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Abstract

Optimal planning is a subfield within the domain of classical planning that aims to find

not only valid plans to a problem but the most efficient plan according to a given cost

metric. One way to achieve this is by making use of guided search along with an admissible

heuristic, and one of the commonly used guided search algorithms is A∗. A common way

to get this admissible heuristic is by using Pattern Databases which are based on state

abstractions. Pattern Databases provide a fast lookup table with the heuristic estimates for

abstract states. In this thesis, we extend Pattern Databases by enforcing mutex constraints

which forbid certain facts from occurring at the same time. To this end, we will evaluate

three different methods of inferring the mutexes and compare which one works best with

Pattern Databases.
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1
Introduction

Classical planning is used to solve a variety of challenges, ranging from logistics optimizations

to more recreational tasks such as solving a Rubik’s cube [13]. Optimal planning is a subfield

within the domain of classical planning that aims to find not only valid plans to a problem

but the most efficient plan according to a given cost metric. In simple terms, a plan refers to

a sequence of steps an agent takes to move from its initial state to a desired state. One way

optimal planning achieves this is by making use of guided search. Guided search refers to

search algorithms that make use of heuristics to guide it to explore promising states that are

likely to lead to a goal state. A function which maps a state to a number which estimates

the distance of the current state to the goal state is what is known as a heuristic.

One way to guarantee optimal solutions is to use a specific guided search algorithm called

A∗, together with so-called admissible heuristics. Informally, an admissible heuristic is one

that never overestimates the true goal distance from a state. A common method used for

constructing admissible heuristics is Pattern Databases (PDBs) [4].

Common classical planning systems like Fast Downward make use of PDBs to come up with

heuristic estimates. As proposed by Haslum et al. [8] we can make use of an enhanced version

of PDBs known as constrained pattern databases (CPDBs) to compute heuristics also. The

goal of this thesis is to implement CPDBs and evaluate their performance within the Fast

Downward planner. The main reason for using CPDBs is it gives us better heuristic estimates

as compared to normal PDBs and they also can save memory during heuristic computation.

This is mainly due to the way we compute the heuristic in both cases. A CPDB heuristic

takes the original problem and identifies rules or constraints within that problem [8], these

constraints then help us fine-tune our estimates from the PDB. For example, we might

know that in the original problem certain actions cannot be applied in any reachable state

or the action leads to a state where two facts are true for which we know they cannot

occur concurrently. Then we can ignore those moves when computing our estimates or

alternatively we assign value infinity to them. This makes our estimates stronger and more

reliable, that is the planner is able to find the goal more efficiently. All this whilst CPDBs

still provide us with admissible heuristics. On the other hand PDBs do not ignore such

unreachable actions or states, which leads to a potentially lower heuristic estimate.
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For our implementation of CPDBs we will use different sources of mutex information, the

goal also will be to determine which performs best with PDBs. In this thesis, the first

chapter is an introductory chapter which gives a brief overview of the thesis. The second

chapter is where we introduce some concepts relevant to the thesis and the third chapter

we introduce CPDBs formally. Our experiment setup and results will be discussed in the

fourth chapter. Finally, the fifth chapter concludes this thesis as well as suggest what could

be done in future to further improve our implementation.



2
Background

This chapter introduces the notion of planning tasks, pattern databases and invariants which

are all foundational concepts crucial for understanding the concept of constrained pattern

databases which will be the main topic of this thesis.

2.1 SAS+ Planning Task
In classical planning, SAS+ planning tasks are a formal way of representing real world

complex environments using multi-valued state variables. It is an important concept for

understanding how invariants, which will be discussed later, work. The formal representation

of SAS+ used in this paper is an adoption of the one used already by Bäckström and Nebel [2].

Definition 1. (SAS+ Planning Task) A SAS+ planning task Π is defined as a tuple with

4 elements, that is Π = ⟨V, O, I, G⟩ where

• V is a finite set of state variables V = {x1, x2, x3, . . . , xn} and each variable is as-

sociated with some finite domain dom(xi) = {d1, d2, d3, . . . , dn}. A state is a full

assignment to all state variables, whereas a partial state is a partial assignment of the

state variables meaning just a subset of the variables are assigned. S is the set of all

states.

• O is a set of operators or actions which are in the form ⟨pre(o), eff(o)⟩ where pre(o) and
eff(o) are partial assignments over the state variables V to their respective domain.

pre(o) and eff(o) are preconditions and effects respectively.

• I is the initial state or the start state, I ∈ S.

• G is a partial assignment of the state variables which represents the goal condition.

A state is a goal state if for all variables xi ∈ V where G(xi) = di is defined, we have

s(xi) = di (they agree on the partial assignment G).

In SAS+ we also make use of what is known as a fact which is a variable-value pair (xi, di)

where xi is a variable and di a value from xi’s domain. A partial assignment s can be

translated to a set of facts F = {(xi, di)|s(xi) = di}. Also, we have what is known as a cost
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in planning tasks, which is a function that assigns a non-negative number to each operator

cost(o) : O → R+
0 . An operator is said to be applicable in any given state, if the operator

precondition is true in the state in which it has to be applied in. An operator is said to be

applicable in any given state s if the operator precondition is true in s, meaning that for

all xi where pre(o) is defined that s(xi) = pre(o)(xi). State s′ is the resulting state after

applying an operator o in state s which can be formerly written as s′ = s[o] where:

s[o](xi) =

eff(o)(xi) if eff(o) is defined on xi

s(xi) otherwise

A sequence of operators π = ⟨o1, . . . , on⟩ which are applicable to state s resulting in state

s′ is known as a path from s to s′. A state s is said to be reachable if there exists a

path from the initial state to s. Subsequently, a plan π is the path from the initial state

to a goal state. Each plan π is associated with a cost which we will now denote as C(π).

The cost of a plan is a summation of all operator costs within that plan, that is for plan

π = ⟨o1, . . . , on⟩ we have C(π) =
∑n

i=1 cost(oi). Furthermore, an optimal plan πopt is a

plan with the least cost among all possible plans in a planning task, that is, C(πopt) ≤ C(π)

for all plans π.

2.2 Transition systems
In practice, planning tasks can have different types of representations, and for some tech-

niques it is more suitable to represent planning tasks as a transition system.

Definition 2. (Transition system) A transition system T is 5 tuple T = ⟨S, L, T, s0, s∗⟩
where

• S is a finite set of states.

• L is a finite set of transition labels. Each label l in L has a corresponding cost assigned

to it that is c(l) ∈ R+
0 .

• T represents a set of labeled transitions. T ⊆ S x L x S.

• s0 defined as s0 ∈ S represents the initial state.

• s∗⊆ S represents the goal condition of the transition system.

Following the definition of a transition system T , planning task Π = ⟨V, O, I, G⟩ can now

be represented by a transition system T (Π) as follows:

Definition 3. (Transition system induced by a planning task) A planning task Π

induces a Transition system T (Π) where

• S is the set of all states over V.

• L is the set of operators O and each label is associated with a cost.
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• T with ⟨s, o, s′⟩ ∈ T iff operator o is applicable in state s and results in state s′.

• s0 = I

• s∗ ={s ∈ S | s agrees on G}

At this point we would like to introduce the concept of abstraction which is an essential

concept of PDBs. In relation to transition systems (transition graphs) abstraction refers to

the concept in which we create smaller versions of T by ignoring some information in T .
Essential to the concept of abstraction is α which is a function known as an abstraction

mapping such that α : S→ Sα is defined on states of T [11].

Definition 4. (Abstraction). For any T and α the abstract transition system T α is given

by T α = ⟨Sα,L,Tα, α(s0), s
α
∗ ⟩ where:

• Sα = {α(s) | s ∈ S}

• Tα = {⟨α(s), o, α(s′)⟩ | ⟨s, o, s′⟩ ∈ T}

• sα∗ = {α(s) | s ∈ s∗}

Since an abstraction takes a transition system T and makes a smaller transition system

T α, we solve that smaller abstract transition system and get a heuristic which is commonly

referred to as the abstraction heuristic.

