
Computing Abstract Plans for
Counterexample-Guided Cartesian

Abstraction Refinement
Bachelor thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

Examiner: Dr. Gabriele Röger

Supervisor: Dr. Jendrik Seipp

Samuel von Allmen

samuel.vonallmen@stud.unibas.ch

2004-053-815

2019-05-10

Table of Contents

1 Introduction 1

2 Background 2

2.1 Definitions . 2

2.1.1 Planning Tasks and Transition Systems 2

2.1.2 Optimal Planning . 3

2.1.3 Cartesian Abstractions . 3

2.2 Counterexample-Guided Cartesian Abstraction Refinement 4

2.2.1 Main Loop . 4

2.2.2 Flaws and Refinement . 5

2.2.3 Initial Refinement . 5

2.3 Fast Downward . 5

3 Finding abstract solutions 6

3.1 A� with g-based Heuristic (gval-astar) . 6

3.2 A� with Full Dijkstra (full-astar) . 7

3.3 SPT with Full Dijkstra (full-spt) . 7

3.4 SPT with Backward-expanded Orphaned List (obw-spt) 8

3.5 SPT with Forward-expanded Orphaned List (ofw-spt) 9

3.6 SPT with Filtered Orphaned List (filter-spt) 9

4 Experiments 12

4.1 A� Performance With Perfect Information . 12

4.2 Tree traversal . 13

4.3 Using an Orphaned List . 13

5 Conclusion 16

Bibliography 17

Declaration on Scientific Integrity 18

1
Introduction

Counterexample-guided abstraction refinement (CEGAR) is a way to incrementally compute

abstractions of transition systems. It works by starting with a coarse abstraction (possibly

one single abstract state containing all states of the original concrete system), and then

repeating the following steps:

1. Find a solution in the abstraction, i.e., a series of transitions from the abstract state

containing the concrete initial state to an abstract state containing a concrete goal

state.

2. Apply the solution in the concrete state space. If it is applicable, we have solved the

concrete problem.

3. Otherwise, find out where and why it fails.

4. Split the offending abstract state into two abstract states in a way that ensures that

the same flaw cannot occur again, and recompute the possible transitions to and from

these new abstract states.

As more states are split, and the abstraction grows in size, finding a solution for the abstract

system becomes more and more costly. Because the abstraction grows incrementally, how-

ever, it is possible to maintain heuristic information about the abstract state space, allowing

the use of informed search algorithms like A�.

As the quality of the heuristic is crucial to the performance of informed search, the method

for maintaining the heuristic has a significant impact on the performance of the abstraction

refinement as a whole. In this thesis, we investigate different methods for maintaining the

value of the perfect heuristic h� at all times and evaluate their performance.

2
Background

2.1 Definitions
The following definitions largely follow those in Seipp and Helmert [3]:

2.1.1 Planning Tasks and Transition Systems
Def. 1 (Planning tasks). A planning task is a tuple Π = �V ,O, s0, s��, where:

• V = �v0, . . . , vn� is a finite sequence of state variables, each with an associated finite

domain dom(vi).

An atom is a pair �v, d� with v ∈ V and d ∈ dom(v).

A partial state s is an assignment that maps a subset vars(s) of V to values in their

respective domains. Alternatively, it can be interpreted as a set of atoms on different

variables. s[v] ∈ dom(v) is the value assigned to v by s. Partial states defined on all

variables are called states. The set of all states of Π is called S(Π).

The update of partial state s with partial state t, written s ⊕ t, is the partial state

with vars(s⊕ t) = vars(s) ∪ vars(t), and (s⊕ t)[v] =




t[v], if v ∈ vars(t)

s[v], if v ∈ vars(s) \ vars(t)

• O is a finite set of operators. Each operator o has a precondition pre(o), an effect

eff(o) and a cost cost(o) ∈ R+
0 . pre(o) and eff(o) are partial states. An operator o ∈ O

is applicable in state s if pre(o) ⊆ s. Applying o to s results in s�o� = s⊕ eff(o). The

partial state defined by pre(o)⊕ eff(o) is a called the postcondition post(o).

• s0 ∈ S(Π) is the initial state and s� is a partial state called the goal.

Def. 2 (Transition systems, regressions, plans and traces). A transition system, also called

a state space, is a tuple T = �S,L, T, s0, S��, where:

• S is a finite set of states. s0 ∈ S is the initial state and S� ⊆ S is the set of goal states.

