

Constrained Pattern Databases

Takudzwa Togarepi, University of Basel, April 14, 2025

Motivation

- Planning tasks
- Pattern Databases

4 Mutexes

- Constrained pattern databases (CPDBs)
- Experiment setup

7 Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Conclusion

Motivation

• Task - stack blocks in a given order.

Image generated by DALL-E

Motivation

- Task stack blocks in a given order.
- More blocks, more complex.

Image generated by DALL-E

Motivation

- Task stack blocks in a given order.
- More blocks, more complex.
- Solution solve subtasks and combine solutions.

Image generated by DALL-E

Motivation

Planning tasks

- Pattern Databases
- 4 Mutexes
- Constrained pattern databases (CPDBs)
- Experiment setup

Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Planning tasks

SAS⁺ Planning Tasks $\Pi = \langle V, O, I, G \rangle$

- Set of variables $V = \{v_1, v_2, v_3, \dots, v_n\}$.
- A state s is a full assignment to variables V.
- Finite set of operators O where operator $o = \langle pre(o), eff(o) \rangle$.
- I is the initial state.
- Goal condition G is a partial assignment.

Additional definitions

- A fact is a variable-value pair (v_i, d_i) .
- A *plan* is a sequence of operators $\pi = \langle o_1, o_2, o_1, o_3 \rangle$.
- An optimal plan is one with the minimum cost.

Planning tasks

Abstraction

Given SAS⁺ task $\Pi = \langle V, O, I, G \rangle$ with state set S and abstraction mapping $\alpha : S \to S'$.

Heuristic h(s)

• $h^{\alpha}(s)$ estimate of how far state s from the goal.

Abstraction heuristics $h^{\alpha}(s)$

 h^{\(\alpha\)}(s) is the distance from s to the nearest goal in the abstract search space.

Planning tasks

Projection

A type of abstraction. Given SAS⁺ task $\Pi = \langle V, O, I, G \rangle$ with state set S. Let \mathcal{P} be a pattern where $\mathcal{P} \subseteq V$. • $\alpha^{\mathcal{P}}(s) = \alpha^{\mathcal{P}}(s')$ iff $s(p) = s'(p) \mid \forall p \in \mathcal{P}$, where $s, s' \in S$

Blocksworld example

Example of a pattern projection

Example of a pattern projection

Motivation

Planning tasks

Pattern Databases

4 Mutexes

Constrained pattern databases (CPDBs)

Experiment setup

7 Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Conclusion

Pattern Databases

Pattern Database $PDB(\Pi^{\mathcal{P}}) = \{s_{\mathcal{P}}, d(s_{\mathcal{P}}, G_{\mathcal{P}})\}$

- $s_{\mathcal{P}}$ abstract state .
- $G_{\mathcal{P}}$ abstract goal condition.
- d(s_P,_P) cost of the cheapest path from s_P to any goal state in the abstract state space.

Motivation

Planning tasks

Battern Databases

4 Mutexes

Constrained pattern databases (CPDBs)

Experiment setup

7 Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Conclusion

Mutexes

Mutex

Two facts (v_i, d_i) and (v_j, d_j) are mutually exclusive (mutex) iff no reachable state *s* exists such that: $s(v_i) = d_i$ and $s(v_j) = d_j$.

Mutex group

A set of facts in which at most one of them can be true at any point.

Mutexes

Sources of mutexes

- Fast downward mutexes.
 - get for free from Fast Downward.
- Fact-alternating mutex groups (Fam-group).
 - uses LPs to infer mutexes.
- h² preprocessor.
 - get for free from translation using h^2 .

Motivation

Planning tasks

Pattern Databases

4 Mutexes

Constrained pattern databases (CPDBs)

Experiment setup

7 Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Conclusion

Constrained pattern databases (CPDBs)

State constraint

Let $\mathcal C$ be a set of mutex groups $\{\mathcal C_1,\mathcal C_2\ldots\mathcal C_n\}$ then :

• $|C_i \cap s| \leq 1$ holds for all $C_i \in C$.

Transition constraint

 $|(s' \cup \operatorname{pre}(o)) \cap C_i| \leq 1$ holds for every s' and operator o applicable to s'.

Invalid abstract state

h(A) is 3 now

Invalid transition

h(A) is now 3

Motivation

Planning tasks

Pattern Databases

4 Mutexes

Constrained pattern databases (CPDBs)

Experiment setup

Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Conclusion

Experiment setup

Benchmarking

- Implemented on Fast Downward .
- Experiments were tested on ICP benchmarks (1847 tasks).
- Time limit 30 minutes per task.
- Memory limit 3584MB.

Experiment setup

Measured attributes

- Coverage.
- Number of failed runs (and reason for failing).
- Pattern database computation time.
- Search time.
- Planner wall clock time.

Experiment setup

Motivation

Planning tasks

Pattern Databases

4 Mutexes

Constrained pattern databases (CPDBs)

Experiment setup

Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Conclusion

Summary of configurations without h2 preprocessor

Pattern database computation time

Search time

Planner wall clock time

Summary of configurations with h2 preprocessor

h2

Coverage for all configurations

Motivation

Planning tasks

Pattern Databases

4 Mutexes

- Constrained pattern databases (CPDBs)
- Experiment setup

7 Results

- Results configurations without the h2 preprocessor
- Results configurations with the h2 preprocessor
- Coverage for all configurations

Conclusion

- Fast Downward mutexes offers best trade-off.
- Fam-groups are almost never benefitial.
- Performance of CPDBs and PDBs is close.
- We can potentially improve CPDB coverage by an optimized implementation of CPDBs.

Thank you for your attention.