Definition 5. (Abstraction heuristics) Given a transition system T and its abstraction

mapping α, the abstraction heuristic for T is given by hα. hα is a function which assigns to

each state s ∈ S the cost of the cheapest path in T α from α(s) to a goal state in T α, where

S is a set of reachable states in T [11].

Apart from the general abstraction defined in Definition 5 there also exists a special type of

abstraction known as a projection which is what the pattern databases are based on.

Definition 6. (Projection) Let Π be a SAS+ planning task with state set S and let P ⊆ V

be the subset of variables. A projection onto a variable set P is a function defined by αP

such that α(s) = α(s′) if and only if s(p) = s′(p) for all p ∈ P [11].

2.3 Pattern Databases
Pattern Databases (PDBs) introduced by Culberson and Schaeffer [3], are an important ap-

proach used in classical planning to come up with admissible heuristics. PDBs can be defined

as a dictionary which stores heuristic estimates of abstract state to goal distances [3] [4].

This is done by first creating a special type of abstract planning task which we will call

ΠP . The projected planning task ΠP is created by projecting a pattern P on to the original

planning task Π, this results in ΠP = ⟨P, αP(I),OP , GP⟩ where P ⊆ V. Projections map

states of the original planning task Π into a smaller one otherwise called an abstract state.

A solution path in Π would also be a solution path in ΠP [3] [8]. In other words ΠP is
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a smaller and relaxed version of Π whereby we only focus on variables in the pattern and

abstract everything else that is not in the pattern.

Definition 7. (Pattern databases) PDBs exist as a set of pairs with one of the elements

being an abstract state and the other being the cheapest path between the abstract state and

a set of abstract goal states PBD(ΠP) = {(sP , d(sP , GP) | sP ∈ SP} [5].

The given equation shows how a typical structure of a PDB where:

• sP is an abstract state and is an element of SP (set of states of ΠP)

• d(sP , G
P) is the cost of the cheapest path from sP to any goal state in ΠP

• GP represents an abstract goal state.

To illustrate the concept of pattern projections, we will look at the Blocksworld problem.

In the Blocksworld problem, we are given a task to stack blocks, one on top of another in a

particular order defined in the problem: We are given the initial configuration of the blocks

that is their initial position and we are also given operators we can apply as well as the goal

configuration [7]. Operators tell us how to move around the blocks from one configuration

to another. Let us assume we have a problem with 3 blocks labeled b1, b2 and b3 and the

problem is defined by the planning task Π as follows:

Π = ⟨V, I, O, G⟩ where:

• V = {b1,b2,b3, clear1, clear2, clear3}

– dom(bi) = {on-table, on-bj} where i, j = {1, 2, 3} and i ̸= j

– dom(cleari) = {⊤,⊥} where i ∈ {1, 2, 3}

• I = {b1 7→ on-table, b2 7→ on-table, b3 7→ on-table, clear1 7→ ⊤, clear2 7→ ⊤, clear3 7→
⊤}

• O = {put-on-table-bi | i ∈ {1, 2, 3}} ∪ {stack-bi-on-bj | i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, i ̸=
j} ∪ {from-bk-stack-bi-on-bj | i, j, k ∈ {1, 2, 3} and k ̸= i, i ̸= j and k ̸= j}, where:

– put-on-table-bi = ⟨{cleari 7→ ⊤, bi 7→ on-bj}, {bi 7→ on-table}, {clearj 7→ ⊤}⟩

– stack-bi-on-bj = ⟨{cleari 7→ ⊤, clearj 7→ ⊤, bi 7→ on-table}, {bi 7→ on-bj , clearj 7→
⊥}⟩

– from-bk-stack-bi-on-bj = ⟨{cleark 7→ ⊥, cleari 7→ ⊤, clearj 7→ ⊤, bi 7→ on-bk}, {clearj 7→
⊥, cleark 7→ ⊤, bi 7→ on-bj}⟩

• G= {b1 7→ on-b2, b2 7→ on-table, b3 7→ on-b1}

Figure 2.1 shows a graphical representation of the 3 Blocksworld task. The blocks are

labeled as b1, b2, and b3 and for a more clearer representation, they are assigned to colors

blue, orange and red respectively. The initial state is the state with all 3 blocks on the

table labeled I and the goal state is labeled as G. Only the reachable states are shown in
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Figure 2.1: State space representation of the original planning task

Figure 2.2: State space representation of the pattern projection on pattern (b2)

Figure 2.1, the unreachable states which would otherwise be syntactically valid states have

been omitted. An example of a syntactically valid but unreachable state would be one where

b3 is on the table and there is a cyclic stack between blocks b1 and b2 that is, b2 is on b1

and b1 is on b2.

On the other hand, Figure 2.2 shows a pattern projection of the original task on pattern b2.
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In other words this means that Figure 2.2 depicts a scenario where all states in which b2 is

in the same position have been grouped into one abstract state. For example, the state on

the left shows an abstract state where b2 is on the table. This pattern only cares for the

position of the variable in question which is b2 in this case and disregards the positions of

the other blocks.

To come up with the PDBs we use breadth-first search in reverse, that is starting from a set

of goal states and traversing up the graph [5]. An advantage of PDBs is that they offer a

fast lookup once we have calculated the heuristic estimates of an abstract state. The PDB

can now be used as a heuristic by abstracting the state according to the pattern, looking

up that abstracted state in the PDB, and using the stored distance as a heuristic estimate.

However, one main drawback with PDBs is that a single pattern usually results in loss of

information because the pattern only covers a small portion of the original problem [14]. To

address the aforementioned drawback we can make use of pattern collections, which work

by using multiple patterns which cover different parts of the problem hence retaining more

information on the original task [14][12].

2.4 Invariants
Within the field of classical planning, it is crucial to identify properties that remain constant

throughout the whole plan. These properties are known as invariants and they hold in all

reachable states.

Definition 8. (Invariants). As defined by Alcázar and Torralba [1] an invariant refers to

a formula over facts of the planning task which is satisfied by all states reachable from the

initial state. In other words these are conditions that hold true for all reachable states and

if they are not true in the goal state then the planning task is unsolvable.

Definition 9. (Mutex). Two facts (xi,di) and (xj,dj) are said to be mutually exclusive

(mutex) if there is no reachable state s with s(xi) = di and s(xj) = dj [6].

In other words, mutex information can be used to detect if a state is reachable. This gives

rise to mutex groups which then specify that within a group at most one of the facts can

occur. As an example, we look at the Blocksworld problem as we defined it in Section 2.3

where we were given a task with three blocks and had to stack them in an order defined in

the planning task Π. In this Blocksworld example, sn = {b2 7→ on-b1, b1 7→ on-b2} is an

example of a partial assignment containing mutex facts. The reason why we say sn contains

mutex facts is we cannot have a cyclic stack that is b1 being on b2 at the same time as b2 is

on b1. Furthermore, the partial assignment sn1 = {b2 7→ on-b1, clear1 7→ ⊤} also contains

mutex facts since there is a contradiction as b1 cannot be clear while b2 is also on top of it.
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As an extension to the PDBs, Haslum et al. [8] introduced a way for PBDs to use mutex

information to get better heuristics. If we recall the example that we gave of the Blocksworld

problem in the section of computing invariants, we said sn = {b2 7→ on-b1, b1 7→ on-b2} and
sn1 = {b2 7→ on-b1, clear1 7→ ⊤} both contain mutex facts. However, this information is

currently not utilized during PDB computation. Incorporating it into our PDB computation

would result in a more informed heuristic as we get a better heuristic which is still admissible.