• L is a finite set of labels.

• T ⊆ S × L× S is a set of transitions s
l−→ s� from s ∈ S to s� ∈ S with label l ∈ L.

Background 3

The regression of a set of states S� ⊆ S with respect to a label l ∈ L is defined as regr(S�, l) =

{s ∈ S | s l−→ s� ∈ T ∧ s� ∈ S�}.
A sequence of transitions �s0 l1−→ s1, s1

l2−→ s2, . . . sk−1 lk−→ sk� is called a trace from s0 to

sk. A trace from s to a state s� ∈ S� is called a goal trace for s. The empty sequence is

considered a trace from s to itself for all states s. The sequence of labels �l1, l2, . . . , lk� of a
goal trace for s is called a plan for s. Plans and goal traces for s0 are also called plans and

goal traces, respectively, for T .

A planning task Π = �V,O, s0, s�� induces a transition system T with states S = S(Π),

initial state s0, goal states S� = {s ∈ S(Π) | s� ⊆ s} and transitions T = {s o−→ (s⊕ eff (o)) |
s ∈ S(Π), o ∈ O, pre(o) ⊆ s}. Plans for T are also called plans for Π.

2.1.2 Optimal Planning
Weighting the transition system with a cost function cost : L �→ R+

0 , every plan �l1, l2, . . . , lk�
has a plan cost of

�k
i=1 cost(li). A plan for Π (or its induced transition system T) such

that no other plan with a smaller plan cost exists, is called optimal. Optimal planning is

the problem of finding such an optimal plan, or proving that no plan for Π exists at all.

A (weighted) transition system is a (weighted) directed graph (possibly with parallel edges).

Optimal planning on such a system can therefore be performed by employing graph search

algorithms like Dijkstra’s algorithm (Dijkstra [1]) or A� (Hart et al. [2]).

2.1.3 Cartesian Abstractions
Def. 3 (Induced abstraction). Let T = �S,L, T, s0, S�� be a transition system induced by a

planning task Π, and ∼ an equivalence relation on S. Its equivalence classes are then called

abstract states, and the abstract state to which the concrete state s belongs is written [s]∼
or [s], if clear from context.

∼ then induces the abstract transition system, or induced abstraction T � with states S� =

{[s] | s ∈ S}, transitions T � = {[s] l−→ [s�] | s l−→ s� ∈ T}, initial state [s0] and goal states

S�
� = {[s] | s ∈ S�}.

In the context of abstractions, the planning task Π on which the abstraction is based is also

called the concrete task for the sake of clarity. Analogously, the states, transitions, traces

and plans of Π and T are called concrete to distinguish them from abstract ones.

Every concrete plan for Π is also an abstract plan for T �. This can easily be seen as for every

transition s
l−→ s� ∈ T there is a corresponding transition [s]

l−→ [s�] ∈ T �. Note that [s] and

[s�] might well be identical; the resulting transition [s]
l−→ [s] is called a looping transition.

As a consequence, if there is no plan for T �, the concrete task Π is proven to be unsolvable

as well.

Def. 4 (Cartesian sets and Cartesian abstractions). A set of states for a planning task

with variables �v1, . . . , vn� is called Cartesian if it is of the form A1 ×A2 × · · · ×An, where

Ai ⊆ dom(vi) for all 1 ≤ i ≤ n.

An abstraction is called Cartesian if all its abstract states are Cartesian sets.

Background 4

For an abstract state a = A1 ×A2 × · · · ×An, we define dom(vi, a) = Ai as the set of values

that variable vi can have in a.

Def. 5 (Induced Cartesian sets). Every partial state s of a planning task with variables

V = �v1, . . . , vn� induces a Cartesian set, defined as

Cartesian(s) = A1 × · · · ×An, where Ai =




{s[vi]}, if vi ∈ vars(s)

dom(vi) otherwise

Examples of Cartesian sets:

• The set of goal states of a planning task Π is Cartesian(s�).

• The set of states where a particular operator o is applicable is Cartesian(pre(o)).

• The set S(Π) of all states is the Cartesian set dom(v1)×· · ·×dom(vn). The abstraction

having this set as its only abstract state is called the trivial abstraction of Π and is a

Cartesian abstraction.

