < output

Configuration A.5: Local exploration.

#f f−base

. / downward −−search eager ( s i n g l e ( f f ( c o s t type=one ) ) ) < output

#f f−d i v e r s e

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( d i v e r s e ( p r o b a b i l i s t i c ( h f f ,

p r obab i l i t y f o r r andom g =0.1 , h p r obab i l i t y ba s e =0.5) , s i n g l e ( h f f ) ) ) < output

#f f−d iver se−l a zy

. / downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search lazy ( d i v e r s e ( p r o b a b i l i s t i c ( h f f ,

p r obab i l i t y f o r r andom g =0.1 , h p r obab i l i t y ba s e =0.5) , s i n g l e ( h f f ) ) ) < output

#cg−base

. / downward −−search eager ( s i n g l e ( cg ( co s t type=one ) ) ) < output

#cg−d i v e r s e

. / downward −−h e u r i s t i c hcg=cg ( co s t type=one ) −−search eager ( d i v e r s e ( p r o b a b i l i s t i c ( hcg ,

p robab i l i t y f o r r andom g =0.1 , h p r obab i l i t y ba s e =0.5) , s i n g l e ( hcg ) ) ) < output

#cea−base

. / downward −−search eager ( s i n g l e ( cea ( co s t type=one ) ) ) < output

#cea−d i v e r s e

. / downward −−h e u r i s t i c hcea=cea ( co s t type=one ) −−search eager ( d i v e r s e ( p r o b a b i l i s t i c ( hcea ,

p robab i l i t y f o r r andom g =0.1 , h p r obab i l i t y ba s e =0.5) , s i n g l e ( hcea ) ) ) < output
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Configuration A.6: DBFS.

#base

. / downward −−search eager ( s i n g l e ( f f ( c o s t type=one ) ) ) < output

#e−GBFS

./ downward −−search eager ( random( f f ( c o s t type=one ) , e p s i l o n =0.3) , c o s t type=one ) < output

#type−based−GBFS

./ downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f , g ( ) ] ) ] ) , c o s t type=one ) < output

#GBFS LS

./ downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search e a g e r l o c a l ( eager ( s i n g l e ( h f f ) ,

c o s t type=one ) , eager ( s i n g l e ( h f f ) , c o s t type=one ) , max sta l l ed =1000 , max l o c a l t r i e s =100 ,

l o c a l s e a r c h s i z e =1000 , co s t type=one ) < output

#DBFS

./ downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search eager ( d i v e r s e ( p r o b a b i l i s t i c ( h f f ,

p r obab i l i t y f o r r andom g =0.1 , h p r obab i l i t y ba s e =0.5) , s i n g l e ( h f f ) ) , c o s t type=one ) <

output

#EHC

./ downward −−search ehc ( f f ( c o s t type=one ) , c o s t type=one ) < output

#Monte−Carlo random walks

. / downward −−search random walk ( f f ( c o s t type=one ) , walk type=pure ( ) ,

max explorat ions without improvement=7, wa l k s p e r exp l o r a t i on =2000 , d e f au l t wa l k l eng th

=10, ex t end ing pe r i od =300 , ex t end ing ra t e =1.5 , w e i gh t f o r a c c ep t ab l e p r o g r e s s =0.9) <

output

Configuration A.7: Comparison eager.

#base

. / downward −−search lazy ( s i n g l e ( f f ( c o s t type=one ) ) ) < output

#e−GBFS

./ downward −−search lazy ( random( f f ( c o s t type=one ) , e p s i l o n =0.3) , c o s t type=one ) < output

#type−based−GBFS

./ downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search lazy ( a l t ( [ s i n g l e ( h f f ) , type based ( [

h f f , g ( ) ] ) ] ) , c o s t type=one ) < output

#GBFS−LS

./ downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search l a z y l o c a l ( l azy ( s i n g l e ( h f f ) ,

c o s t type=one ) , l azy ( s i n g l e ( h f f ) , c o s t type=one ) , max sta l l ed =1000 , max l o c a l t r i e s =100 ,

l o c a l s e a r c h s i z e =1000 , co s t type=one ) < output

#DBFS

./ downward −−h e u r i s t i c h f f=f f ( c o s t type=one ) −−search lazy ( d i v e r s e ( p r o b a b i l i s t i c ( h f f ,

p r obab i l i t y f o r r andom g =0.1 , h p r obab i l i t y ba s e =0.5) , s i n g l e ( h f f ) ) , c o s t type=one ) <

output

Configuration A.8: Comparison lazy.
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