Constrained pattern databases (CPDBs) take advantage of mutex invariants to improve the

search by excluding states and transitions in the abstract space that are impossible to reach

in the original planning task Π.

To implement this idea of CPDBs, we assume we have a set of mutex groups C = {
C1, C2, C3, . . . , Cm } where Ci is a set of facts. For any reachable state s the constraint

|Ci ∩ s| ≤ 1 must hold for all Ci ∈ C, meaning to say in every reachable state at most 1 fact

from Ci should be true. In addition, we exclude transitions from s′ to s where constraint

|(s′ ∪ pre(o)) ∩ Ci| ≤ 1 is violated [8]. This means that a transition from s′ to s only exists

if s′ and the precondition of operator o, do not violate the mutex constraint.

Just like PDBs, CPBDs are computed based on an abstract planning task ΠP using breadth-

first search in reverse.

Definition 10. (Constrained transition system induced by an abstract task) An ab-

stract planning task ΠP induces a constrained transition system TC(ΠP) = ⟨SC ,L,TC , s
P
0 , s*C⟩

where:

• SC = {s | |s ∩ Ci| ≤ 1 for all Ci ∈ C, s ∈ SP} where SP is the set of all states from

ΠP .

• TC = {⟨s′, o, s⟩|s, s′ ∈ SC , o applicable in s′, s′[o] = s, |(s′ ∪ pre(o)) ∩ Ci| ≤ 1 for all Ci ∈
C}

• s∗C = {s | s ∈ (sP∗ ∩ SC)}
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The search space of the constrained transition system induced by projection P denoted by

TC(ΠP) is a subgraph of T (ΠP) which consists only of states and transitions that do not

violate the mutex constraints explained before. The transition system of the abstracted

planning task T (ΠP) maintains all valid solution paths in the original transition system

T (Π). CPDBs ensure that all states and transitions within TC(ΠP) are reachable and

explicitly adhere to the constraints.

PDBs are known to be admissible heuristics, meaning that their heuristic estimates never

overestimate the true state to goal distance that is hα(s) ≤ h∗(s) where h∗(s) is the true

(perfect) heuristic estimate and hα(s) is the estimate from our PDB. We denote the heuristic

estimates of CPDBs as hα
C(s). Haslum et al.[8] mentioned that hα(s) ≤ hα

C(s) ≤ h∗(s) . For

hα(s) ≤ hα
C(s) a plan π with minimum cost in TC(ΠP) is also a plan in T (ΠP) which in turn

means that the minimum cost plan in T (ΠP) can at most be C(π) (but could potentially

be lower). PDBs being admissible we already know a valid plan π in T (Π) is also a valid

plan π in T (ΠP). This also means that π should also be a valid plan in TC(ΠP) except

for cases where an abstract state or transition that was visited by the plan was removed

from T (ΠP) by enforcing mutexes. However, that would mean that the abstract state or

transition violated a mutex, which is not possible since that would imply the original plan

violated a mutex.

3.1 Sources of mutex information
As we have seen, for us to implement CPDBs we need to have some mutex information.

There are currently several ways in which one can come up with mutex information to use

for CPDBs. In this section, we discuss only but a few of those methods. These are also the

sources of mutex information we have used in this thesis.

3.1.1 Fast Downward mutexes
Fast Downward has two main components, namely translation and search. The translation

process mainly deals with converting our planning task defined in Planning Domain Defi-

nition Language (PDDL) to a SAS+ planning task. In contrast, the search process mainly

is responsible for exploring the planning state space so as to find an optimal solution if one

exists. The translation process mainly comprises of 4 steps and the second step is invariant

synthesis step [10]. Instead of detailing all four steps, in this thesis we only focus on the

invariant synthesis step which computes mutex relations between atoms. To generate these

mutex invariant a guess, check and repair approach is utilized which checks if an initial

candidate is mutex invariant or not. Firstly, candidate invariant groups are generated and

to check whether this is an invariant or not we make sure no operator adds multiple facts

from the same group, and if it adds a fact from the same group it also needs to delete at

least one fact from the same group. In essence, the number of added facts should be less

than or equal to the ones deleted. If the above holds and in the initial state at most one

fact of the group is true, then the candidate is indeed an invariant.
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3.1.2 Fact Alternating mutex groups (fam-groups)
Another alternative way to generate mutex information is by inferring mutex groups using

linear programming [6]. The main steps of the process on how to infer mutexes using this

method are outlined in Algorithm 1.

Definition 11. (fact-alternating mutex groups). A fam-group denoted by M is a subset

of F , (facts of the planning task). M has constraints that it can not contain more than one

fact from the initial state and also that the number of facts that an operator adds are less

or equal to the ones that are preconditions and deleted by that operator [6].

In SAS+ a set of all facts assigned by eff(o) are known as add effects add(o) whereas, the

delete effects del(o) are all facts (xi, di) such that there is a fact (xj , dj) in eff(o) with xi =

xj and di ̸= dj . An integer linear program (ILP) based approach can be used to infer fam-

groups. The ILP approach starts by translating the fam-group constraints in the definition

into ILP constraints. In the setup each ILP variable xi corresponds to a fact fi within the

original planning task. The fam-group definition is written in ILP constraints using equation

3.1 and equation 3.2 respectively as follows,

∑
fi∈I

xi ≤ 1 (3.1)

∑
fi∈add(o)

xi ≤
∑

fi∈del(o)∩pre(o)

xi (3.2)

The ILP variables are binary in nature that is they can only be one of two values 0 or 1.

A value of 0 denotes absence of the fact within the fam-group whereas a value 1 denotes

presence of the corresponding fact in the fam-group. Since we want to find as large groups as

possible, as they give more information it makes sense to maximize the following objective

function,

∑
fi∈F

xi (3.3)

By solving the ILP we get a fam-group that satisfies our constraints. However, the solution

to the ILP is only one fam-group. To infer more mutex groups, we can repeatedly solve the

ILP and add additional constraints (equation 3.4) that forbid previously found solutions [6].

∑
fi /∈M

xi ≥ 1 (3.4)

In equation 3.4 M is the fam-group that was just found. We go with this cycle until the

newly found fam-group has at most one fact. By maximizing the objective function and

excluding already identified fam-groups and their subsets from the solution, we get a unique

fam-group at every step.
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Algorithm 1: Inference algorithm for fact-alternating mutex groups using ILP [6]

Input: Planning task Π = ⟨V, O, I, G⟩
Output: A set of fam-groupsM

1 Initialize ILP with constraints according to Equations 3.1 and 3.2;
2 Set objective function of ILP to maximize Equation 3.3;
3 Solve ILP and save the resulting fam-group into M ;
4 while |M | ≥ 1 do
5 Add M to the output setM;
6 Add constraint according to Equation 3.4;
7 M ← ∅;
8 Solve ILP and if a solution was found, save the resulting fam-group into M ;

end

3.1.3 h2 mutexes
As suggested by Alcázar and Torralba [1] one of the most common ways to find mutexes is

the hm heuristic. The hm heuristic performs a reachability analysis on a semi-relaxed version

of the original planning task Pm. Pm encodes facts of size m into a single fact. If after doing

a reachability analysis on Pm we find a fact in Pm that is unreachable, this would mean the

corresponding set of facts are also unreachable in the original planning task. For us to get

mutex groups we usually restrict the size of m to 2 meaning we have P 2. This would result

in a mutex group of size 2, this would mean no state has both these facts true meaning the

two facts are mutex. Normally, invariant computation in h2 is done from the initial state

and inferring information in a forward direction. However, Alcázar and Torralba introduced

an h2 preprocessor which computes invariants in both directions that is it can also start in

the goal state and find invariants in a regression manner. Also there’s potential of inferring

additional by for example computing h2 in the backward direction then computing in the

forward direction afterwards [1]. The whole process is an iterative process and it is usually

beneficial to do forwards to backward searches iteratively since each step might give more

information for the next one.