2.2 Counterexample-Guided Cartesian Abstraction Refinement

Algorithm 2.1 The main loop of the CEGAR algorithm. Given a planning task Π, it
either returns a plan, proves that no plan exists (i.e., that Π is unsolvable), or returns an
abstraction of Π.
1: function Cegar(Π)
2: T � ←TrivialAbstraction(Π)
3: T � ←InitialRefinement(T �)
4: while not TerminationCondition() do
5: τ � ←FindOptimalTrace(T �)
6: if τ � is “no trace” then
7: return task is unsolvable
8: ϕ ← FindFlaw(τ �)
9: if ϕ is “no flaw” then

10: return plan extracted from τ �

11: T � ← Refine(T �,ϕ)

12: return T �

The workings, implementation and proof of correctness of the Cartesian CEGAR algorithm

are described in detail in Seipp and Helmert [3]. Following, we will give a short overview of

the most important aspects for this thesis.

2.2.1 Main Loop
The main loop of the refinement algorithm is shown in Algorithm 2.1. At all points, T �

is a Cartesian abstraction. In each iteration, a search is run in the abstraction to find an

optimal goal trace τ � for T �. Strategies for finding this trace will be discussed at length in

the next chapter. If no such trace can be found, the abstraction, and therefore the concrete

task, is proven to be unsolvable. Otherwise, we test whether the abstract goal trace is also

a concrete goal trace by applying it, operator by operator, to the concrete system starting

Background 5

with the concrete initial state s0. If this works, we can extract a plan for Π from τ � and have

thus solved Π. In most cases, however, the abstract plan will fail in the concrete system,

producing a flaw. In this case, the abstraction is refined with regard to this flaw, splitting

an abstract state into two new Cartesian sets such that the same flaw cannot occur again

in subsequent iterations. Then, a new search is run on the refined abstraction, repeating

this loop until the task is either solved, proven to be unsolvable, or a preset limit (e.g., with

regards to time or memory) is reached. In the latter case, we return the abstraction in its

current state, which can then serve as a basis for a heuristic for the concrete task.

2.2.2 Flaws and Refinement
A flaw is a pair �s, c� of a concrete state s and a Cartesian set c ⊆ [s], c �= ∅ such that the

abstract plan failed in the concrete system because s �∈ c.

To find a flaw, we start with the initial concrete state s = s0 and iteratively apply each

operator o from the abstract goal trace τ � to s until we encounter one of the following

situations:

1. o is not applicable in s. c is then the Cartesian set of concrete states from [s] in which

o is applicable, [s] ∩ Cartesian(pre(o)).

2. o is applicable in s, but the resulting concrete state s�o� is not contained in the next

abstract state in the goal trace. In this case, c is the regression of the desired abstract

state with respect to o.

3. We have applied the last operator in the goal trace, but the resulting concrete state is

not a goal state. c is then the set of goal states in [s], [s] ∩ Cartesian(s�).

Once a flaw �s, c� has been found, [s] is split into two new abstract states a, b ⊂ [s] such

that s ∈ a, c ⊆ b, a ∩ b = ∅ and a ∪ b = [s].

2.2.3 Initial Refinement
To avoid possible complications that could arise from having to split (i.e., refine) abstract

goal states, the abstraction is prepared by splitting the single abstract state of the trivial

abstraction into several abstract states such that all of them either contain no concrete goal

states at all, or contain only concrete goal states. If the transition system is induced by a

planning task with a single (partial) goal state s�, this results in one single abstract goal

state Cartesian(s�).

2.3 Fast Downward
All work was implemented in the Fast Downward planning system1. The search component

of the planner is implemented in C++.

1 http://www.fast-downward.org

3
Finding abstract solutions

An important part for the performance of the CEGAR algorithm is the speed with which

optimal goal traces, or abstract solutions, are found in the abstract transition system. The

informed search algorithm A� (Hart et al. [2]) is guaranteed to find an optimal solution

when provided with an admissible heuristic, i.e., a heuristic such that h(s) ≤ h�(s) for all

states s (abstract states in this case, as we are performing a search on an abstract transition

system), h�(s) being the perfect heuristic for state s, telling us the cost of an optimal goal

trace, also called the goal distance, for s.

As the abstraction increases in size by splitting abstract states into smaller ones, goal dis-

tances can only increase. The goal distance of the state being split is therefore an admissible

heuristic for both states resulting from the split. For the states that are not being split,

heuristic values that were admissible in previous iterations will stay admissible for all sub-

sequent iterations.

Following, we will explain several algorithms that were evaluated in order to optimize the

computation speed of the abstract search.

3.1 A� with g-based Heuristic (gval-astar)
After an A� search, all states s that have been visited by the search will have a g-value,

g(s), giving the cost of a path from s0 to s. Subtracting this value from the path cost C�

of the found goal trace τ yields an admissible heuristic. We therefore set h(s) ← max (C� −
g(s), h(s)) if g(s) < ∞.

Proof. Let g�(s) be the cost of an optimal path from s0 to s. The actual g-value cannot be

lower than this value, so we have:

g(s) ≥ g�(s).

Let us also assume that g�(s) < ∞ and h�(s) < ∞, as otherwise the state would be either

unreachable from the initial state, or unsolvable and therefore not part of any goal trace.

As h�(s) is the cost of an optimal goal trace for s, g�(s) + h�(s) is the minimum cost of a

path from s0 over s to a goal. As τ is an optimal goal trace for s0, we know that for all

Finding abstract solutions 7

states s the following must apply:

g�(s) + h�(s) ≥ C�.

Combining these inequalities yields g(s) + h�(s) ≥ C�. If g(s) < ∞, this results in h�(s) ≥
C� − g(s).

This algorithm was already implemented in the Fast Downward planning system by Jendrik

Seipp before the start of this thesis, and served as a baseline the following approaches were

compared against. The original implementation and reasoning can be found at http://hg.

fast-downward.org/file/7b26321cb582/src/search/cegar/abstract search.cc, lines 49–83.

3.2 A� with Full Dijkstra (full-astar)

Algorithm 3.1 Dijkstra’s algorithm computes an optimal path to a goal state g ∈ G for each
state. It returns a distance d(s) and a transition spt(s) for each state, such that iteratively
following the transitions in spt, starting in s, will lead to a goal state on an optimal path
with cost d(s).

1: function FindOptimalDistances()
2: Q ← empty queue.
3: d(s) ← ∞ for all states.
4: for all g ∈ G do
5: d(g) ← 0
6: spt(g) ← none
7: Q.push(�0, g�)
8: while Q not empty do
9: Q.pop(�d, s�) based on smallest d

10: if d(s) < d then
11: continue
12: for all s�

o−→ s do
13: d� ← d(s) + cost(o)
14: if d� < d(s�) then
15: d(s�) ← d�

16: spt(s�) ← (s�
o−→ s)

17: Q.push(�d�, s��)
18: return d, spt

The most straightforward approach to maintaining h� at all times was to run a modified

version of the algorithm of Dijkstra [1] as detailed in Algorithm 3.1 after each refinement

step, setting h(s) to the value d(s) returned by the algorithm. As Dijkstra’s algorithm

returns an optimal path for each state, we know that d(s) = h�(s). While this computation

is obviously very expensive, supplying A� with h� did improve the performance over the

admissible heuristic of the baseline algorithm.

3.3 SPT with Full Dijkstra (full-spt)
As Algorithm 3.1 simultaneously computes a shortest-path tree, or SPT, the task of finding

a goal trace can be simplified to a simple tree traversal as detailed in Algorithm 3.2, further

Finding abstract solutions 8

Algorithm 3.2 Traversal of the shortest-path tree to find a goal trace

1: function FindTrace(spt)
2: τ ← empty
3: s ← s0
4: while s is not a goal state do
5: (s

o−→ s�) ← spt(s)

6: append s
o−→ s� to τ

7: s ← s�

8: return τ

improving search performance over a perfectly-informed A� search.