4
Experimental results

4.1 Experimental setup
We ran our experiments with the Fast Downward planning system [9]. In order to test

the accuracy of our implementation we ran it against the IPC benchmarks provided by

the University of Basel AI research group1. We however did not test on all benchmarks

available there, instead we only tested against the optimal STRIPS planning track. For

running our benchmarks, we made use of the Downward Lab framework [15]. When we

had to implement the fam-group inference algorithm, we used the LP solver interface which

uses IBM’s CPLEX version 22.1.12. In addition, calculations were performed at sciCORE3

scientific computing center at University of Basel. Our configurations were run on an Intel

Xeon Silver 4114 2.2 GHz processor, for each run we also had 3584MB of memory available

to us and we limited the runtime to 30 minutes.

4.1.1 Experimental configurations
In this section we will introduce the different configurations we used for the experiments

in this thesis. In total we had 10 configurations in which we did an in-depth analysis on

the coverage, expansions, pdb time, search time and planner wall clock time.

Coverage is the number of successfully solved tasks whereas expansions are the number of

states the planner fully generates successor states for. The total time taken to compute

the PDB is denoted as pdb time and search time is time taken to search through the state

space. The time taken for both PDB computations (plus general initialization) and search is

total time and planner wall clock time is the total time plus time taken for the translation

process, that is, the total time taken from translate and the search process as well as any

other preprocessing steps.

• ipdb-uc. This is the ipdb configuration as it originally is in Fast Downward which

we will call the unconstrained version (uc). This served as our baseline for the ipdb

1 https://github.com/aibasel/downward-benchmarks
2 https://www.ibm.com/products/ilog-cplex-optimization-studio
3 http://scicore.unibas.ch/
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variant.

• fd-ipdb-c. This is the constrained variant of the ipdb which uses the Fast Downward

mutexes from translation.

• fam-ipdb-c. This is also a constrained variant of the ipdb however, it uses the mutex

information inferred by fam-group inference [6]. Also Fǐser and Komenda proved that

fam-groups discover all mutex groups already generated by Fast Downward during

translation, therefore we seeded the fam-groups with these mutex groups so that we

do not rediscover them again which reduces computation time.

• h2-ipdb-uc. This is an unconstrained version of ipdb which uses the h2 preprocessor.

This was our baseline for configurations involving the h2 preprocessor, we needed to

have a separate baseline for these configurations since the preprocessor changes the

task.

• h2-ipdb-c. Constrained version of ipdb which uses mutex generated by the h2 pre-

processor.

We also carried out experiments on PDBs with only a single pattern which are known as

just pdb in Fast Downward.

• pdb-uc. This is the pdb configuration as it originally is in Fast Downward which we

will call the unconstrained version (uc).

• fd-pdb-c. This is the constrained variant of the pdb which uses the Fast Downward

mutexes from translation.

• fam-pdb-c. This is also a constrained variant of the pdb however, it uses the mutex

information inferred by fam-group inference [6]. We also seeded with the mutex groups

from Fast Downward translation.

• h2-pdb-uc. This is an unconstrained version of pdb which uses h2 pre-processor.

• h2-pdb-c. Constrained version of pdb which uses mutex generated by h2 pre-processor.

4.2 Results
In this section we will present our findings from the experiments as well as discuss the

results. We will mainly focus on the ipdb results since the pdb results were similar, but we

will highlight some differences at the end of the section.

4.2.1 Configurations without the h2 preprocessor
The summary in Table 4.1 shows us that when comparing the results of the experiments in

which we had the baseline version (ipdb-uc), fd-ipdb-c and fam-ipdb-c, ipdb-uc yielded the

highest coverage 946 meaning to say it successfully solved 946 tasks. The two constrained
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Summary ipdb-uc fd-ipdb-c fam-ipdb-c
coverage - Sum 946 927 866
error-search-out-of-memory - Sum 651 537 391
error-search-out-of-time - Sum 231 364 570

Table 4.1: Shows a summary of number of successfully solved tasks, number of tasks that
failed due to running out of time or memory of the different configurations. The best

result for each attribute is highlighted in bold.

domain ipdb-uc fd-ipdb-c fam-ipdb-c
airport (50) 35 29 22
depot (22) 11 9 9
floortile-opt11-strips (20) 2 9 9
floortile-opt14-strips (20) 0 9 9
freecell (80) 21 12 12
ged-opt14-strips (20) 19 20 20
mprime (35) 24 24 23
mystery (30) 17 17 14
nomystery-opt11-strips (20) 20 20 18
organic-synthesis-split-opt18-strips (20) 7 7 1
parcprinter-08-strips (30) 21 21 14
parcprinter-opt11-strips (20) 16 16 10
parking-opt11-strips (20) 7 7 4
pipesworld-notankage (50) 21 20 15
pipesworld-tankage (50) 17 9 9
quantum-layout-opt23-strips (20) 13 13 8
scanalyzer-08-strips (30) 13 11 11
scanalyzer-opt11-strips (20) 10 8 8
snake-opt18-strips (20) 11 1 0
spider-opt18-strips (20) 15 15 0
tetris-opt14-strips (17) 1 0 0
trucks-strips (30) 9 11 11
woodworking-opt08-strips (30) 12 14 14
woodworking-opt11-strips (20) 8 9 9
Sum (694) 330 311 250

Table 4.2: Shows a summary of only domains where we observed a difference in coverage
between the 3 configurations. Domains in which we had the same coverage throughout the

3 configurations have been omitted. For a full summary refer to Table A.1

versions got less coverage with fam-ipdb-c performing the worst in terms of coverage for

the three configurations. However, in terms of failed runs due to memory limits the con-

strained versions performed better than ipdb-uc, fam-ipdb-c recorded the least number of

failures followed by fd-ipdb-c and lastly ipdb-uc. Looking at Table 4.2, we can see that

ipdb-uc and fd-ipdb-c solved the same number of tasks in 9 domains while outperforming

the fam-ipdb-c configuration in the process. Comparing just the constrained variants, that

is, fd-ipdb-c and fam-ipdb-c we see that fd-ipdb-c always performed at least as good as

fam-ipdb-c. Also, what was interesting was the fact that both constrained variants seemed

to perform much better than ipdb-uc in the floortile domains both floortile-opt11-strips and

floortile-opt14-strips. For us to understand why the constrained versions performed better

we will first give a brief explanation about the floortile domain. Within the floortile domain,

we are given a grid of tiles which need to be painted in a certain color. In addition, we are
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also given robots that will perform the task of painting the tiles and they can only paint

tiles above or below their position. The robots cannot move onto a painted tile. From our

experiments, the pattern generated by the unconstrained version did not contain the robot

position. The problem with this was that the unconstrained version could not figure out

that, for example, painting tiles above and below a robot’s current location would lead to a

dead end if the tile currently occupied by the robot needs to be painted as well. However,

the constrained version was much better at recognizing these dead ends in cases where the

two painted tiles were in the pattern. This meant ipdb-uc ran out of memory in most tasks

within the floortile domain due to the large number of expansions. All but two tasks did not

complete the search. It is in tasks like these, the constrained variants really outperform the

ipdb-uc in terms of coverage. The constrained versions also slightly outperformed ipdb-uc

in 4 other domains although the difference was not as large as that in floortile. On the other

hand ipdb-uc and fd-ipdb-c both outperformed fam-ipdb-c in spider-opt18-strips domain,

out of a possible 20 tasks they both managed to solve 15 each whereas fam-ipdb-c could

not solve a single task in that domain. Within that domain, fam-ipdb-c could not finish the

pattern database generation as it ran out of time in all the tasks hence it could not carry

out the search, therefore it was unable to solve the tasks. In the tetris-opt14-strips domain

ipdb-uc only managed to solve 1 task in that domain whilst the other configurations could

not solve any task there. Except for the 1 task solved by ipdb-uc all other tasks across all

three configurations failed due to timeout errors, the pattern database computations timed

out.
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Figure 4.1: Comparison of pdb time of
ipdb-uc and fd-ipdb-c
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Figure 4.2: Comparison of pdb time of
ipdb-uc and fam-ipdb-c

Figures 4.1, 4.2 and 4.3 show the comparison of the pattern database generation times of

the following three configurations ipdb-uc, fd-ipdb-c and fam-ipdb-c. It is evident that the

pattern database generation time of ipdb-uc was the lowest among the three configurations,

this is because in the constrained variants each state will have to checked to see if it respects

the mutex constraints which introduces an overhead in computation time. However, cutting

off transitions and states can also lead to less states explored overall in the backwards reach-
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Figure 4.3: Comparison of pdb time of fd-ipdb-c and
fam-ipdb-c

ability analysis, hence some of the tasks in the constrained variants had a lower computation

time than the unconstrained one. Comparing the two constrained variants, fam-ipdb-c took

the longest for the pattern database generation, it generated the pattern database faster

than fd-ipdb-c in 22 tasks only as compared to 1249 tasks in which fd-ipdb-c was quicker.

The fam-ipdb-c has two sources of overhead compared to fd-ipdb-c, first it needs to compute

the mutexes using LPs and then generate the pattern database. This means that the pbd

time overhead is larger the more mutexes we finds since fam-ipdb-c always finds at least as

many mutexes as fd-ipdb-c. This overhead explains the result in Table 4.1 where fam-ipdb-c

ran into timeout errors a total of 570 times, the most of the three configurations.
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Figure 4.4: ipdb-c vs fd-ipdb-c search time
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Figure 4.5: ipdb-c vs fam-ipdb-c search
time

In terms of search time, the constrained variants performed better than ipdb-uc, suggesting

that with a more efficient pattern database generation technique we could really harness the

full advantages of using constrained abstractions. The search time was lower in constrained
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Figure 4.6: Comparison of search time of fd-ipdb-c and
fam-ipdb-c

versions as a result of using a more informed heuristic than the unconstrained version. This

is evident if we compare the search times of the constrained versions to the unconstrained

versions we see that the difference between fd-ipdb-c and fam-ipdb-c is less than that of

comparing any of the two aforementioned configurations to ipdb-c.

The reduction in search time in the constrained versions as compared to the unconstrained

version is a result of lower number of expansions in the constrained versions. The attribute

search time includes expanding nodes as well as computing heuristics. The computation of

heuristics is equally as expensive for the constrained and unconstrained versions, however,

the constrained versions managed to expand fewer states than the unconstrained version.

This had the effect of using less memory as to the constrained version which had to expand

more states. This is because if we expand fewer states we would need less memory to keep

track of the states that are expanded than if we expanded more as we need to keep track of

all the expanded states to avoid re-expansion.

To compare the perfomance of the different configurations, we took the number of tasks

a particular configuration was better in and divide by the total number of tasks. As for

the planner wall clock time ipdb-uc was faster in 71% of the tasks compared to fd-ipdb-c,

and ipdb-uc was faster in 88% of the tasks compared to than fam-ipdb-c. This shows that

although the constrained variants both had lower search times compared to ipdb-uc, it was

not enough to offset the overhead from the pattern database computations hence the total

runtime took longer in the constrained variants. Comparison of fd-ipdb-c and fam-ipdb-c

showed that the planner wall clock time for fd-ipdb-c was faster in 86% of the tasks compared

to of fam-ipdb-c. Not only did fam-ipdb-c manage to solve the fewest task but it also took

the longest among the three configurations whereas ipdb-uc solved the most tasks and also

in the shortest planner wall clock time.

For the results on the coverage and errors for the pdb configuration we refer to the summary

in Table 4.3.
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Figure 4.7: Comparison of
planner wall clock time of ipdb-uc and
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Figure 4.8: Comparison of
planner wall clock time
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Figure 4.9: Comparison of planner wall clock time of
fd-ipdb-c and fam-ipdb-c

Summary pdb-uc fd-pdb-c fam-pdb-c
coverage - Sum 801 809 788
error-search-out-of-memory - Sum 1029 1010 960
error-search-out-of-time - Sum 0 11 82

Table 4.3: Shows the summary of coverage and errors for the pdb variants. The best
value for each attribute is highlighted in bold.

We also ran some tests on the pdb variants that is, pdb-uc, fd-pdb-c and fam-pdb-c. From

Table 4.3, we see that fd-pdb-c yielded the highest coverage of the three configurations

with a total of 809 successfully solved tasks. It is unlike in the ipdb variants highlighted

in Table 4.1 where the unconstrained version had the most coverage. However, just like

in the ipdb variants fam-pdb-c still had the lowest coverage here as well whilst having the

highest failures due to out of time errors just like fam-ipdb-c. Although the pdb-uc had

the most search errors due to high memory usage, it did not record a single failure due to
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domain pdb-uc fd-pdb-c fam-pdb-c
floortile-opt11-strips (20) 2 4 4
floortile-opt14-strips (20) 0 2 2
organic-synthesis-split-opt18-strips (20) 10 10 1
petri-net-alignment-opt18-strips (20) 4 4 0
pipesworld-tankage (50) 17 18 17
spider-opt18-strips (20) 11 11 8
storage (30) 15 16 16
tetris-opt14-strips (17) 10 10 6
woodworking-opt08-strips (30) 11 12 12
woodworking-opt11-strips (20) 6 7 7
Sum (247) 86 94 73

Table 4.4: Shows a summary coverage. Domains in which all three got the same coverage
is ommitted and can be seen in Table A.1. The best result for each attribute is highlighted

in bold.

time limitations. All but two tasks in the floortile domain failed due to high memory usage

errors in pdb-c whereas the two constrained versions recorded the same coverage which is a

similar trend as to what we’ve seen before in the ipdb variants. Figures with the results on

pdb time, search time and planner wall clock time of the pdb variants can be found in the

appendix section.

4.2.2 Configurations with the h2 preprocessor
In this section we will shift our attention to the configurations that used the h2 preprocessor.

Summary h2-ipdb-uc h2-ipdb-c
coverage - Sum 990 888
error-search-out-of-memory - Sum 654 439
error-search-out-of-time - Sum 175 492
expansions - Sum 1’439’751’127 1’268’326’792

Table 4.5: Shows a summary coverage, errors due to timeouts or memory limitations as
well as a sum of expansions for each configuration. The best result for each attribute is

highlighted in bold.

In reference to Table 4.5, we notice the same trend as in Table 4.1 where the unconstrained

version had managed to successfully solve more tasks than the unconstrained version. Out

of all the ten different configurations that we had, h2-ipdb-uc had the highest coverage with

990 tasks. Just like in Table 4.1, the constrained version had fewer tasks failing due to

search out of memory, while having more tasks failing due to search out of time errors as

compared to the unconstrained version. Out of a total of 1847 tasks, h2-ipbd-uc managed

to solve 54.6% correctly while h2-ipdb-c managed only 48% of the tasks.