3.4 SPT with Backward-expanded Orphaned List (obw-spt)

Algorithm 3.3 Orphaned list algorithm with backward expansion. Recomputes the goal
distances and shortest-path tree after state sold has been split into s1 and s2. For clarity of
notation, the successor function succ(s) is defined as the target state of the transition from

the SPT: spt(s) = s
o−→ s� ⇒ succ(s) = s�

1: function UpdateDistances(sold , s1, s2, d, spt)
2: Q ← empty queue
3: mark s1, s2 as orphaned
4: for all s with succ(s) = sold do
5: RecursiveInsert(s)

6: d(s) ← ∞ for all states s that are orphaned.
7: for all s is not orphaned do
8: for all s�

o−→ s with s� orphaned do
9: if d(s) + cost(o) < d(s�) then

10: d(s�) ← d(s) + cost(o)

11: spt(s�) ← (s�
o−→ s)

12: for all orphaned states s with d(s) < ∞ do
13: Q.push(�d(s), s�)
14: while Q not empty do
15: �d, s� ← Q.pop() based on smallest d
16: if d(s) < d then
17: continue
18: for all s�

o−→ s with s� orphaned do
19: d� ← d(s) + cost(o)
20: if d� < d(s�) then
21: d(s�) ← d�

22: spt(s�) ← (s�
o−→ s)

23: Q.push(�d�, s��)
24: return d, spt

25: function RecursiveInsert(s)
26: mark s as orphaned
27: for all s� with succ(s�) = s do
28: RecursiveInsert(s�)

Even though the transition system changes with each iteration of the refinement process,

recomputation of distance and shortest-path information is not necessary for all states.

Finding abstract solutions 9

One possible approach is therefore to identify all states that can possibly need updating,

marking them as orphaned states. Algorithm 3.3 achieves this by first marking as orphaned

the new states s1 and s2 that did not exist in the previous iteration, plus all states where

the shortest-path information leads to the state sold that no longer exists. Then, all states

where the shortest-path information leads to an orphaned state are recursively inserted into

the orphaned list, i.e., marked as orphaned states (Line 5). For all other states, d(s) as well

as spt(s) still correspond to an optimal goal trace in the new transition system. These states

will not need to have any of their information updated.

After that, in a step called initial expansion, all orphaned states that have at least one

transition to a non-orphaned state are updated (Lines 7-11). These are then used to seed

the queue of a modified Dijkstra’s algorithm that ignores non-orphaned states and updates

all reachable orphaned states (Line 14ff). As a result, all states s now again have a value

d(s) that corresponds to the cost of an optimal goal trace from s, and a transition spt(s)

that corresponds to the first element of such a trace, if these properties were given for the

transition system before the refinement of sold into s1 and s2.

3.5 SPT with Forward-expanded Orphaned List (ofw-spt)

Algorithm 3.4 Detail of the orphaned list algorithm with forward expansion.

1: for all s� is orphaned do
2: for all s�

o−→ s with s not orphaned do
3: if d(s) + cost(o) < d(s�) then
4: d(s�) ← d(s) + cost(o)

5: spt(s�) ← (s�
o−→ s)

A variant of the previous approach is to perform the initial expansion slightly differently.

Instead of looping over all non-orphaned states to search for transitions s�
o−→ s from an

orphaned to a non-orphaned state, we loop over all orphaned states. Lines 7-11 from Algo-

rithm 3.3 are thus replaced with Algorithm 3.4. The result will be the same as in obw-spt

considering the value of d(s), but if multiple optimal goal traces exist for a state, spt(s) now

might indicate a different, but still optimal, goal trace.

3.6 SPT with Filtered Orphaned List (filter-spt)
Not all orphaned states need updating of their distance d(s) as well as their shortest-path

information spt(s). If there is a non-orphaned state s� with s
o−→ s� and d(s) = cost(o)+d(s�),

it is sufficient to reconnect s by setting spt(s) = (s
o−→ s�) and leaving d(s) unchanged. In

that case, states s�� with succ(s��) = s will not have to be changed at all, as their SPT then

still leads to an optimal goal trace with cost d(s��).

To further reduce the number of states that have to be recomputed, Algorithm 3.5 therefore

filters possible orphaned states through a candidate queue, eliminating states that can be

reconnected without changing d(s). The candidate queue C is first seeded with the new

states s1 and s2 as well as all states s with succ(s) = sold . These are then tested for the

Finding abstract solutions 10

Algorithm 3.5 Filtered orphaned list algorithm with forward expansion. Screens candidate
states for the possibility of reconnecting them to non-orphaned states.

1: function UpdateDistances(sold , s1, s2)
2: Q ← empty queue
3: C ← empty queue
4: C.push(�d(sold), s1�)
5: C.push(�d(sold), s2�)
6: for all s with succ(s) = sold do
7: C.push(�d(s), s�)
8: while C not empty do
9: �d, s� ← C.pop() by lowest d.