An in-depth review on coverage shows that h2-ipdb-c outperformed h2-ipdb-uc in three

domains floortile-opt11-strips, floortile-opt14-strips and trucks-strips. The largest difference

in coverage was observed in the floortile-opt14-strips domain, where the constrained variant

solved 16 tasks successfully compared to the 8 of the unconstrained version. Similarly to the
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domain h2-ipdb-uc h2-ipdb-c
agricola-opt18-strips (20) 3 0
airport (50) 31 17
depot (22) 11 7
floortile-opt11-strips (20) 8 13
floortile-opt14-strips (20) 8 16
freecell (80) 21 8
ged-opt14-strips (20) 19 15
mprime (35) 24 23
mystery (30) 17 13
nomystery-opt11-strips (20) 20 13
organic-synthesis-split-opt18-strips (20) 13 7
pipesworld-notankage (50) 21 13
pipesworld-tankage (50) 17 8
scanalyzer-08-strips (30) 13 12
scanalyzer-opt11-strips (20) 10 9
snake-opt18-strips (20) 12 0
spider-opt18-strips (20) 15 6
storage (30) 16 15
tetris-opt14-strips (17) 11 0
tidybot-opt11-strips (20) 14 13
tidybot-opt14-strips (20) 9 5
trucks-strips (30) 9 11
woodworking-opt08-strips (30) 16 14
woodworking-opt11-strips (20) 11 9
Sum (694) 349 247

Table 4.6: Shows a summary of only domains where we observed a difference in coverage
between the h2-ipdb-uc and h2-ipdb-c configurations. Domains in which we had the same
coverage for the two configurations have been omitted. A full summary can be found in

Table A.1

configurations without the h2, the unconstrained version h2-ipdb-uc could not find dead ends

as opposed to h2-ipdb-c which managed to find the dead ends in most tasks. Furthermore,

the constrained version had fewer expansions compared to the unconstrained version, which

was further highlighted by a higher number of tasks failing due to memory issues in the

unconstrained version. For three domains, h2-ipdb-c could not find a solution while h2-ipdb-

uc managed to find solutions in these domains. One of these domains was snake-opt18-strips,

in this domain h2-ipdb-c ran out of time during pattern database computation. This was

also the observation in Table 4.2 where the unconstrained version performed better than the

constrained versions.

Comparing the pdb-time of h2-ipdb-uc and h2-ipdb-c we noticed that the unconstrained

variant h2-ipdb-uc, computed the pattern database faster in 93% of the tasks. The search

time was about 1.49 times faster in the constrained variant, this is due to the fewer expan-

sions by h2-ipdb-c since search time comprises of state expansions and heuristic computation,

and the heuristic computation is equally expensive in both variants. Table 4.5 clearly shows

this difference in expansions. However, this speedup in search time was not enough to lower

the planner wall clock time of h2-ipdb-c since the pattern database generation time was

significantly slower in h2-ipdb-c.
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Figure 4.10: Comparison of pdb time
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Figure 4.11: Comparison of search time of
h2-ipdb-uc and h2-ipdb-c
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Figure 4.12: Comparison of planner wall clock time of
h2-ipdb-uc and h2-ipdb-c

Lastly, we will take a look at the performance of the pdb variant that used the h2 prepro-

cessor, our discussion will be based on the results shown in Table 4.7.

Summary h2-pdb-uc h2-pdb-c
coverage - Sum 839 818
error-search-out-of-memory - Sum 978 776
error-search-out-of-time - Sum 0 223
expansions - Sum 2’368’553’061 2’077’711’155

Table 4.7: Summary of coverage, errors and expansions of h2-pdb-uc and h2-pdb-c

Comparing the pdb and ipdb versions for h2 we noticed that the unconstrained versions

yielded the highest coverage in both the pdb and ipdb versions. Tasks that failed due to

memory and time limitations also followed the same trend as in the ipdb variants. Across the
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floortile domain we noticed the same trend as in the ipdb variants whereby the constrained

version outperformed the unconstrained version. Furthermore, the unconstrained version

had more tasks failing due to running out of memory, whilst the constrained version had

more tasks failing to running out of time. Due to the way ipdbs work, the significant time

difference between the pdb and ipdb models was to be expected as ipdbs tend to use more

than just one pattern like pdbs do. In terms of expansions we also noticed a similar trend

to the ipdb variant whereby the constrained version expanded overall fewer states than the

unconstrained version. This also explains why the constrained version had fewer tasks failing

due to running out of memory since it did not have as many states as the unconstrained

version to expand.



5
Conclusion

The main objective of the thesis was to implement CPDBs and test the performance of the

different configurations and see which one would work best. We tested the implementation

on the more general pdb as well as ipdb to see how it differs in both settings. We also

had one implementation which used the h2 preprocessor and since it changes the task we

compared the constrained and unconstrained versions of the h2 separately from the rest of

the other implementations.

From our findings, we can conclude that using the mutex groups that are already generated

by Fast Downward during translation is sufficient, and this is evident from the fact that fd-

ipdb-c was the version with the highest coverage of all the CPDB implementations we had.

The results also show that it is almost never beneficial to use the fact-alternating mutex

groups (fam-groups), this is because using mutex groups from Fast Downward we never get

coverage that is worse than what we get from fam-groups while having better performance

in pattern database generation time.

On the other hand of all the ten configurations h2-ipdb-uc got the best coverage. However,

our implementation of CPDBs using mutex groups generated by the h2 preprocessor (h2-

ipdb-c) yielded lower coverage as compared to the CPDBs which used mutex groups from

Fast Downward. Not only did we get lower coverage in h2-ipdb-c but we also had longer

pattern database generation time as compared to fd-ipdb-c. In light of all this, we would

say of all the CPDB implementations (inclusive of the ones from h2) fd-ipdb-c would be the

best implementation as it gets better coverage to planner wall clock time ratio.

5.1 Future work
In most domains that we tested, we noticed that the pattern database generation time in

the CPDBs was a bottleneck, although other attributes such as search time, expansions

and memory usage were better there than their PDB counterparts. This means that future

efforts can be made in an attempt to optimize the already existing implementation of PDBs.

This is likely to reduce the overhead in time introduced by considering mutex information

in the CPDBs, and that along with an efficient search would result in CPDBs solving more
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tasks since we would had fewer tasks failing due to running out of time.

Secondly, figuring out a good criteria to know when to apply mutex constraints or allow

flexibility would also be beneficial. We noticed that in some tasks although we had mutex

information, it was not really beneficial to us to solve the tasks so this just introduced

overhead in computation time without the benefits from the mutex information. To this

end, we can try and look into operator applicability and check if each precondition variable

is in the pattern or not, and if there are mutex groups with this variable. The idea is if

a precondition variable is not in the pattern and there exist mutex groups including the

variable then we should enforce mutex constraining.

In conclusion, we can also extend the concept of mutex constraining to other abstraction

heuristics as like Merge and Shrink [16]. Since we also use the concept of abstraction in

Merge and Shrink, we can also enforce mutex constraints to get a more informed heuristic

which would also then improve our search and potentially the performance of the Merge and

Shrink.
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Figure A.1: Summary of all configurations
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Figure A.2: Comparison of total time of
ipdb-uc and fd-ipdb-c
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Figure A.3: Comparison of total time of
ipdb-uc and fam-ipdb-c
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Figure A.4: Comparison of total time of
fd-ipdb-c and fam-ipdb-c
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Figure A.5: Comparison of total time of
h2-ipdb-uc and h2-ipdb-c
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Figure A.6: Comparison of total time of
pdb-uc and fd-pdb-c
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Figure A.8: Comparison of total time of
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Figure A.9: Comparison of search time of
pdb-uc and fd-pdb-c
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Figure A.10: Comparison of search time
of pdb-uc and fam-pdb-c
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Figure A.11: Comparison of search time
of fd-pdb-c and fam-pdb-c
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Figure A.12: Comparison of pdb time of
pdb-uc and fd-pdb-c
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Figure A.13: Comparison of pdb time of
pdb-uc and fam-pdb-c
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Figure A.14: Comparison of pdb time of
fd-pdb-uc and fam-pdb-c
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domain fa
m
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p
d
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-c

fa
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b
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fd
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b
-c

fd
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b
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h
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ip
d
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h
2-
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d
b
-u
c

h
2-
p
d
b
-c

h
2-
p
d
b
-u
c

ip
d
b
-u
c

p
d
b
-u
c

agricola-opt18-strips (20) 0 0 0 0 0 3 0 0 0 0
airport (50) 22 23 29 23 17 31 27 27 35 23
barman-opt11-strips (20) 4 4 4 4 4 4 4 4 4 4
barman-opt14-strips (14) 0 0 0 0 0 0 0 0 0 0
blocks (35) 28 21 28 21 28 28 21 21 28 21
childsnack-opt14-strips (20) 0 0 0 0 0 0 0 0 0 0
data-network-opt18-strips (20) 12 9 12 9 12 12 9 9 12 9
depot (22) 9 7 9 7 7 11 7 7 11 7
driverlog (20) 13 10 13 10 13 13 10 10 13 10
elevators-opt08-strips (30) 23 14 23 14 23 23 14 14 23 14
elevators-opt11-strips (20) 18 12 18 12 18 18 12 12 18 12
floortile-opt11-strips (20) 9 4 9 4 13 8 10 8 2 2
floortile-opt14-strips (20) 9 2 9 2 16 8 11 8 0 0
freecell (80) 12 20 12 20 8 21 20 20 21 20
ged-opt14-strips (20) 20 15 20 15 15 19 15 15 19 15
grid (5) 3 2 3 2 3 3 2 2 3 2
gripper (20) 8 8 8 8 8 8 8 8 8 8
hiking-opt14-strips (20) 13 14 13 14 13 13 14 14 13 14
logistics00 (28) 25 16 25 16 23 23 15 15 25 16
logistics98 (35) 6 3 6 3 6 6 4 4 6 3
miconic (150) 69 55 69 55 69 69 55 55 69 55
movie (30) 30 30 30 30 30 30 30 30 30 30
mprime (35) 23 23 24 23 23 24 21 23 24 23
mystery (30) 14 17 17 17 13 17 14 17 17 17
nomystery-opt11-strips (20) 18 10 20 10 13 20 10 10 20 10
openstacks-opt08-strips (30) 22 22 22 22 22 22 22 22 22 22
openstacks-opt11-strips (20) 17 17 17 17 17 17 17 17 17 17
openstacks-opt14-strips (20) 3 3 3 3 3 3 3 3 3 3
openstacks-strips (30) 7 7 7 7 7 7 7 7 7 7
organic-synthesis-opt18-strips (20) 7 7 7 7 7 7 7 7 7 7
organic-synthesis-split-opt18-strips (20) 1 1 7 10 7 13 13 13 7 10
parcprinter-08-strips (30) 14 15 21 15 28 28 20 20 21 15
parcprinter-opt11-strips (20) 10 11 16 11 18 18 15 15 16 11
parking-opt11-strips (20) 4 0 7 0 7 7 1 1 7 0
parking-opt14-strips (20) 6 0 6 0 6 6 0 0 6 0
pathways (30) 4 4 4 4 4 4 4 4 4 4
pegsol-08-strips (30) 30 27 30 27 30 30 27 27 30 27
pegsol-opt11-strips (20) 20 17 20 17 20 20 17 17 20 17
petri-net-alignment-opt18-strips (20) 0 0 0 4 0 0 6 4 0 4
pipesworld-notankage (50) 15 22 20 22 13 21 22 23 21 22
pipesworld-tankage (50) 9 17 9 18 8 17 12 17 17 17
psr-small (50) 50 50 50 50 50 50 50 50 50 50
quantum-layout-opt23-strips (20) 8 10 13 10 13 13 10 10 13 10
rovers (40) 8 7 8 7 8 8 7 7 8 7
satellite (36) 6 6 6 6 6 6 6 6 6 6
scanalyzer-08-strips (30) 11 13 11 13 12 13 13 13 13 13
scanalyzer-opt11-strips (20) 8 10 8 10 9 10 10 10 10 10
snake-opt18-strips (20) 0 12 1 12 0 12 9 12 11 12
sokoban-opt08-strips (30) 30 27 30 27 30 30 30 30 30 27
sokoban-opt11-strips (20) 20 20 20 20 20 20 20 20 20 20
spider-opt18-strips (20) 0 8 15 11 6 15 1 11 15 11
storage (30) 16 16 16 16 15 16 16 15 16 15
termes-opt18-strips (20) 13 12 13 12 13 13 12 12 13 12
tetris-opt14-strips (17) 0 6 0 10 0 11 11 11 1 10
tidybot-opt11-strips (20) 14 14 14 14 13 14 13 14 14 14
tidybot-opt14-strips (20) 9 9 9 9 5 9 5 9 9 9
tpp (30) 6 6 6 6 6 6 6 6 6 6
transport-opt08-strips (30) 14 11 14 11 14 14 11 11 14 11
transport-opt11-strips (20) 12 6 12 6 12 12 6 6 12 6
transport-opt14-strips (20) 9 7 9 7 9 9 7 7 9 7
trucks-strips (30) 11 8 11 8 11 9 8 8 9 8
visitall-opt11-strips (20) 16 9 16 9 16 16 9 9 16 9
visitall-opt14-strips (20) 12 4 12 4 12 12 4 4 12 4
woodworking-opt08-strips (30) 14 12 14 12 14 16 12 12 12 11
woodworking-opt11-strips (20) 9 7 9 7 9 11 7 7 8 6
zenotravel (20) 13 9 13 9 13 13 9 9 13 9
Sum (1847) 866 788 927 809 888 990 818 839 946 801