10: for all s
o−→ s� with s� not orphaned do

11: if d = cost(o) + d(s�) then
12: spt(s) = (s

o−→ s�)
13: mark s as reconnected
14: break
15: if s has not been reconnected then
16: mark s as orphaned
17: for all s� with succ(s�) = s do
18: C.push(s)

19: d(s) ← ∞ for all orphaned states.
20: for all s� is orphaned do
21: for all s�

o−→ s with s not orphaned do
22: if d(s) + cost(o) < d(s�) then
23: d(s�) ← d(s) + cost(o)

24: spt(s�) ← (s�
o−→ s)

25: for all orphaned states s with d(s) < ∞ do
26: Q.push(�d(s), s�)
27: while Q not empty do
28: �d, s� ← Q.pop() based on smallest d
29: if d(s) < d then
30: continue
31: for all s�

o−→ s with s� orphaned do
32: d� ← d(s) + cost(o)
33: if d� < d(s�) then
34: d(s�) ← d�

35: spt(s�) ← (s�
o−→ s)

36: Q.push(�d�, s��)
37: return d, spt

38: function RecursiveInsert(s)
39: mark s as orphaned
40: for all s� with succ(s�) = s do
41: RecursiveInsert(s�)

Finding abstract solutions 11

possibility of reconnection. Only if this fails, they are marked as orphaned, and all states

whose SPT points to the newly orphaned state are inserted into the candidate queue.

After all candidates have been either reconnected or marked as orphans, the remaining

orphans are processed as described in Section 3.5.

The candidate queue relies on the assumption that succ(s�) = s implies d(s) < d(s�), i.e.,

that cost(o) > 0 for all operators o. Then, Line 18 can only add candidates with a strictly

larger d to the queue, and states can only be reconnected to states with a strictly smaller

d, ensuring the eventual termination of the queue. If this assumption is violated, a state

s could possibly be reconnected to another state s� that will later be added to the queue

itself. When s� is then popped from the queue, it will again add s to the queue in Line 18,

leading to an infinite loop. Therefore, planning tasks with zero-cost operators, i.e. o with

cost(o) = 0, cannot be solved with this algorithm.

4
Experiments

The different algorithms were tested on a set of 1827 benchmark tasks2, each until either

the abstraction reached a size of 20000 states, the task was proven to be unsolvable, a

memory limit of 3584 MiB, or a time limit of 30 minutes was reached. In this chapter,

relative scatter plots will only display those tasks where both considered algorithms finished

without reaching the time or memory limit.

4.1 A� Performance With Perfect Information

10−5 10−3 10−1 101 103

10−1

100

101

gval-astar (1483)

fu
ll
-a
st
ar

(2
66
)

abstract-search-time

10−5 10−4 10−3 10−2 10−1 100 101
10−4

10−2

100

102

104

gval-astar (19)

fu
ll
-a
st
a
r
(1
7
3
0
)

update-h-time

Figure 4.1: The x axis indicates the time (in seconds) it took the gval-astar algorithm
to find an abstract plan (abstract-search-time), or to update the heuristic information
(update-h-time), respectively. The y axis indicates the factor by which this time increased
(upper half) or decreased (lower half) when utilizing the full-astar algorithm

When comparing full-astar with the baseline gval-astar, the search performance

of the A� algorithm for finding abstract plans increased for 1483 of the tested tasks while

2 https://bitbucket.org/aibasel/downward-benchmarks

Experiments 13

decreasing only for 266 tasks (Fig. 4.1), showing the power of perfect information. However,

as can be seen in the same figure, fully recomputing h� for every state in every iteration was

costly and in some cases took up to 104 times longer than in the baseline algorithm.

4.2 Tree traversal

10−5 10−3 10−1 101 103
10−4

10−2

100

102

104

full-astar (1697)

fu
ll
-s
p
t
(2
9
)

abstract-search-time

10−5 10−4 10−3 10−2 10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

101

102

full-astar

fu
ll
-s
p
t

abstract-search-time

Figure 4.2: Comparison of the abstract search times for A� vs. SPT-traversal. The plot on
the left is a relative scatter plot like those in Fig. 4.1, the one on the right plots the
absolute search times of both algorithms.

While an A� informed search already performs better under perfect information, a significant

further speedup was achieved by exploiting the shortest-path tree that was built alongside

the heuristic and replacing the A� search with a simple tree traversal. Not only did this

approach increase the search performance for virtually all tested tasks (1697 of 1726), it

also effectively put a hard limit on search time (see Fig. 4.2), because the time for a tree

traversal is bounded by the size of the abstraction, which, due to the experiment design,

was effectively bounded at 20000 states.

4.3 Using an Orphaned List
Reducing the number of states that were actually recalculated by utilizing the orphaned

list algorithms from Section 3.4 and Section 3.5 improved the performance of the heuristic-

keeping for most tasks, as can be seen in Fig. 4.3, with the forward-expanded version sig-

nificantly outperforming the backward-expanded version.

The filtered orphaned list from Algorithm 3.5 (filter-spt) was inapplicable for 350 of

the tested tasks due to zero-cost operators (see Section 3.6). For the other tasks, it showed

a slight, but inconsistent improvement over the forward-expanded orphaned list from Algo-

rithm 3.4 (Fig. 4.4).

A final comparison of the most efficient algorithms ofw-spt and filter-spt against

the baseline algorithm gval-astar as shown in Fig. 4.5 reveals that both algorithms

Experiments 14

10−5 10−3 10−1 101 103

10−3

10−2

10−1

100

101

102

full-spt (1554)

o
b
w
-s
p
t
(1
8
6
)

update-h-time

10−5 10−3 10−1 101 103

10−3

10−2

10−1

100

101

102

full-spt (1703)
o
fw

-s
p
t
(4
3
)

update-h-time

Figure 4.3: The x axis indicates the time needed for updating the h-values with a “naive”
Dijkstra-algorithm (Algorithm 3.1), the y axis the factor by which this time changed when
applying Algorithm 3.3 (left) or Algorithm 3.4 (right).

10−5 10−3 10−1 101 103
10−2

10−1

100

101

102

ofw-spt (1161)

fi
lt
er
-s
p
t
(2
4
5
)

update-h-time

Figure 4.4: filter-spt shows inconsistent improvement over ofw-spt.

outperform the baseline algorithm in a significant portion of the compared tasks when

considering the overall time for building the abstraction, which includes the time for finding

an abstract trace as well as the time for updating the heuristic information, along with other

components like the time for finding flaws, or refining the abstraction. Specifically, ofw-spt

showed an improvement for 1370 of 1813 tasks (75.6%), while filter-spt outperformed

gval-astar for 1069 of 1405 tasks (76.1%).

Experiments 15

10−3 10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

gval-astar (1370)

o
fw

-s
p
t
(4
4
3
)

abstraction-time

10−3 10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

gval-astar (1069)

fi
lt
er
-s
p
t
(3
3
6
)

abstraction-time

Figure 4.5: Comparing the full time for building the abstraction, comparing the baseline
algorithm with ofw-spt as well as filter-spt.

5
Conclusion

We have shown that there is significant potential for improving the performance of CEGAR

by maintaining shortest-path information at all times, if heuristic-keeping is performed by

an efficient algorithm. Namely, the algorithms ofw-spt and filter-spt, described in

Section 3.5 and Section 3.6, respectively, show an improvement over gval-astar, showing

that the cost of maintaining optimal path information can be offset by replacing the abstract

search with a simple tree traversal.

The following amendments to the algorithms presented in this thesis could possibly lead to

further performance gains:

• Extend filter-spt to tasks featuring zero-cost operators. This could be achieved

either by transforming the zero-cost operators into ε-cost operators, assigning a cost

ε > 0 to them, or by adding an ancestor-check to the data structure containing the

SPT, ensuring that no state is ever reconnected with one that is its descendant in the

SPT.

• An option for searching the SPT in reverse, i.e. a function that directly provides

s �→ {s� | succ(s�) = s} without the necessity to loop over all incoming transitions of

s.

Bibliography

[1] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[2] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuris-

tic determination of minimum cost paths. IEEE Transactions of Systems Science and

Cybernetics, SSC–4(2):100–107, 1968.

[3] Jendrik Seipp and Malte Helmert. Counterexample-guided Cartesian abstraction re-

finement for classical planning. Journal of Artificial Intelligence Research, 62:535–577,

2018.