Table A.1: Coverage results for all tested domains in all the different configurations
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domain fa
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d
b
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agricola-opt18-strips 0 17 0 20 0 17 0 20 9 20
airport 0 27 1 27 0 15 10 23 2 27
barman-opt11-strips 15 16 15 16 7 15 16 16 15 16
barman-opt14-strips 7 14 7 14 2 7 14 14 7 14
blocks 7 14 7 14 7 7 14 14 7 14
childsnack-opt14-strips 20 20 20 20 20 20 20 20 20 20
data-network-opt18-strips 6 11 7 11 7 8 11 11 8 11
depot 0 15 0 15 0 9 15 15 9 15
driverlog 2 10 4 10 4 5 10 10 6 10
elevators-opt08-strips 7 16 7 16 7 7 16 16 7 16
elevators-opt11-strips 2 8 2 8 2 2 8 8 2 8
floortile-opt11-strips 7 16 7 16 0 8 10 12 13 18
floortile-opt14-strips 11 18 11 18 0 12 9 12 18 20
freecell 24 60 24 60 0 59 22 60 59 60
ged-opt14-strips 0 5 0 5 0 1 5 5 1 5
grid 1 3 2 3 2 2 3 3 2 3
gripper 12 12 12 12 12 12 12 12 12 12
hiking-opt14-strips 7 6 7 6 7 7 6 6 7 6
logistics00 3 12 3 12 5 5 13 13 3 12
logistics98 5 32 11 32 11 11 31 31 11 32
miconic 45 95 46 95 46 50 95 95 49 95
movie 0 0 0 0 0 0 0 0 0 0
mprime 5 12 11 12 11 11 7 12 11 12
mystery 3 8 7 9 1 2 0 2 7 9
nomystery-opt11-strips 0 10 0 10 0 0 10 10 0 10
openstacks-opt08-strips 8 8 8 8 8 8 8 8 8 8
openstacks-opt11-strips 3 3 3 3 3 3 3 3 3 3
openstacks-opt14-strips 13 17 17 17 17 17 17 17 17 17
openstacks-strips 6 21 7 23 7 7 21 23 7 23
organic-synthesis-opt18-strips 0 0 0 0 0 0 0 0 0 0
organic-synthesis-split-opt18-strips 0 0 7 8 1 1 0 3 7 10
parcprinter-08-strips 0 15 0 15 2 2 9 9 0 15
parcprinter-opt11-strips 0 9 0 9 2 2 4 4 0 9
parking-opt11-strips 2 20 13 20 8 13 15 19 13 20
parking-opt14-strips 2 20 14 20 10 14 16 20 14 20
pathways 26 26 26 26 26 26 26 26 26 26
pegsol-08-strips 0 3 0 3 0 0 3 3 0 3
pegsol-opt11-strips 0 3 0 3 0 0 3 3 0 3
petri-net-alignment-opt18-strips 0 0 20 16 20 20 14 16 20 16
pipesworld-notankage 12 27 28 28 20 29 11 27 28 28
pipesworld-tankage 1 30 2 31 0 19 7 33 21 33
psr-small 0 0 0 0 0 0 0 0 0 0
quantum-layout-opt23-strips 1 10 7 10 7 7 10 10 7 10
rovers 11 31 11 33 11 11 33 33 11 33
satellite 17 30 30 30 29 29 30 30 30 30
scanalyzer-08-strips 8 15 13 15 13 17 14 17 17 17
scanalyzer-opt11-strips 4 8 6 8 6 10 8 10 10 10
snake-opt18-strips 0 5 0 8 0 8 0 8 9 8
sokoban-opt08-strips 0 3 0 3 0 0 0 0 0 3
sokoban-opt11-strips 0 0 0 0 0 0 0 0 0 0
spider-opt18-strips 0 2 5 9 0 5 0 9 5 9
storage 2 12 2 14 0 2 3 15 2 15
termes-opt18-strips 7 8 7 8 7 7 8 8 7 8
tetris-opt14-strips 0 0 0 7 0 0 2 6 0 7
tidybot-opt11-strips 6 6 6 6 1 6 2 6 6 6
tidybot-opt14-strips 10 11 11 11 5 11 2 11 11 11
tpp 9 23 24 24 24 24 24 24 24 24
transport-opt08-strips 14 19 16 19 16 16 19 19 16 19
transport-opt11-strips 8 14 8 14 8 8 14 14 8 14
transport-opt14-strips 9 13 11 13 11 11 13 13 11 13
trucks-strips 11 22 12 18 12 14 11 22 14 22
visitall-opt11-strips 4 11 4 11 4 4 11 11 4 11
visitall-opt14-strips 8 16 8 16 8 8 16 16 8 16
woodworking-opt08-strips 0 18 0 18 1 1 18 18 0 19
woodworking-opt11-strips 0 13 0 13 1 1 13 13 0 14
zenotravel 0 11 0 11 0 1 11 11 2 11
Sum 391 960 537 1010 439 654 776 978 651 1029

Table A.2: Error search out of memory of all domains
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domain fa
m
-i
p
db

-c

fa
m
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-c

fd
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-c

fd
-p
db

-c

h2
-i
p
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-c
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-i
p
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-u
c

h2
-p
db

-c

h2
-p
db

-u
c

ip
db

-u
c

p
db

-u
c

agricola-opt18-strips 20 3 20 0 20 0 20 0 11 0
airport 28 0 20 0 33 4 13 0 13 0
barman-opt11-strips 1 0 1 0 9 1 0 0 1 0
barman-opt14-strips 7 0 7 0 12 7 0 0 7 0
blocks 0 0 0 0 0 0 0 0 0 0
childsnack-opt14-strips 0 0 0 0 0 0 0 0 0 0
data-network-opt18-strips 2 0 1 0 1 0 0 0 0 0
depot 13 0 13 0 15 2 0 0 2 0
driverlog 5 0 3 0 3 2 0 0 1 0
elevators-opt08-strips 0 0 0 0 0 0 0 0 0 0
elevators-opt11-strips 0 0 0 0 0 0 0 0 0 0
floortile-opt11-strips 4 0 4 0 7 4 0 0 5 0
floortile-opt14-strips 0 0 0 0 4 0 0 0 2 0
freecell 44 0 44 0 72 0 38 0 0 0
ged-opt14-strips 0 0 0 0 5 0 0 0 0 0
grid 1 0 0 0 0 0 0 0 0 0
gripper 0 0 0 0 0 0 0 0 0 0
hiking-opt14-strips 0 0 0 0 0 0 0 0 0 0
logistics00 0 0 0 0 0 0 0 0 0 0
logistics98 24 0 18 0 18 18 0 0 18 0
miconic 36 0 35 0 35 31 0 0 32 0
movie 0 0 0 0 0 0 0 0 0 0
mprime 7 0 0 0 1 0 7 0 0 0
mystery 6 1 0 0 5 0 5 0 0 0
nomystery-opt11-strips 2 0 0 0 7 0 0 0 0 0
openstacks-opt08-strips 0 0 0 0 0 0 0 0 0 0
openstacks-opt11-strips 0 0 0 0 0 0 0 0 0 0
openstacks-opt14-strips 4 0 0 0 0 0 0 0 0 0
openstacks-strips 17 2 16 0 16 16 2 0 16 0
organic-synthesis-opt18-strips 0 0 0 0 0 0 0 0 0 0
organic-synthesis-split-opt18-strips 19 19 6 2 8 2 3 0 6 0
parcprinter-08-strips 16 0 9 0 0 0 0 0 9 0
parcprinter-opt11-strips 10 0 4 0 0 0 0 0 4 0
parking-opt11-strips 14 0 0 0 5 0 4 0 0 0
parking-opt14-strips 12 0 0 0 4 0 4 0 0 0
pathways 0 0 0 0 0 0 0 0 0 0
pegsol-08-strips 0 0 0 0 0 0 0 0 0 0
pegsol-opt11-strips 0 0 0 0 0 0 0 0 0 0
petri-net-alignment-opt18-strips 20 20 0 0 0 0 0 0 0 0
pipesworld-notankage 23 1 2 0 17 0 17 0 1 0
pipesworld-tankage 40 3 39 1 42 14 31 0 12 0
psr-small 0 0 0 0 0 0 0 0 0 0
quantum-layout-opt23-strips 11 0 0 0 0 0 0 0 0 0
rovers 21 2 21 0 21 21 0 0 21 0
satellite 13 0 0 0 1 1 0 0 0 0
scanalyzer-08-strips 11 2 6 2 5 0 3 0 0 0
scanalyzer-opt11-strips 8 2 6 2 5 0 2 0 0 0
snake-opt18-strips 20 3 19 0 20 0 11 0 0 0
sokoban-opt08-strips 0 0 0 0 0 0 0 0 0 0
sokoban-opt11-strips 0 0 0 0 0 0 0 0 0 0
spider-opt18-strips 20 10 0 0 14 0 19 0 0 0
storage 12 2 12 0 15 12 11 0 12 0
termes-opt18-strips 0 0 0 0 0 0 0 0 0 0
tetris-opt14-strips 17 11 17 0 17 6 4 0 16 0
tidybot-opt11-strips 0 0 0 0 6 0 5 0 0 0
tidybot-opt14-strips 1 0 0 0 10 0 13 0 0 0
tpp 15 1 0 0 0 0 0 0 0 0
transport-opt08-strips 2 0 0 0 0 0 0 0 0 0
transport-opt11-strips 0 0 0 0 0 0 0 0 0 0
transport-opt14-strips 2 0 0 0 0 0 0 0 0 0
trucks-strips 8 0 7 4 7 7 11 0 7 0
visitall-opt11-strips 0 0 0 0 0 0 0 0 0 0
visitall-opt14-strips 0 0 0 0 0 0 0 0 0 0
woodworking-opt08-strips 16 0 16 0 15 13 0 0 18 0
woodworking-opt11-strips 11 0 11 0 10 8 0 0 12 0
zenotravel 7 0 7 0 7 6 0 0 5 0
Sum 570 82 364 11 492 175 223 0 231 0

Table A.3: Error search out of time for all domains
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